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 

Abstract—Synthetic aperture radar has become an important 

technique for generating high-resolution images of the ground, 

because of its all-weather capabilities. SAR imaging of stationary 

scenes is nowadays well mastered. If targets are moving, it 

induces a delocalization and a defocusing effect in the azimuth 

direction in a SAR image. This last effect can be used to detect 

moving targets, to image them and to estimate their azimuthal 

velocity, but the main limitation is the impossibility to estimate 

the full target velocity vector, because of the Doppler shift 

dependency on azimuthal position and radial velocity. 

The purpose of this paper is to use several aspect angles thanks to 

a circular trajectory acquisition to retrieve the entire velocity and 

position vector. We first outline the steps of this trajectory 

reconstruction methodology, then we perform a mathematical 

analysis of this methodology and finally we present some tracking 

results on real data, around two French cities. 

I. INTRODUCTION 

ynthetic aperture radar has become an important technique 

for generating high-resolution images of the ground, 

because of its all-weather capabilities. SAR imaging of 

stationary scenes is nowadays well mastered [1] but if a 

moving target is present in the illuminated scene, it appears 

delocalized in the azimuth direction and defocused in the SAR 

image [2].  

Two main SAR processing categories have been considered in 

the recent literature. The first category concerns moving target 

detection and tracking with multiple aperture antennas SAR. 

This category relies on Displaced Phase Center Array (DPCA) 

[3], Space-Time adaptive processing (STAP) [4], along-track 

interferometry (ATI) [5] and detection by focusing using 

different full velocity vector hypothesis [6]. One advantage of 

these techniques is the ability to suppress clutter. The 

detection of moving targets is therefore made easier, 

especially in severe background environment [7, 8]. 
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Moreover, these techniques estimate the slant-range velocity 

of the moving target. Therefore, a combination of the above 

methods is efficient to retrieve the full velocity vector of the 

moving targets [8]. 

For practical reasons, a significant part of airborne SAR 

systems is limited to one single channel. The SAR systems 

developed by the French Aerospace Lab ONERA (SETHI [9], 

and more recently RAMSES NG [10]) fit into this category. 

Standard single antenna processing exploits the moving target 

apparent characteristics to focus them [11, 12] and estimate 

their azimuth velocity [13] under the assumption of a high 

PRF, in order to avoid the Doppler ambiguity problem [14]. 

The main limitations of these methods are: 

1) The impossibility to estimate the full target 

velocity vector, because of the Doppler shift dependence on 

both azimuthal position and radial velocity of the moving 

target [15]. 

2)  The errors in the azimuthal velocity estimate due 

to the background image [11].  

Some interesting studies have been done on ground moving 

target tracking in single channel SAR to solve this problem. 

Kirscht [16] uses the information content of multilook 

processing [17] to detect potential moving targets. The full 

target velocity vector is then estimated from target 

displacement between successive images with a normalized 

cross correlation function as matching criterion [18]. Dias and 

Marques [19] propose to use the amplitude modulation term of 

the returned echo from a moving target to estimate its radial 

velocity, and then avoid the azimuth ambiguity. The radial 

velocity estimator used in [19] yields effective results for a 

high signal-to-clutter (SCR) ratio (14 dB), but in most cases in 

urban context, the SCR is lower than 14dB. The velocity 

estimation with a cross correlation function [16, 18] could be 

imprecise in the case of defocused targets and the moving 

target trajectory estimation can thus be flawed. Furthermore, 

the radial velocity estimation given the antenna radiation 

pattern [14] is affected by the clutter, the anisotropic 

behaviour of the moving targets and the weak directivity of 

the beam.  

Acquisitions of SAR data over a circular trajectory [20] bring 

new information, because objects may be seen from any 

aspect angle. The continuity of the SAR-plateform movement 

may thus enhance moving targets trajectory reconstruction, 

because objects of interest may be seen during a longer time 

than in the linear stripmap SAR case. Thanks to the multiple 

azimuth direction, the azimuth ambiguity may be solved. A 
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method proposed in [21] uses multiple backprojection images 

as input of a framework called Dynamic Logic. This 

framework computes the maximum likelihood ratio between 

moving target Gaussian models and data, providing moving 

target detection and characterization. In this paper, we suppose 

that targets have already been detected which means that their 

backscattering level is high enough to encompass any 

defocusing effect. Having SAR images acquired along a 

circular trajectory in spotlight mode, we present an inversion 

method to retrieve the target ground position and velocity 

from the apparent coordinates of the moving targets in these 

SAR images and the estimated azimuthal velocity.  

