
HAL Id: hal-00855669
https://hal.science/hal-00855669

Submitted on 7 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Merging partially labelled trees: hardness and a
declarative programming solution

Anthony Labarre, Sicco Verwer

To cite this version:
Anthony Labarre, Sicco Verwer. Merging partially labelled trees: hardness and a declarative program-
ming solution. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11 (2),
pp.389-397. �10.1109/TCBB.2014.2307200�. �hal-00855669�

https://hal.science/hal-00855669
https://hal.archives-ouvertes.fr

1

Merging partially labelled trees: hardness and a

declarative programming solution
Anthony Labarre Sicco Verwer

Abstract—Intraspecific studies often make use of haplotype
networks instead of gene genealogies to represent the evolution
of a set of genes. Cassens et al. [3] proposed one such
network reconstruction method, based on the global maximum
parsimony principle, which was later recast by the first author
of the present work as the problem of finding a minimum
common supergraph of a set of t partially labelled trees.
Although algorithms have been proposed for solving that
problem on two graphs, the complexity of the general problem
on trees remains unknown. In this paper, we show that the
corresponding decision problem is NP-complete for t = 3.
We then propose a declarative programming approach to
solving the problem to optimality in practice, as well as a
heuristic approach, both based on the IDP system, and assess
the performance of both methods on randomly generated data.

Index Terms—Phylogenetic networks, supergraphs, NP-
hardness, SAT solver, IDP.

I. INTRODUCTION

Phylogenetic trees are the traditional tool for representing

the evolution of a given set of species [6]. The last two

decades, however, have witnessed the emergence of a new

way of reconstructing and representing evolution, which has

become widespread in phylogenetic studies: phylogenetic

networks, which generalise phylogenetic trees by allowing

multiple paths between species. The main reason for using

networks rather than trees is that evolution is not always

tree-like: genes may be duplicated, transferred or lost, and

recombination events (i.e. the breaking of a DNA strand

followed by its reinsertion into a different DNA molecule)

as well as hybridisation events (i.e. the combination of

genetic material from several species) are known to occur.

Moreover, even when evolution is tree-like, situations exist

in which a relatively large number of tree topologies might

be “equally good”, and not enough information is available

to discriminate between those trees. One proposed solution

to the latter issue is the use of consensus trees, where the

idea is to find a tree that represents a compromise between

the given topologies; another approach, on which we focus

in this paper, is to build a network [7, 9] that is compatible

with all topologies of interest.

Haplotype networks are used in the context of intraspe-

cific studies, which focus on relations between genes rather

than between species. Cassens et al. [3] proposed a new

method for reconstructing such networks, based on a given

set of trees rather than on the input sequences. Note that

the trees studied in that context, namely, gene genealo-

gies, differ from the typical phylogenetic trees studied

in comparative genomics: whereas phylogenetic trees are

usually binary (i.e. internal nodes have degree three), have

labels attached only to their leaves, and contain branches of

arbitrary real length, gene genealogies allow internal nodes

of arbitrary degree, as well as labelled nodes that are not

leaves, and their branches have length exactly one. Cassens

et al.’s approach comprises two steps: most parsimonious

trees are built from the sequences, and a subset of these

trees is then merged into a graph. Their approach, which

they refer to as “union of most parsimonious trees” (UMP),

does not aim at building a smallest graph that contains all

most parsimonious trees, as Bandelt et al. [1] did using

median networks, but rather to summarise the information

contained in a selected portion of those most parsimonious

trees in a graph that is as “succinct” as possible.

The results produced by UMP on simulated data have

been promising, compared with earlier algorithms [3].

However, the algorithm and the overall approach proposed

by the authors lacked rigorous formalisation, and were

later recast by the first author of the present work as

a minimum common supergraph problem: given a set of

partially labelled trees on the same label set, find a graph

on the same vertex set which contains all input trees as

subgraphs and which has as few edges as possible [10].

That work also contains two exact algorithms for the

same problem on two partially labelled graphs, running in

polynomial time under some assumptions and exponential

time in the general case. To the best of our knowledge, the

complexity of the problem has since remained open.

In this work, we settle the complexity of the above opti-

misation problem, by showing that the associated decision

problem is NP-complete for three trees. We make up for

this bad news by proposing a practical approach to solving

the problem to optimality in practice, using the IDP sys-

tem [13]. This allows us to model our minimum common

supergraph problem as a constraint satisfaction problem that

is automatically translated into a SAT instance and then

solved quickly by a SAT solver. We give an exact and a

greedy method for UMP, both based on this declarative

programming approach, and assess the performances of

both approaches on random instances of various sizes.

II. BACKGROUND

We recall here a few definitions and notation that will

be needed in the study of our problem, formally stated

at the end of this section. Any graph-theoretical concept

the reader might lack familiarity with can be found in any

textbook on the topic, e.g. Diestel [5].

2

Definition II.1. [10] A labelling L for a subset U of

vertices of a graph G = (V,E) assigns a distinct label

to each vertex in U ; it is partial (resp. complete) if U ⊂ V

(resp. U = V), in which case we say that G is partially

(resp. completely) labelled.

Unless explicitly stated, the label set will always be

{1, 2, . . . , k}, with k ≤ |V |.

Definition II.2. [10] An (n, k)-graph G = (V,E,L) is a

graph on n vertices, k of which are labelled by L.

Definition II.3. [10] An (n, k)-tree is a connected (n, k)-
graph with n − 1 edges and whose labelled vertex set

includes all vertices of degree 1.

The following function, which (possibly) returns the label

of vertex v in the (n, k)-graph G, allows us to adapt

classical graph-theoretical concepts to our needs:

lab : V (G) → {1, 2, . . . , k} ∪ {∅}

: v 7→ lab(v) =

{

i if v has label i,

∅ otherwise.

