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Abstract. The aim of this paper is to propose a novel mapping algorithm be-
tween 2D images and a 3D volume seeking simultaneously a linear plane trans-
formation and an in-plane dense deformation. We adopt a metric free locally
over-parametrized graphical model that combines linear and deformable param-
eters within a coupled formulation on a 5-dimensional space. Image similarity
is encoded in singleton terms, while geometric linear consistency of the solu-
tion (common/single plane) and in-plane deformations smoothness are modeled
in a pair-wise term. The robustness of the method and its promising results with
respect to the state of the art demonstrate the extreme potential of this approach.
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1 Introduction

2D-3D image registration is an important problem in medical imaging and it can be
applied in multiple medical procedures. Depending on the technology used to capture
the 2D image, it can be a projective (e.g. X-Ray) or sliced (e.g. Ultrasound) image;
in this work we focused on sliced images. Image guided surgeries, as laparoscopic
or endoscopic [1], and brain surgeries [2] use such images. In those surgeries, pre-
operative 3D images (e.g. Computed Tomography (CT) or Magnetic Resonance Images
(MRI)) and intra-operative 2D images are used to guide surgeons during the procedure.
2D-3D registration plays a key role in this process because it allows doctors to guide
surgery using the 3D pre-operative high resolution annotated data. Tissue shift, as well
as breathing and heart motion during the surgery, causes elastic deformation in the
images and makes the registration process an extremely challenging problem.

Several methods to deal with slice-to-volume registration have been proposed. [1]
proposes a method to register endoscopic and laparoscopic ultrasound (US) images
with pre-operative computed tomography volumes that potentially could work in real
time. It is based on a new phase correlation technique called LEPART and it manages
only rigid registration. [3] presents a flexible framework for intensity based slice-to-
volume nonrigid registration algorithms used to register histological section images to
human brain MRI. A feature based method that performs slice to volume registration is
presented in [4]. It uses several slices in order to improve the quality of the results. [5]
tracks intra-operative MRI slices of prostate images with a pre-operative MRI volume.
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This monomodal registration is designed to provide patient tracking information for
prostate biopsy performed under MR guidance.

Discrete optimization of Markov Random Fields (MRFs) has been widely used to
solve the problem of non-rigid image registration in recent years [6, 7]. However, to
the best of our knowledge, most of those works focus on 2D-2D or 3D-3D registration
instead of 2D-3D registration. [8] presents a method based on MRFs to perform 2D-
3D registration, but it estimates only rigid transformations and works with projective
images.

The main contributions of this paper consists of a local pair-wise method to register
2D and 3D images using MRFs and discrete optimization techniques capable of captur-
ing the plane and the in-plane dense deformations. It is intensity based and independent
of the metric that is being used, so it can be adapted to different image modalities.

The remainder of the paper is organized as follows: the MRF based formulation of
2D-3D deformable registration is described in Section 2. Section 3 provides the valida-
tion tests and results, while Section 4 concludes our paper and provides some ideas on
relevant future directions.

2 2D-3D Non-rigid Registration Using MRFs

The problem of non-rigid 2D-3D image registration can be formulated as an optimiza-
tion problem. Given a 2D source image I and a 3D target volume J , we seek the 2D-2D
in-plane local deformation field T̂D and the plane π̂[J ] (i.e. a bi-dimensional slice from
the volume J) which in the most general case minimize the following objective func-
tion:

T̂D, π̂ = argmin
TD,π

M(I ◦ TD(x), π[J ](x)) +R(TD, π), (1)

where M represents the data term and R the regularization term. The data term M
measures the matching quality between the deformed 2D source image and the corre-
sponding 3D slice. The regularization term R imposes certain constraints on the final
solution that can be used to render the problem well posed and imposes certain expected
geometric properties on the deformation field. The plane, π̂, that minimizes the equa-
tion indicates the location of the 3D volume slice that is most similar to the deformed
source image. The deformation field T̂D represents the in-plane deformations that must
be applied to the source image in order to minimize the energy function.

Our MRF based formulation of the 2D-3D non-rigid registration problem consists of
an undirected pair-wise graph G =< V,E > super-imposed to the 2D image with a set
of nodes V and a set of cliquesE. The nodes (a regular lattice) are interpreted as control
points of a bi-dimensional quasi-planar grid that models at the same time the in-plane
deformations and the current position of the 2D image into the 3D volume. In order to
represent the in-plane deformations, the grid is interpreted as a Free Form Deformation
model (FFD) where each control point has local influence on the deformation.