This paper is organized as follows. In section II we outline the 

steps of our trajectory reconstruction methodology. In section 

III we perform a mathematical analysis given synthetic data 

and finally we present in section IV some trajectory 

reconstruction results on real data, around the city of Nîmes 

(acquired by the SAR system SETHI) and around the Istres 

Airport (acquired with RAMSES NG) in France. 

II. MOVING TARGET TRACKING METHODOLOGY 

In this section, we describe the image geometry, then we 

present the moving target model, we describe the 

measurement method, we explain how the whole trajectory of 

the moving target is reconstructed given its apparent 

coordinates in the SAR images and under several moving 

target hypotheses, and then we present the system inversion 

calculation using the Least Mean Squares (LMS) method. 

A. SAR acquisition geometry 

Let us consider the SAR scenario illustrated in Fig. 1 where 

the SAR plateform moves along a circular trajectory, so that 

SAR images can be computed for all possible azimuth angles. 

Images are processed in a spotlight mode, so each azimuth 

direction corresponds to a squint angle. 

B. Moving target 2
nd

 order model 

We consider a moving target   with velocity  ⃗  and 

acceleration   , which is considered to be constant during the 

sensor displacement between    and   . The SAR-plateform 

velocity is noted   ⃗⃗  ⃗ and its acceleration is noted   ⃗⃗⃗⃗ . In this 

section, we consider that the moving target is a point-like 

isotropic scatterer for the calculation of the target phase 

history. Real moving targets are actually made up of finite 

number of bright spots, whose spatial distributions are 

unpredictable, and depend on the target nature and on the 

aspect angle. However, for small integration angles, the point-

like isotropic scatterer is a good approximation for the moving 

targets. The method used to calculate the moving target phase 

history is given by [2] and explained here to present our 

notations.  

At time    (resp.     ), the target is at position   (resp.   , 
see Fig. 1). The phase of the returned echo     during the 

time period    is given by: 
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Fig. 1: principle of calculation of two different images. For the first image 

(resp. the second), the SAR-plateform is in    (resp. in   ) and the moving 

target is in    (resp. in   ).   is a still target which  appears at the same 

position as    (due to effects of target motion) on the SAR image. 

Let  

  ⃗⃗⃗⃗  
    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖
 (2) 

be the normalized line of sight (LOS) vector for moving target 

  at time   . We also define     ‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖ the distance 

between the SAR sensor and the moving target at time   . A 

development to the second order in    is done, because most 

of the phase error due to target motion is given by second 

order terms [11]. For high order studies, see [8]. Adapting the 

range variation expression with time given by [2] to the case 

of a circular flight path, we then have: 
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Where   is the magnitude of  ⃗  and   is the magnitude of   .  
 ( ) is a phase slope in the azimuth frequency domain that 

induces the azimuth shift of the target. The moving target   

appears at the same position as a still target   on the SAR 

image. So when we compute the azimuthal spectrum of the 

moving target  , the residual phase    is the difference 

between the phase history of the moving target   and the 

phase history of the still target  . Given   ⃗⃗ ⃗⃗      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖⁄ , 

we thus have: 
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The difference of squint angles between   and   is zero, so 

the difference of slope of the phase history is zero (   ), 
which leads to the relationship: 

   (  )     (  )  
  
  

 (9) 

Where    and    are the projections of moving target velocity 

in the range and azimuth direction and    (resp.   ) is the 

squint angle for the moving target   (resp. for the still 

target  ).    is the magnitude of the SAR-plateform 

velocity   ⃗⃗  ⃗. It should be noted that    is linked to the azimuth 

pixel line corresponding to the centre of the target on the 

image.  

Besides,   is an expression which is function of both 

the velocity component of the moving target in azimuth 

direction and its radial acceleration. In order to measure  , we 

use the method described in [22]: we first compute the 

azimuthal spectrum of the moving target. As the phase history 

of the moving target is developed to the second order in    
(see equation (6)), we fit a parabola to its phase behavior. We 

then use an autofocus algorithm which selects the best phase 

correction, i. e. which selects   (see (7)) to be the parameter 

that best refocuses the moving target in the SAR image.  