This is not to be confused with the labellings introduced

in Definitions II.1 and II.2: labelling L assigns labels to

vertices, while function lab (possibly) returns labels. We

will also use lab on edges, in order to obtain the pairs of

labels that correspond to the endpoints of interest: if v, w

∈ V (G), then lab({v, w}) = {lab(v), lab(w)}. Therefore,

we have:

lab(E(G)) = {{i, j} | i, j ∈ {1, 2, . . . , k} ∪ {∅} and

∃ {v, w} ∈ E(G) : lab(v) = i, lab(w) = j}.

Definition II.4. An (n, k)-graph G is a subgraph of an

(n, k)-graph H if the labellings of G and H can be

completed in such a way that the resulting (n, n)-graphs

G′ and H ′ satisfy lab(E(G′)) ⊆ lab(E(H ′)). In that case,

we also say that H is a supergraph of G.

“Completing a labelling” means assigning distinct labels

to the remaining unlabelled vertices; already labelled ver-

tices must not be altered. In the following, the primed

notation G′ will always refer to a completely labelled

graph obtained from an (n, k)-graph G by completing its

labelling.

Definition II.5. [10] An (n, k)-graph G is a common

supergraph of a set G of (n, k)-graphs if it is a supergraph

of each element of G . It is minimum if there is no other

common supergraph of G with fewer edges.

Figure 1 shows two (n, k)-trees T1 and T2 along with

two supergraphs G1 and G2 of {T1, T2}. Both G1 and

G2 are minimal in the sense that deleting any of their

edges invalidates the supergraph property, but only G1 is

minimum. Note that L(T1) and L(T2) cannot be completed

in such a way that lab(E(T ′

1
)) = lab(E(T ′

2
)) (again, T ′

1
and

T ′

2
are (n, n)-trees obtained from T1 and T2 by completing

those (n, k)-trees’ labellings).

We now have everything we need to formally state our

problem as a decision problem:

1

3

4

2

1

3

4

2 1 3

4

2

1 3

4

2

T1 T2 G1 G2

Fig. 1. Two (7, 4)-trees T1 and T2, and common supergraphs G1 and
G2 of T1 and T2; G1 is minimum, but G2 is not.

COMMON SUPERGRAPH OF PARTIALLY LABELLED

TREES (CS-PLT)

• Instance: (n, k)-trees T1, T2, . . ., Tt on the same

label set, a natural upper bound K.

• Question: can the labellings of T1, T2, . . ., Tt be

completed in such a way that ∪t
i=1

lab(E(T ′

i)) ≤ K?

Note that a common supergraph of the input trees is

defined exactly by the above union.

III. THE COMPLEXITY OF CS-PLT

In this section, we prove the hardness of CS-PLT.

Theorem III.1. CS-PLT is NP-complete for three trees.

Proof: We present a reduction from MONOTONE 1-IN-

3 SATISFIABILITY (see Schaefer [12]):

MONOTONE 1-IN-3 SATISFIABILITY

• Instance: a Boolean formula φ = C1 ∧ C2 ∧
· · · ∧ Cm without negations over a set Σ =
{ℓ1, ℓ2, . . . , ℓn}, with exactly three distinct literals per

clause.

• Question: does there exist an assignment of truth

values f : Σ → {TRUE, FALSE} such that exactly one

literal is TRUE in every clause of φ?

a) The transformation: We encode instances of

MONOTONE 1-IN-3 SATISFIABILITY using three trees,

whose construction and purpose are explained below, and

we illustrate the transformation on an example in Figure 2.

1) The first tree T1 encodes the occurrences of literals in

the MONOTONE 1-IN-3 SATISFIABILITY instance φ.

It is constructed using a matrix indexed by the literals

and clauses from φ. Every occurrence of a literal ℓj in

a clause Ci is mapped onto a pair of nodes connected

by an edge, where one node is a leaf labelled with

L
j
i , which we call a literal node, and the other node

is unlabelled. After creating these nodes for all literal

occurrences, we connect the unlabelled nodes that are

connected by an edge with occurrences of the same

literal by adding edges vertically in the matrix, i.e.,

in order of occurrence. The first occurrence of every

literal is then connected to a root node R, which is

itself connected to a TRUE node T and a FALSE node

F (all three nodes are labelled).

2) In tree T2, R is connected to three paths:

3

a) a first path that consists of all 3m literal nodes

in an arbitrary order (without loss of generality);

b) a second path, called the TRUE CHAIN, which

contains m unlabelled nodes and ends with T ;

c) a third path, called the FALSE CHAIN, which

contains 2m unlabelled nodes and ends with F .

The first path is connected to node R, while the

unlabelled extremities of the TRUE CHAIN and of

the FALSE CHAIN are both connected to R. The

TRUE CHAIN and the FALSE CHAIN represent a truth

assignment to the literals in φ. This assignment is

determined by labelling T1 and T2 in the CS-PLT

instance: a literal ℓj in Ci represented by edge

{Lj
i , u} in T1 is set to TRUE (resp. FALSE) if u is

assigned the same label as a node from the TRUE

CHAIN (resp. FALSE CHAIN) from T2.

3) Tree T3 overlaps for a large part with T2. The only

difference is that the TRUE CHAIN is split up and

every unlabelled node from this chain is connected

to T and three literal nodes from a unique clause.

These edges thus encode the different clauses in φ.

In addition, by limiting the number of allowed edges

in a CS-PLT solution by a value K, they encode

the constraint that every clause contains exactly one

TRUE literal. Note that a minimal CS-PLT solution

assigns the same labels to the TRUE chains from T2

and T3, and the same labels and label ordering to the

FALSE chains.

T1

C1

C2

...

Ci

...

Cm

ℓ1 ℓ2 ℓ3 . . . ℓj . . . ℓn

L1

1
L2

1
L3

1

L1

2
L2

2 L
j
2

Ln
iL2

i L
j
i

L1

m L3

m Ln
m

RF T

T2

L1

1
L1

2
L1

m L2

1
L2

2
L2

i
· · · Ln

m

RF · · ·

2m

T· · ·

m

T3

L1

1
L2

1
L3

1
L1

2
L2

2 L
j
2

· · · L1

m L3

m Ln
m

RF · · ·

2m T

Fig. 2. The three trees built in our transformation.