Such a coupled estimation problem can be expressed using graphical models of
varying complexity. The most natural one is to consider a two layer graph, one mod-
eling the global linear mapping as done in [8] and another modeling the in-plane de-
formation as done in [6] where interconnection between them will produce coupling



Non-rigid 2D-3D Medical Image Registration using Markov Random Fields 3

and global consistency on the obtained solution. Despite the theoretical soundness of
such an approach, it is not suitable simply because the linear mapping is a global vari-
able. This is due to the fact that global linear mapping variables are to be associated
with all control nodes resulting in a densely connected graph, while at the same time
the parameter space is high-dimensional and the associated variables are not bounded
resulting in rather complex discrete sampling requirements. The aforementioned limita-
tions make such an approach problematic in terms of the quality of the obtained solution
(non-submodular terms) and inefficient from a computational view point.

We propose to overcome these limitations through a local pair-wise over-parameteri-
zed graphical model. In our formulation, the energy is formed by data terms g =
{gi(·)} (unary potentials) associated to each graph vertex and regularization terms
f = {fij(·, ·)} (pairwise potentials) associated to the edges. The first ones are typ-
ically used for encoding some sort of data likelihood, whereas the later ones act as
regularizers and thus play an important role in obtaining high-quality results [6]. The
minimization energy problem in the context of a discrete MRF is thus defined as:

MRF (g,f) = min
∑
i∈V

gi(ui) +
∑

(i,j)∈E

fij(ui,uj), (2)

where ui,uj ∈ L are the labels assigned to the vertices vi, vj ∈ V respectively.
Vertices vi ∈ V are moved by assigning them different labels ui ∈ L (where L is

the label space) until an optimal position is found. To reach such an optimal position, we
need to define an energy term that will be minimized using an optimization algorithm.
We adopt the FastPD algorithm [9] for the optimization of the aforementioned MRF
due to good trade-off between complexity and quality of the obtained minimum in the
context of non-submodular MRFs (this is our case due to the definition of the pair-wise
terms).

Label Space It includes all the possible values that a vertex label can take to deform
the graph. Our label space L consists of 5-tuples u = (dx, dy, dz, φ, θ), where the first
three parameters define a displacement vector di in the cartesian coordinate system,
and the angles (φ, θ) define a vector Ni over a unit sphere, expressed using spherical
coordinates. Let us say we have a control point pti = (ptxi, p

t
yi, p

t
zi) at optimization step

t and we assign the label ui = (dxi, dyi, dzi, φi, θi) to this point. So, the new point
position at optimization step t + 1 will be calculated using the displacement vector
resulting in pt+1

i = (ptxi+dxi, p
t
yi+dyi, p

t
zi+dzi). Additionally, we define a plane πi

containing the displaced control point pt+1
i and whose unit normal vector (expressed

in spherical coordinates and with constant radius r = 1) is Ni = (φi, θi). One of
the most important constraints to be considered is that our graph should have a quasi-
planar structure, i.e. it should be similar to a plane; the plane πi associated to every
control point pi will be used by the energy term to take this constraint into account.

Unary Potentials The formulation of the unary potentials that we propose is indepen-
dent of the similarity measure. It is calculated for each control point given any intensity
based metric δ capable of measuring the similarity between two bi-dimensional images
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Fig. 1. Data term (Unary potential). The points x ∈ Ωi are used to calculate the unary potential.
π[J ](x) returns the intensity of the point in the 2D slice corresponding to the plane πi in the 3D
image, whereas I(x) returns the 2D image intensity. δ represents the similarity measure.

(e.g sum of absolute differences, mutual information, normalized cross correlation).
This calculation is done for each control point pi, using its associated plane πi in the
target image J and the source 2D image I . An oriented patch Ωi over the plane πi
(centered in pi) is extracted from the volume J , so that the metric δ can be calculated
between that patch and the corresponding area over the source 2D image (see Figure 1):

gi(ui) =

∫
Ωi

δ(I(x)− πi[J ](x))dx. (3)

In monomodal scenarios, where two images of the same modality are compared,
the simplest and the most used similarity measure is the Sum of Absolute Differences
(SAD). In multimodal scenarios, where different modalities are compared (e.g. CT with
US images), statistical similarity measures such as Mutual Information (MI) are gen-
erally used since we can not assume that corresponding objects have the same inten-
sities in the two images. So, depending on the type of image that we want to regis-
ter, the framework can be adapted using any similarity measure defined over two bi-
dimensional images.