Finally the ground moving target P appears on a SAR 

image at the apparent coordinates (     ) with the 

defocusing parameter  . These three measurements lead to the 

following system:  

{
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With     ⃗⃗  ⃗ (  ⃗⃗⃗⃗    ⃗⃗  ⃗). Due to the number of unknowns 

(            ), we need at least two sets of equations to 

solve the problem. A general overview of the model 

implementation is given in [23]. From now on the system 

unknowns will be expressed in the Cartesian system (       ), 
the    axis representing the East direction and the    axis 

representing the North direction. 

C. Moving target trajectory reconstruction methodology 

Suppose that SAR images are computed with an 

angular span corresponding to a time interval   . We propose 

to define a moving target model with constant acceleration 

during the time     ,   being the number of images used. 

Moreover, we consider that the target velocity and 

acceleration are collinear, so we look for targets moving along 

a straight line during calculation time. The moving target 

orientation is noted        .  

Using this hypothesis, we obtain a relationship 

between the ground coordinates of the moving target in the 

first image (                 ) and those in the following 

image (                  ) and we can use the system 

(10) for all the images between    and         to obtain 

the full coordinates (                ) of the moving target 

on the first image. 

By propagating this principle along the entire circular 

trajectory (see Fig. 2) of the SAR plateform, we can 

reconstruct the whole trajectory of the moving target. 

 
Fig. 2: Principle of reconstruction of the moving target whole trajectory. In 
this example, calculations of the moving target positions are made up of three 

apparent positions on SAR images. 

D. Inversion of the system 

Let   be the vector containing the output parameters 

and   the measurement vector.   corresponds to the moving 

target ground coordinates and is defined in the general case 

by: 

  (  )  [   ]  (               )
 
 (11) 

Where   denotes vector or matrix transpose and         the 

orientation of the moving target.   is given by:  

  (  )  [     ]  (                 ) (12) 

The moving target trajectory is obtained by minimising the 

following function: 

 (   )  ∑   (   )

  

   

 (13) 

Where    are the equations used for system solving (10), and 

  the number of used images. The minimization of (13) is 

computed by the Least Mean Squares (LMS) method. 

III. VALIDATION ON SYNTHETIC DATA 

A. Generation of a perfect synthetic aircraft trajectory 

In order not to take into account the aircraft 

turbulences, we generate a perfect synthetic aircraft with 

characteristics close to the reality for the system validation. So 

we consider that the altitude of the plane is constant during the 

whole flight, and we consider that the ground altitude is also 

constant and equal to zero. We consider a moving target with 

constant velocity          towards North. The main 

characteristics of the aircraft trajectory and of the moving 

target are summarized in the Table I. 

B. Inversion with synthetic moving targets 

In this section, we validate the inversion system and 

we test its robustness. We present the result obtained with the 

moving target described in the Table I, knowing that other 

synthetic trajectories were considered. We first compute the 

apparent trajectory of the synthetic moving target, and then we 



test two different types of measurement perturbations. In the 

first case, we add Gaussian noise to the apparent 

coordinates (     ), and in the second case we add a 

sinusoidal perturbation to the target trajectory. For the second 

case, the aim is to test the inversion robustness if the target 

behaviour does not perfectly match with the moving target 

model (the amplitude of the perturbation is equal to    and 

the time period is    , with    the time interval between two 

images). This second perturbation and the corresponding 

apparent trajectory is represented Fig. 3. The moving target 

trajectory is then estimated with the above-described 

methodology, given different angular spans. Two different 

moving target models are used: the first one is a model of a 

moving target with constant velocity during the computation 

time interval, and the second is a model with constant 

acceleration and colinearity constraint.  