Figure 3 page 5 shows an example of the construction

applied to a small example instance (ignore labels 1 to 12
for now). In addition to these trees, the CS-PLT decision

problem requires an upper bound K, which we derive later

in the proof:

K = 12m+ n+ 1.

We now show that φ is satisfiable under the monotone 1-

in-3 restrictions if and only if the labellings of these three

trees can be completed in such a way that the union of the

resulting labelled edge sets has size at most K.

(⇒): Let f be a solution to φ. We use f to construct

a solution to the CS-PLT instance of size at most K, which

consists of three respective labellings for the unlabelled

nodes of T1, T2 and T3, as follows.

1) We examine each path following the lexicographical

order on literals, and follow paths downwards from

R, assigning and incrementing labels as we go,

starting with 1. More formally, every unlabelled node

U
j
i connected to a literal node L

j
i in T1 receives the

label a(U j
i) defined below and which corresponds

to the number of literal nodes L
j′

i′ connected to

unlabelled nodes U
j′

i′ representing either literals with

lexicographically smaller labels alphabetically (i.e.

ℓj
′

< ℓj) or the same literal but occurring in an earlier

clause (i.e. ℓj
′

= ℓj and i′ < i):

a(U j
i) = |{Lj′

i′ | (ℓ
j′ < ℓj) ∨ (ℓj

′

= ℓj ∧ i′ < i)}|.

2) The kth unlabelled node from the TRUE CHAIN Uk,T

in T2 (ordered from R to T) receives the label

assigned to the kth unlabelled node U
j
i in T1 (in

ascending label order) that represents a TRUE literal:

(a(U1,T), . . . , a(Um,T))

= SORT({a(U j
i) such that f(ℓj) = TRUE}).

Since f is a 1-in-3 solution, it is guaranteed that this

assigns a unique label to every unlabelled node from

the TRUE CHAIN.

3) Similarly, the ith node from the FALSE CHAIN in T2

and T3, namely, Ui,F , receives the label of the U
j
i

nodes representing FALSE literals:

(a(U1,F), . . . , a(U2m,F))

= SORT({a(U j
i) such that f(ℓj) = FALSE}).

4) The ith split up TRUE CHAIN nodes Uk,s from T3 are

all connected to all three literal nodes from clause

Ck. We label these nodes with the label of the U
j
i

node representing the TRUE literal ℓj in Ci:

a(Ui,s) = a(U j
i) such that f(ℓj) = TRUE.

The labellings are uniquely defined since f assigns the

TRUE value to exactly one literal in every clause Ci.

Figure 3 shows the completely labelled trees that result

from applying the aforementioned steps to the trees con-

structed from an example instance of MONOTONE 1-IN-3

SATISFIABILITY.

4

We now show that these labellings yield a graph that

contains exactly K = 12m + n + 1 edges. Every tree

potentially adds all its 6m+2 edges to the resulting graph,

so we derive K by counting the overlapping edges between

the different trees. Following the definition of CS-PLT, the

completely labelled trees we obtained will be denoted by

T ′

1
, T ′

2
and T ′

3
. Let us add all edges from T ′

1
and T ′

3
to T ′

2
;

we make the following observations:

• The 2m+1 edges connecting the FALSE CHAIN nodes

to R in T ′

3
already appear in T ′

2
, since the unlabelled

nodes are assigned exactly the same label by a(·).
Moreover, exactly one of the edges between T and

the split up TRUE CHAIN in T ′

3
appears in the TRUE

CHAIN in T ′

2
;

• Tree T ′

1
contains a lot of edges already in T ′

2
or T ′

3

due to the a(·) labelling:

– m of the edges to literal nodes overlap with those

from T ′

3
because every Uk,s is assigned the same

label as some U
j
k .

– All of the 3m−n edges connecting the unlabelled

nodes U
j
i connect nodes representing literals that

are assigned the same truth value by f and con-

secutive labels by a, so these nodes are already

connected either by the TRUE CHAIN or by the

FALSE CHAIN in T ′

2
.

– 2 edges between R and newly labelled nodes

overlap with those in T2 since the TRUE CHAIN

and FALSE CHAIN start with the smallest label

assigned to a TRUE and a FALSE literal by a,

corresponding to the first occurrence of these

literals.

– 1 edge connecting R with T .

This sums up to 3(6m+ 2)− (2m+ 1+ 1)− (m+ 3m−
n+ 2 + 1) = 12m+ n+ 1 edges, which equals K.

(⇐): If the constructed CS-PLT instance is true, then

the original MONOTONE 1-IN-3 SATISFIABILITY instance

is true. We first observe that the value we derived for K in

the (⇒) part is the minimum number of edges that can be

obtained by labelling our three trees and taking the union

of the resulting edge sets since we counted the maximum

number of overlapping edges, making in total:

• 2 edges due to T1 ({R, T} and {R,F});

• n edges connecting R with unlabelled nodes, which is

minimal due to T1;

• 5m edges between literal nodes and unlabelled nodes,

minimal due to T1 and T3;

• 3m edges connecting literal nodes, minimal due to T2;

• 2m− 1 edges between unlabelled nodes in the FALSE

CHAIN, minimal due to T2;

• m − 1 edges between unlabelled nodes in the TRUE

CHAIN, minimal due to T2;

• m edges between T and unlabelled nodes in the split

up TRUE CHAIN, minimal due to T3;

• and 1 edge between F and an unlabelled node in the

FALSE CHAIN, minimal due to T2.

This sums up to 12m+ n+ 1 = K.

We note that after completing the labelling of T1, T2

and T3, we necessarily obtain a common supergraph G =
(V,E) such that:

1 ≤ |{{v, w} ∈ E : lab(v) ∈ L
j
i}| ≤ 2.