Pairwise Potentials Generally, these terms are used to encode the regularization of the
displacement field. In our formulation, the pairwise potentials are defined by two terms:
the first one (F1) controls the grid deformation assuming that it is a plane, whereas the
second one (F2) maintains the plane structure of the mesh. Those terms are weighted by
a coefficient α ∈ [0, 1] resulting in fij(ui,uj) = αF1(ui,uj) + (1− α)F2(ui,uj).

The in-plane grid deformation is thus controlled using a distance preserving ap-
proach: it tries to preserve the original distance between the control points of the grid.
Since this metric is based on the euclidean distance between the points, it assumes that
they are coplanar. So, the equation that regularizes the in-plane deformations is:

F1(ui,uj) = 1− || (pi + di)− (pj + dj) ||
|| (po,i)− (po,j) ||

, (4)

where po,i and po,j are the original positions of the control points. Regarding the plane
preservation regularization term, it penalizes the average distance between the control
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Fig. 2. Average of absolute differences between the ground truth and estimated plane translation
(Tx, Ty and Tz) and rotation (Rx, Ry and Rz) parameters for 10 sequences of 20 images each
one. The average error is less than 0.013rad for rotations and less than 1mm for translations.

points and the plane corresponding to the neighboring one. The aim is to maintain the
quasi-planar structure of the grid. Given that the distance between a point and a plane is
zero when the point is contained in the plane, this term will be minimum when both of
the control points are on the same plane. The term F2 is then defined using the distance
between a point p = (px, py, pz) and a plane π given by Dπ(p). So, we calculate the
average of Dπj (pi + di) and Dπi(pj + dj):

F2(ui,uj) =
1

2
(Dπj

(pi + di) +Dπi
(pj + dj)). (5)

3 Validation & Results Discussion

A dataset was created in order to validate both the resulting 2D-2D deformation field
and the final plane location using a temporal series of 3D heart MRI. The monomodal
dataset consists of a temporal series of twenty 2D slices, Ii, each one extracted from its
corresponding volumeMi. Starting from a random initial translation T0 = (Tx0 , Ty0 , Tz0)
and rotation R0 = (Rx0

, Ry0 , Rz0), we extracted a 2D slice I0 from the initial volume
M0. Gaussian noise was added to every parameter in order to generate the position used
to extract the next slice from the next volume. We used σr = 3◦ for the rotation and
σt = 5mm for the translation parameters. Those parameters generate maximum dis-
tances of around 25mm between the current and its succeeding plane. In that way, we
generated a series that corresponds to a trajectory into the volume. Since the series con-
sists of temporally spaced volumes of the heart, there are local deformations between
them due to the heartbeat.

We tested it over 10 sequences of 20 images to validate the estimated plane loca-
tions, giving a total of 200 registration cases, using SAD similarity measure. The MRI
resolution was 192 × 192 × 11 voxels and the voxel size was 1.25 × 1.25 × 8mm3.
The resulting position of the slice Ii was used to initialize the slice Ii+1. As shown in
Figure 2, the average error is less than 0.013rad (0.74◦) for rotation and less than 1mm
for translation parameters. Given that the image resolution in z axis is lower than in x
and y, we can recognize a bigger error in the estimated translation for z coordinate.

In order to validate the in-plane deformations, we created a set of manual segmenta-
tions S of the left endocardium from a set of 20 slices (extracted from the volumesMi).
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Fig. 3. One of the slices used in the validation test of the in-plane deformations: (a) Source image.
The red line is the initial segmentation of the left endocardium. (b) Deformation field obtained
after the registration process. (c) Slice corresponding to the estimated plane and extracted from
the target volume M0. The red line corresponds to the deformed initial segmentation and the
green line is the ground truth. (d) Overlapping between source image (red) and target initial plane
(cyan). (e) Overlapping between deformed source image (red) and estimated plane (cyan).

