AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots. - Archive ouverte HAL
Article Dans Une Revue Plant Signaling and Behavior Année : 2008

AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots.

Résumé

Plant cells, like those of animals and bacteria, are able to sense physical deformation of the plasma membrane. Mechanosensitive (MS) channels are proteins that transduce mechanical force into ion flux, providing a mechanism for the perception of mechanical stimuli such as sound, touch and osmotic pressure. We recently identified AtMSL9 and AtMSL10, two mechanosensitive channels in Arabidopsis thaliana, as molecular candidates for mechanosensing in higher plants.1 AtMSL9 and AtMSL10 are members of a family of proteins in Arabidopsis that are related to the bacterial MS channel MscS, termed MscS-Like (or MSL).2 MscS (Mechanosensitive channel of Small conductance) is one of the best-characterized MS channels, first identified as an electrophysiological activity in the plasma membrane (PM) of giant E. coli spheroplasts.3,4 Activation of MscS is voltage-independent, but responds directly to tension applied to the membrane and does not require other cellular proteins for this regulation.5,6 MscS family members are widely distributed throughout bacterial and archaeal genomes, are present in all plant genomes yet examined, and are found in selected fungal genomes.2,7,8 MscS homolgues have not yet been identified in animals.
Fichier non déposé

Dates et versions

hal-00855526 , version 1 (29-08-2013)

Identifiants

  • HAL Id : hal-00855526 , version 1
  • PUBMED : 19704841

Citer

Rémi Peyronnet, Elizabeth S Haswell, Hélène Barbier-Brygoo, Jean-Marie Frachisse. AtMSL9 and AtMSL10: Sensors of plasma membrane tension in Arabidopsis roots.. Plant Signaling and Behavior, 2008, 3 (9), pp.726-9. ⟨hal-00855526⟩
43 Consultations
0 Téléchargements

Altmetric

Partager

More