In other words, every literal node is adjacent to at least

one and at most two newly labelled nodes, independent of

the labelling. Since we counted exactly 5m edges between

these nodes, and there are 3m literal nodes, this gives

exactly m literal nodes that are connected by a single edge

with a newly labelled node. Consequently, for every split

up TRUE CHAIN node from T3, exactly one node receives

a label such that one of its three edges with literal nodes

overlaps with an edge from T1. The literal nodes connected

to these overlapping edges determine the TRUE literals

in the original satisfiability problem, all other literals are

set to FALSE. Since every split up TRUE CHAIN node in

T3 is connected to nodes representing exactly the literal

occurrences of a single clause, this makes exactly one literal

TRUE in every clause.

In addition to this property, we require that if a literal is

true, then every instance of that literal is TRUE. We show

this by making the following observation that is key to our

translation:

A CS-PLT solution of size K has no edges be-

tween the TRUE CHAIN of T2 and the FALSE

CHAIN of T3.

To see why this holds, one only has to observe that in

the above edge counts, we counted exactly 3m − 2 edges

between unlabelled nodes. Since the TRUE CHAIN and the

FALSE CHAIN in T2 already contribute this amount of

edges, any additional edge will yield a solution of size

K + 1. Thus, in a solution of size K, the same labels

are assigned to the FALSE CHAIN nodes from T2 and T3.

Furthermore, all of the edges between unlabelled nodes

from T1 have to overlap with those from T2. Since these

edges connect the different occurrences of literals, these

occurrences are all labelled with either TRUE CHAIN or

FALSE CHAIN labels, but not both. Consequently, if the CS-

PLT problem is true (has a solution of size K), then using

our construction, every literal occurrence of the same literal

is assigned the same truth value, and exactly one literal is

set to TRUE in every clause, making the MONOTONE 1-IN-3

SATISFIABILITY instance satisfied.

b) Time complexity: The transformation clearly runs

in time polynomial in the size of the MONOTONE 1-IN-

3 SATISFIABILITY instance, and a solution to CS-PLT can

easily be verified in polynomial time. The CS-PLT problem

is therefore NP-complete.

IV. FINDING A MINIMUM COMMON SUPERGRAPH IN

PRACTICE

The hardness of CS-PLT motivates our search for efficient

exact or approximate solutions. In that spirit, we decided to

translate our problem into a constraint satisfaction problem,

and to rely on an efficient SAT solver to obtain an exact

solution to it.

5

26 edges

C1

C2

C3

C4

A B C D E

L1

1
L2

1
L3

1

1 4 6

L1

2
L3

2
L5

2

2 7 10

L2

3
L4

3
L5

3

5 8 11

L1

4
L4

4
L5

4

3 9 12

RF T

17 extra edges (bold)

L1

1
L1

2
L1

4
L2

1
L2

3
L3

1
L3

2
L4

3

L4

4
L5

2
L5

3
L5

4

R

F1211105

1

2 3 4

T9876

11 extra edges (dotted)

L1

1
L2

1
L3

1
L1

2
L3

2
L5

2
L2

3
L4

3
L5

3
L1

4
L4

4
L5

4

6 7 8 9

R

F 12345101112

T

Fig. 3. A solution to the CS-PLT instance constructed from the
MONOTONE 1-IN-3 SATISFIABILITY instance (A ∨ B ∨ C) ∧ (A ∨ C ∨
E) ∧ (B ∨D ∨E) ∧ (A ∨D ∨E), which has as satisfying assignment
f(C) = f(D) = TRUE. The union of the labelled edge sets has size
26 + 17 + 11 = 54 = 12m+ n+ 1, with m = 4 and n = 5.

Figure 4 shows the typical workflow of a SAT solver

based approach. We circumvent the difficulties pointed out

in that workflow by relying on the IDP model expansion

system [13], which merely requires us to provide a log-

ical description of our problem and a specific instance.

IDP translates the description into a constraint satisfaction

problem, runs a solver, and translates the result back into a

solution to our problem. Another attractive feature of IDP

is that it can be used as an anytime algorithm: one can

terminate the solving process before its completion and

retrieve the best solution found so far.

PROBLEM INSTANCE

BOOLEAN FORMULA

SAT SOLVER

SATISFYING ASSIGNMENT

SOLUTION

difficult steps

Fig. 4. The typical workflow of a SAT solver based approach.

We give an exact approach (Section IV-D) and a greedy

approximation (Section IV-E) in the following sections,

starting with an introduction to SAT solvers in Section IV-A.

We then describe IDP, its input and two models in Sec-

tions IV-B to IV-D, and explore their efficiency in practice

on artificial data in Section IV-F.

A. Satisfiability and SAT solvers

The NP-complete satisfiability problem, which we recall

below for completeness, is central to the field of computa-

tional complexity theory [4].

SATISFIABILITY (SAT)

• Instance: a Boolean formula φ in conjunctive nor-

mal form.

• Question: is there a satisfying assignment for φ?

SAT and its variants have spawned tremendous interest

among researchers, who have developed a number of prac-

tical and efficient algorithms, generally referred to as SAT

solvers, for solving instances of those problems in practice

(see e.g. Gomes et al. [8] for a recent account). A number

of highly-optimised implementations exist, which makes

it possible to solve several well-known hard problems to

optimality in a reasonable amount of time in many cases.

One of the difficulties lies in formulating the problem as a

satisfiability problem [2, ch. 2]; fortunately, the IDP system,

described below, makes this step a lot easier.

B. The IDP system

The IDP system [13] consists of two parts: a

grounder [14] and a solver [11]. The grounder (GIDL)

transforms a search or optimisation problem into a proposi-

tional formula that can be solved using the solver; the solver

(MINISATID) then produces a solution if one exists. This

provides an easy method for declarative problem solving:

all we have to do is provide a high-level specification of

our problem and of the instance we want to solve; the IDP

system then determines, using searches and heuristics, a

good formulation of this problem in propositional logic (i.e.

as an efficiently solvable instance of SAT), and finally runs

the solver, translating upon completion any solution it finds

back to the high-level specification.