Each slice was registered with the volume M0 starting from a random position around
the ground truth. Positions were generated adding gaussian noise with σr = 4.5◦ and
σt = 5mm to every translation (Tx, Ty, Tz) and rotation (Rx, Ry , Rz) parameters
respectively. Those parameters generate maximum distances of about 25mm between
the initialization and the ground truth. The estimated deformation field TDi was ap-
plied to the corresponding initial segmentation si ∈ S and it was compared with the
ground truth using DICE coefficient. The average DICE coefficient for the 20 test cases
was 0.93 and the average distance between the initial and the estimated parameters
was R̂ = (0.011, 0.007, 0.003)rad , T̂ = (0.503, 0.302, 0.578)mm , showing that our
method can capture in-plane deformations at the same time as it looks for the optimal
plane location (see Figure 3). In all these cases (both plane estimation and in-plane de-
formation tests) we use 13122 labels, α = 0.9, 3 levels of grid refinement and final grid
resolution of 16 × 16 nodes; the execution time was about 4min for every case. An-
other dataset was used to test our approach over multimodal registration. Since it was
performed over images of different modalities, we used Mutual Information as similar-
ity measure instead of SAD. The dataset consists of a preoperative brain MRI volume
(voxel size of 0.5× 0.5× 0.5mm3 and resolution of 394× 466× 378 voxels) and 6 se-
ries of 10 US images extracted from the patient 01 of the database MNI BITE presented
in [2]. The intraoperative US images were acquired using the prototype neuronaviga-
tion system IBIS NeuroNav. We generated 6 different sequences of 10 2D US images
of the brain ventricles, with a size of 48× 38mm and resolution of 0.3× 0.3mm. The
ventricles were manually segmented in both modalities. The estimated position of the
slice n was used to initialize the registration process of slice n + 1. Slice 0 was ini-
tialized in a position near to the Ground Truth using the rigid transformation provided
together with the dataset. The DICE coefficient and Contour Mean Distance (CMD)
were calculated before and after registration. Figure 4 summarizes the average DICE
and CMD coefficients for every series. It shows that the DICE increases after the reg-
istration process an average of 0.05 while CMD decreases an average of 0.4mm. Note
that average DICE coefficients are always greater thanc 0.7. Given that we are dealing
with highly challenging images of low resolution being heavily corrupted from speckle,
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Fig. 4. Average DICE Coefficient (a) and Average CMD (Contour Mean Distance) (b) of all the
slices, for every brain series, before (BR) and after (AR) registration process. The average DICE
increment after registration of all the series is 0.05 and the average CMD decrement is 0.4mm.

those results are extremely promising. In all the registration cases an initial grid size of
4mm , 6174 labels, α = 0.9, 3 grid levels and 4 iterations of the optimization process
were used, giving an average time of around 10min per case. It is also important to
analyze results presented by other authors performing slice-to-volume registration. [5]
worked with monomodal registration of prostate MRI images and reported average tar-
get registration errors below 1mm. [1] tackled the problem of multimodal registration
(US and CT images) reporting results with an error of 1.56 ± 0.78mm, using initializa-
tions with uniformly random shifts in the range -5 to 5mm. Both of them model only
the rigid transformations without taking into account the in-plane deformations. Our
method achieved results below 1mm in case of monomodal registration and it main-
tained the DICE coefficient greater than 0.7 in case of multimodal registration, but was
able to deal with the in-plane deformations.

4 Conclusion

In this paper we proposed a novel method for deformable 2D-3D registration using
a single shot optimization method that involves plane selection and in plane dense-
deformation. This was achieved through an over-parameterized graphical model (5-
dimensional representation) that is metric free, can cope with arbitrary deformation
models and encodes different in-plane regularization constraints. Clinical validation
using real scenarios and examples where 2D acquisitions have been simulated demon-
strated the potentials of our method, proved its efficiency in terms of precision and,
compared to other methods that tackle a similar problem (like [1] and [5]), seems to
achieve state of the art results. The proposed formulation from theoretical view point
inherits two limitations, one related with the dimensionality of the label space (that can
be handled due to the limited 2D grid size), and a second related with the coplanarity
constraint that is approximately imposed through the suggested over-parameterization.
Both of them could be alleviated through the use of third-order potentials. Given a 3D
label deformation space and triples of neighborhood control points, the plane and the
in-plane deformation can be automatically determined. This will introduce certain addi-
tional complexity in terms of optimization that could be easily dealt with higher-order to
pair-wise MRF reduction methods [10] or dual decomposition [11]. Such an approach
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Fig. 5. Registration of a 2D US image and a MRI scan of the brain. (a) 2D US source image. (b)
Slice extracted from the MRI corresponding to the initial position of the plane. (c) Deformation
field obtained after the registration process. (d) Overlapping between images a (red) and b (green).
(e) Overlapping between the deformed source image (red) and the MRI slice corresponding to
the estimated plane (green).

will be more precise in terms of data/regularization term definition and of comparable
complexity.
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