The IDP language is straightforward and easy to use,

thanks to a multitude of logical operators, the ability to

perform arithmetic operations, and the possibility of provid-

ing inductive definitions. The latter two in particular make

it possible to define complex constraints or optimisation

parameters in a neat and succinct way. Although such

definitions would normally result in a blow-up of the propo-

sitional specification of the problem, the IDP solver contains

specialised propagation mechanisms suitable for reasoning

directly on such inductive definitions. These mechanisms

are built on top of the popular MINISAT solver without

sacrificing much performance. The ability to write complex

problem descriptions in just a few lines of code makes it an

ideal tool for testing different problem specifications, and

is the main strength of the IDP system.

C. A basic model

Figure 5 shows an IDP model we designed to represent

the optimisation version of CS-PLT. This model is basic,

6

but we show it nonetheless for clarity, and will improve it

in Section IV-D. It consists of four sections:

1) the “Given:” section specifies the format of an in-

stance (in our case, a list of edges for each tree, along

with some labels that are already assigned to a few

vertices in each tree);

2) the “Find:” section describes the format of a solution

(in our case, a set of labelled edges);

3) the “Satisfying:” section specifies the constraints

edges and labels are subject to; and finally,

4) the “Minimize:” section describes the function that a

solution should optimise (in our case, the size of the

union of the completely labelled edge sets).

Given :

t y p e i n t Tree

t y p e i n t Node

t y p e i n t Labe l

p a r t i a l P r e L a b e l (Tree , Node) : Labe l / / some nodes a r e a l r e a d y l a b e l l e d

TEdge (Tree , Node , Node)

Find :

Labe l (Tree , Node) : Labe l / / l a b e l t h e r e m a i n i n g nodes i n each t r e e

Edges (Label , Labe l)

S a t i s f y i n g :

{ Edges (n ,m) <− TEdge (t , x , y) / / once l a b e l l e d , edges a r e a s sembled

& Labe l (t , x) = n / / t o b u i l d t h e common s u p e r g r a p h

& Labe l (t , y) = m.

Edges (n ,m) <− Edges (m, n) . / / edges a r e u n d i r e c t e d

}

! t n : Labe l (t , n) = P r e L a b e l (t , n) . / / e x t a n t l a b e l s must n o t be changed

! t c : ?1 n : Labe l (t , n) = c . / / use each l a b e l e x a c t l y once i n each t r e e

Minimize :

#{ x [Labe l] y [Labe l] : Edges (x , y) } / / t h e s i z e o f t h e s u p e r g r a p h

Fig. 5. The code used by the IDP system to model the optimisation
version of CS-PLT.

Specifying an instance of CS-PLT in this format is easy.

Figure 6 shows an example of a valid input, which consists

of the following parts:

1) the Tree line specifies the unique indices from

{1, 2, . . . , t} summarising our input (n, k)-trees T1,

T2, . . ., Tt;

2) the Node and Label lines specify the set

{1, 2, . . . , n} of indices and labels used to refer to

vertices;

3) the PreLabel set specifies the labellings L1, L2,

. . ., Lt, where i, v -> b means that vertex v in

tree Ti has label b; and

4) the TEdge section specifies each tree’s edge set,

where i, u, v means that {u, v} ∈ E(Ti).

Tree = { 1 ; 2 ; 3 ; 4 ; 5 } / / ID ’ s used f o r t h e t r e e s

Node = { 1 . . 8 } / / ID ’ s used f o r t h e v e r t i c e s

Labe l = { 1 . . 8 } / / t h e r a n g e used f o r l a b e l s

P r e L a b e l = { / / t h e l a b e l l e d nodes i n each t r e e

1 , 1−>4; 1 , 5−>2; 1 , 7−>1; 1 , 8−>3;

2 , 1−>1; 2 , 5−>2; 2 , 6−>3; 2 , 8−>4;

3 , 1−>4; 3 , 2−>2; 3 , 4−>1; 3 , 8−>3;

4 , 1−>4; 4 , 3−>2; 4 , 4−>1; 4 , 8−>3;

5 , 1−>3; 5 , 3−>1; 5 , 7−>2; 5 , 8−>4;

}
TEdge = { / / t h e s e t o f edges i n each t r e e

1 , 1 , 3 ; 1 , 6 , 7 ; 1 , 2 , 8 ; 1 , 1 , 4 ; 1 , 1 , 6 ; 1 , 2 , 4 ; 1 , 3 , 5 ;

2 , 1 , 2 ; 2 , 4 , 6 ; 2 , 4 , 8 ; 2 , 5 , 7 ; 2 , 2 , 3 ; 2 , 3 , 7 ; 2 , 2 , 4 ;

3 , 4 , 7 ; 3 , 6 , 7 ; 3 , 5 , 7 ; 3 , 3 , 8 ; 3 , 1 , 5 ; 3 , 3 , 6 ; 3 , 2 , 5 ;

4 , 1 , 2 ; 4 , 4 , 7 ; 4 , 5 , 6 ; 4 , 5 , 7 ; 4 , 3 , 6 ; 4 , 2 , 5 ; 4 , 7 , 8 ;

5 , 2 , 7 ; 5 , 2 , 6 ; 5 , 4 , 8 ; 5 , 4 , 5 ; 5 , 1 , 5 ; 5 , 3 , 6 ; 5 , 2 , 5 ;

}

Fig. 6. An example of an instance of our problem formatted for use by
the IDP system; in this case, the instance consists of five (8, 4)-trees.

Given this input, IDP will try to find an assignment to

Edges and Label, specified in the Find: part, that

satisfies all constraints specified in the Satisfying:

part. Once a solution has been found, IDP records the

number of Edges, specified in the Minimize: part, and

automatically adds clauses that force the underlying solver

to try to find another solution with fewer edges. This

continues until the solver is unable to find new solutions, or

proves that the remaining problem is unsatisfiable. The last

solution (assignment to Edges and Label) is returned

by IDP, and its edges constitute a (minimum) common

supergraph of the input trees.

D. An improved model

The model described in Section IV-C lacks efficiency.

We identify two reasons for this lack of speed: differently

labelled solutions can yield isomorphic supergraphs, and

the definition of edges produces an unnecessarily difficult

SAT instance. We address these issues by adding symmetry

breaking predicates, and by defining a completely labelled

edge set for each tree instead of a “global” supergraph edge

set.

a) Symmetry breaking: Labellings merely match ver-

tices in different trees; the actual labels do not matter, and

permuting the labels assigned to the initially unlabelled

vertices in any tree will not affect the size of the solution

if we permute the corresponding labels in the other trees

accordingly. Therefore, we can safely choose an arbitrary

labelling for the unlabelled vertices of any one tree in our

instance, thereby reducing the search space by a factor of

(n− k)!.
b) Supergraph edges per tree: The way edges are

defined in the model of Figure 5 results in an instance that

is difficult to solve, which makes the model inefficient. The

reasons why a particular model is inefficient are unfortu-

nately not always obvious; models that yield SAT instances

with fewer clauses are usually regarded as more efficient,

but sometimes larger models and redundant clauses have

a positive effect on the runtime of a SAT solver [2].

We identified by trial-and-error three inefficiencies in the

definition of edges in the model of Figure 5, which we list

and address below.

1) A first cause of inefficiency is the way in which

the edges of the supergraph are specified as being

undirected. In Figure 5, this is specified using the

labels of nodes, and in an inductive way. Since these

labels are free variables, and the nodes in a tree are

fixed by the model input, it is more efficient to specify

this property using these nodes instead of their labels.

We do so by adding an additional declaration for

undirected edges:

UEdge(i,u,v), which is TRUE if and only if

TEdge(i,u,v) or TEdge(i,v,u) is TRUE.

Constraints are then specified using the UEdge vari-

ables instead of the TEdge variables.

2) A second cause of inefficiency that we discovered is

related to the way in which MINISATID makes use of

7

the clauses. For reasons that remain to be investigated

(likely due to propagation mechanisms), MINISATID

is able to find satisfying assignments much more

quickly when the edges of the common supergraph

are specified per tree:

TreeEdge(i,n,m), which is TRUE

if UEdge(i,u,v) is TRUE and

Label(i,v)=n and Label(i,u)=m.

An element of Edges is then TRUE if and only if

there exists a corresponding TreeEdge.

3) A third and final cause of inefficiency is already visi-

ble in the TreeEdge definition. Instead of an equiv-

alence constraint (if and only if), we require an impli-

cation (if). This means that a TreeEdge(i,n,m)

can be TRUE even though the nodes with labels n and

m are not joined by an edge in tree i. However, since

the aim is to minimise the number of Edges and

therefore the number of TreeEdges, this constraint

is implicit in the model. Requiring TreeEdges (or

Edges) to be FALSE when there is no correspond-

ing edge in a tree is redundant information. In our

experience, removing this information results in an

improved performance of MINISATID.

Figure 7 shows the improved model that we used in the

experiments.

Given :

t y p e i n t Tree

t y p e i n t Node

t y p e i n t Labe l

p a r t i a l P r e L a b e l (Tree , Node) : Labe l / / some nodes a r e a l r e a d y l a b e l l e d

TEdge (Tree , Node , Node)

Find :

UEdge (Tree , Node , Node)

TreeEdges (Tree , Label , Labe l)

Edges (Label , Labe l)

S a t i s f y i n g :

{ UEdge (t , x , y) <− TEdge (t , x , y) | TEdge (t , y , x) . } / / u n d i r e c t e d edges

! t x y n m : (n < m & / / r e s t r i c t edge v a l u e s

Labe l (t , x) = n & / / i n e v e r y t r e e

Labe l (t , y) = m) => / / t h e c o l o u r s o f c o n n e c t e d nodes

(UEdge (t , x , y) => TreeEdges (t , n ,m)) . / / s h a r e a t r e e edge

! t n m : n < m => / / a s s e m b l e t r e e edges i n t o

(TreeEdges (t , n ,m) => Edges (n ,m)) . / / t h e common s u p e r g r a p h

! n m : n >= m => ˜ Edges (n ,m) . / / f i x v a l u e s o f unneeded v a r i a b l e s

! t x : Labe l (t , x) = P r e L a b e l (t , x) . / / e x t a n t l a b e l s must n o t be changed

! t n : ?1 x : Labe l (t , x) = n . / / use each l a b e l e x a c t l y once i n each t r e e

Minimize :

#{ n [Labe l] m[Labe l] : Edges (n ,m) } / / t h e s i z e o f t h e s u p e r g r a p h

Fig. 7. An improvement over the model shown in Figure 5.

E. The greedy approach

We implemented the following greedy approach in addi-

tion to our exact approach:

1) find a minimum common supergraph for every pair

of trees using IDP;

2) merge the two trees that yield the smallest common

supergraph G, and replace them with G;

3) for every remaining tree T , use IDP to compute a

minimum common supergraph of T and G;

4) merge G with the tree T that adds the fewest edges

to G, and replace G and T with their resulting

supergraph H;

5) go back to step 3 if any tree remains.

Merging one tree at a time with the current common

supergraph greatly reduces the search space. The idea of

carrying out the merging process in a way that minimises

the number of edges added at each step seems sensible,

but it is not necessarily optimal, as Figure 8 shows. An

interesting open question is whether the ratio between the

solution found using an optimal pairwise merging strategy

and the optimal solution is bounded. In our experiments

(Section IV-F), the greedy method performed very well,

significantly outperforming the exact approach on larger

problem instances where the solver timed out before reach-

ing an optimal solution.

T1 T2 T3

1

3

2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

G1 G2 G3

Fig. 8. An instance on which the greedy approach performs subop-
timally. The first step creates a minimum common supergraph G1 of
{T2, T3} with only one additional edge, then creates a minimum common
supergraph G2 of {G1, T1} with 10 edges. However, G3 is a common
supergraph of {T1, T2, T3} with only 9 edges.

F. Experimental results

For our experiments1, we generated random CS-PLT

instances of varying difficulty. We generated four different

instances for every setting of the following parameters: 5,

10, or 20 trees; 10, 20, or 50 nodes per tree; and 5, 10, or

25 labelled nodes per tree. Unlabelled trees are generated

by randomly adding edges between a growing connected

component and an isolated vertex; since the number of

leaves in the resulting tree may exceed the number of labels,

we then modify it by repeatedly connecting random pairs

of leaves, and removing the existing edge incident to either

leaf to avoid creating cycles. When we have enough labels,

we then randomly assign them first to the leaves and then

to the internal nodes.

We ran both the exact method and the greedy method

on every generated instance. The exact method was given

a maximum runtime of 2 000 seconds. Since even pairwise

1Experiments run on a desktop machine equipped with an Intel(R) Core
TM i7 CPU 870 2.93GHz CPU (64bits) with 8GB of RAM.

8

mergers can take a long time, the greedy method was given

at most 10 seconds for every pairwise merger. Table I

reports on the average sizes per parameter setting of the

solutions found by both methods.

solution sizes

#trees #nodes #labels exact greedy

5 10 5 17.50 18.00
10 10 5 19.50 21.50
20 10 5 23.00 25.25
5 20 5 34.75 32.50

5 20 10 53.00 46.00

10 20 5 38.75 35.25

10 20 10 64.25 56.50

20 20 5 42.25 42.25
20 20 10 75.50 71.75

5 50 5 130.00 131.25
5 50 10 128.00 132.75
5 50 25 207.75 184.75

10 50 5 183.75 154.50

10 50 10 177.75 154.75

10 50 25 270.00 269.25

20 50 5 241.50 171.75

20 50 10 232.00 152.25

20 50 25 346.25 279.00

TABLE I
AVERAGE SOLUTION SIZES OBTAINED BY THE EXACT AND THE

GREEDY METHODS ON RANDOM INSTANCES WITH VARIOUS

PARAMETERS AND PRESCRIBED TIMEOUTS. THE GREEDY APPROACH

WAS ABLE IN SOME CASES (SHOWN IN BOLD) TO OUTPERFORM THE

EXACT APPROACH.

IDP was able to solve all instances with 10 nodes per

tree to optimality within approximately 10 seconds. No

timeout occurs either in the pairwise greedy merges for

these instances. As Table I shows, the greedy method

performs slightly worse on these instances, yielding so-

lutions with two additional edges on average. None of

the other instances are solved to optimality by IDP; the

solver either times out (2 000 seconds), or runs out of

memory. Interestingly, the quality of the solutions obtained

by the greedy approach vastly exceeds that of the solutions

obtained by the exact solver on the largest instances in

Table I. This is partly due to the large amount of memory

used by the SAT solver, which keeps learning clauses as

it runs; the solver eventually runs out of memory and

returns the best solution found so far. Since this occurs

frequently, even after running IDP for only 300 seconds,

these solutions are worse than what IDP would have found

in 2 000 seconds. However, this only partially explains the

differences: on some instances (e.g. those with 20 trees

with 5 labelled nodes), IDP does reach the 2 000 second

time limit and still performs a lot worse than the greedy

method. We therefore conclude that on large instances the

pairwise approach is a very promising method for solving

CS-PLT.

We also investigated how the loss of quality evolves with

the number of trees in the input. Figure 9 compares the

sizes of the solutions obtained by the exact method and the

greedy methods on random instances made of (12, 6)-trees

with no timeout. Solutions obtained by the greedy method

were at most 13% larger than those obtained by the exact

method.

3 4 5 6 7 8 9
16

18

20

22

24

26

28

number of trees on 12 vertices with 6 labels

si
ze

o
f

so
lu

ti
o
n
s

greedy

optimal

Fig. 9. Number of edges obtained by the exact and the greedy methods
on random instances as the number of trees increases (no timeouts). The
greedy approach produced solutions that were at most 13% larger than
the optimal solution.

2 4 6 8 10

0

500

1,000

1,500

1 minute

10 minutes

25 minutes

30 minutes

number of trees on 12 vertices with 6 labels

ru
n
n
in

g
ti

m
e

in
se

co
n
d
s

4 5 6 7 8 9 10

0

0.5

1

1.5

2

·104

1 minute
20 minutes

5 hours

number of unlabelled vertices in 3 trees

ru
n
n
in

g
ti

m
e

in
se

co
n
d
s

Fig. 10. Growth of the exact solver’s running time with respect to the
number t of trees (averages over 20 runs) or the number k of unlabelled
vertices (averages over 50 runs with n = 12). Note that the search space
has size O((n− k)!t−1).

Figure 10 concludes our experiments and shows how the

running time of the exact solver grows with respect to the

instance size, measured on the one hand by the number of

trees in the instance and, on the other hand, by the number

of unlabelled nodes in those trees.

V. CONCLUSIONS

In this work, we have shown that the decision version of

the problem of finding a minimum common supergraph of

a given set of partially labelled trees is NP-complete, which

justifies and magnifies the importance of good approximate

solutions to the original optimisation problem, as well

as fast heuristics and exact algorithms for solving it in

9

practice. In that regard, we have investigated how promising

the popular SAT solver-based approach could be in our case;

we bypassed the difficulties that arise when trying to encode

instances and problem descriptions as Boolean formulas by

relying on the IDP system to handle the translation to a

SAT instance and then to solve instances of our problem

using a SAT solver. We proposed an optimised model that

allowed us to obtain both an exact solution to our problem

and a greedy approach that proved very useful in practice,

yielding very high quality solutions much faster than the

exact approach.

Several interesting theoretical questions arise. Most no-

tably, the complexity of CS-PLT on two partially labelled

trees remains open. Moreover, the computational complex-

ity classification of CS-PLT could perhaps be further refined:

in particular, does the problem admit a c-approximation

algorithm for some constant c? Are there nice param-

eterisations of the problem that could prove useful in

practice? The excellent performance of the greedy method

justifies the importance of finding efficient algorithms for

the pairwise case, since merging partial solutions in a

greedy fashion usually gives solutions of high quality to

the general problem. In addition, it would be interesting to

further investigate the case where at least one of the input

graphs is a graph instead of a tree, both from a complexity

point of view and from an approximation point of view.

As far as practical aspects are concerned, fast and accu-

rate solutions for real-world instances with actual data are

still needed, especially in light of the problem’s complexity.

Future work will in particular investigate how the SAT

solver-based approach proposed in this paper applies and

scales in practice.

Finally, other considerations might need to be taken into

account in order to assess the relevance of the results

yielded by the UMP method in practice, which will require

input from biologists. Are there other parameters that

should be taken into account when searching for a min-

imum common supergraph? Which criteria should be used

to discriminate between nonisomorphic optimal solutions?

We note that additional criteria could be easily incorporated

directly into IDP, using the multitude of available logical

operators and arithmetic operations.

ACKNOWLEDGMENTS

We wish to thank Broes De Cat and Johan Wittocx

for explanations about the IDP system and for their help

in improving the model shown in Figure 5, as well as

the referees for their helpful and insightful comments.

The second author is supported by STW project 11763

(ITALIA) and STW project 13136 (MANTA).

REFERENCES

[1] H. J. BANDELT, P. FORSTER, B. C. SYKES, AND

M. B. RICHARDS, Mitochondrial portraits of human

populations using median networks, Genetics, 141

(1995), pp. 743–753.

[2] A. BIERE, M. HEULE, H. VAN MAAREN, AND

T. WALSH, Handbook of Satisfiability, IOS Press,

2009.

[3] I. CASSENS, P. MARDULYN, AND M. C.

MILINKOVITCH, Evaluating intraspecific “network”

construction methods using simulated sequence

data: Do existing algorithms outperform the global

maximum parsimony approach?, Syst. Biol., 54

(2005), pp. 363–372.

[4] S. A. COOK, The complexity of theorem-proving pro-

cedures, in Proc. 3rd STOC, Shaker Heights, Ohio,

USA, 1971, ACM, pp. 151–158.

[5] R. DIESTEL, Graph theory, vol. 173 of Gradu-

ate Texts in Mathematics, Springer-Verlag, Berlin,

third ed., 2005.

[6] J. FELSENSTEIN, Inferring Phylogenies, Sinauer As-

sociates, Sunderland, MA, 2004.

[7] P. GAMBETTE, Who is who in phylo-

genetic networks: Articles, authors and

programs. Published electronically at

http://www.atgc-montpellier.fr/phylnet.

[8] C. P. GOMES, H. KAUTZ, A. SABHARWAL, AND

B. SELMAN, Handbook of Knowledge Representa-

tion, Foundations of Artificial Intelligence, Elsevier

Science, 2007, ch. Satisfiability Solvers.

[9] D. H. HUSON, R. RUPP, AND C. SCORNAVACCA,

Phylogenetic Networks: Concepts, Algorithms and Ap-

plications, Cambridge University Press, Nov. 2010.

[10] A. LABARRE, Combinatorial aspects of genome rear-

rangements and haplotype networks, PhD thesis, Uni-

versité Libre de Bruxelles, Brussels, Belgium, Sept.

2008.

[11] M. MARIËN, J. WITTOCX, M. DENECKER, AND

M. BRUYNOOGHE, SAT(ID): Satisfiability of propo-

sitional logic extended with inductive definitions, in

Proc. 11th SAT, vol. 4996 of Lecture Notes in

Computer Science, Guangzhou, China, May 2008,

Springer, pp. 211–224.

[12] T. J. SCHAEFER, The complexity of satisfiability prob-

lems, in Proc. 10th STOC, San Diego, California,

USA, May 1978, ACM, pp. 216–226.

[13] J. WITTOCX, M. MARIËN, AND M. DENECKER, The

IDP system: a model expansion system for an exten-

sion of classical logic, in Proc. 2nd LaSh, Leuven,

Belgium, Nov. 2008, pp. 153–165.

[14] J. WITTOCX, M. MARIËN, AND M. DENECKER,

Grounding FO and FO(ID) with bounds, J. Artificial

Intelligence Res., 38 (2010), pp. 223–269.

10

Anthony Labarre obtained his PhD degree in
Computer Science in 2008 from the Université
Libre de Bruxelles, Brussels, Belgium. He is
currently an Associate Professor at the Université
Paris-Est Marne-la-Vallée (France). His research
interests include genome rearrangements, phy-
logenetic networks, algorithms and enumerative
combinatorics.

Dr. ir. Sicco Verwer is assistant professor com-
puter science at Delft University of Technology.
After receiving his PhD. degree from the same
university, he spent time as a postdoctoral re-
searcher at Eindhoven University of Technology,
Catholic University Leuven, and Radboud Uni-
versity Nijmegen, and as a researcher at the min-
istry of Security and Justice in the Netherlands.
His research focuses on the theory and practice
of machine learning, and state machine learning
in particular. Dr. Verwers interests within this

focus area are diverse. He has published papers on learning state machines,
discrimination-aware data mining, software testing, fraud detection, mech-
anism design, and combinatorial solvers in machine learning. In particular,
dr. Verwer is interested in machine learning algorithms resulting in
models that are useful for subsequent tasks such as visualization, testing,
verification, data integration, control, and optimization. The focus of his
work is in the cyber-security domain where he aims to learn models of
communication protocols from streaming network traffic.