 
TABLE I 

SYNTHETIC AIRCRAFT TRAJECTORY AND TARGET PARAMETERS 

Symbol Quantity Value 

   Range to scene center 5500 m 

   
   

Range resolution 

Azimuth resolution 

0.25 m 

0.002° 

   
  

Sensor velocity 
Circle Radius 

120 m/s 

 4763 m 

  Center wavelength 3 cm 

   Incidence 60° 

  Squint angle 0° 

  

   

   

Number of images used for the inversion 
Angle between two images 

Time interval between two images 

Variable 

   
      

  Moving target velocity 5 m/s 

  Moving target acceleration 0 m/s 

 

 
Fig. 3 : Representation of a synthetic target trajectory (blue) with a sinusoidal 

perturbation, and its corresponding apparent trajectory (cyan). The positions 

of the sensor are represented in black. The points of the real and apparent 
trajectories highlighted in red, orange and brown exhibit particular behaviors 

corresponding to the sensor positions marked with red (azimuth 

configuration), orange (radial configuration) and brown (azimuth 
configuration) arrows. 

We show the RMS differences between the estimated 

trajectory and the synthetic ground truth, given the apparent 

coordinates with the Gaussian noise (see Fig. 4) and with the 

sinusoidal perturbation (see Fig. 5). The two different moving 

target models (constant velocity and constant acceleration) are 

used. We tested different angular span to invert the system, the 

maximum angular span is 180°. The   axis represents the 

relative angle between sensor velocity and target velocity, and 

the   axis represents the total angular span       used for 

inversion, given by          . We generate independent 

data in order to make the mathematical analysis of the system 

easier (the measurement covariance matrix is diagonal in this 

case). As we want an azimuth resolution corresponding to the 

resolution of our real data (which is equal to 0.002°, 

approximately), the corresponding interval angle between two 

images is given by:  

   
 

    
 (14) 

In this case,    is approximately equal to   , so we choose an 

interval angle equal to   . 
We see clearly that when we use the moving target 

model with constant acceleration, the trajectory estimation is 

more disturbed (position RMS errors mean about    ) than 

with the moving target model with constant velocity (position 

RMS error about   ) for the two perturbations. So the 

moving target model with constant acceleration is highly 

sensitive to noisy measurements and to deviations from the 

moving target model. The results with the sinusoidal 

perturbation also show that with the target model with 

constant velocity, from a certain angular span (    in this 

case), the estimated trajectory is close to the ground truth 

(position RMS errors     ).  

We can also notice that the difference of orientation 

between sensor velocity and target velocity has an influence 

over the trajectory reconstruction. Indeed, an accurate 

trajectory reconstruction requires a larger angular span when 

the moving target is in an azimuth configuration (the 

difference of orientation is equal to    or close to   ) than 

when it is in a radial configuration (the difference of 

orientation is equal to     or close to    ). Indeed, when the 

moving target is in a radial configuration (orange point on the 

Fig. 3), the moving target is not defocused (   ), so it 

brings an information of direction of the moving target to the 

inversion system. Therefore, in radial configuration, we need 

less measurements to identify the real trajectory of the target 

from all other possible scenarios. 

 
a. 

 
b. 

 
Fig. 4: RMS differences between the estimated trajectory and the synthetic 

ground truth, which is a moving target with constant velocity (       
towards North). a.: case of a moving target with constant acceleration. b.: case 



of a target with constant velocity. The apparent coordinates of the moving 

target are disturbed by an additional Gaussian noise (     ). 

 
a. 

 
b. 

 
Fig. 5: RMS differences between the estimated trajectory and the synthetic 

ground truth. a.: case of a moving target with constant acceleration. b.: case of 
a target with constant velocity. A sinusoidal perturbation is added to the 

ground trajectory. 

C. Study of the robustness 

In order to demonstrate the limitations of the constant 

acceleration model, we perform a Principal Component 

Analysis (PCA) of the system (10). Let us consider a matrix 

expression of this system: 

     (15) 

Because of the non-linearity of the system, the estimate of the 

output parameters   ̂ cannot be analytically given with respect 

to  . By the implicit function theorem, there is a function   

which satisfies  ̂   ( ) and maps the measurements   into 

an estimate of  ̂. By non-linear least squares minimization of 

(15), we obtain an expression of the covariance matrix of the 

output parameters: 

   ( ̂)    ( )     ( ) (16) 

Where    denotes the measurements covariance matrix. The 

calculation in [24] gives: 

  ( )  (   (    ))
 
(   (    ))

  
 (17) 

Where    (    )    
     and    (    )    

    .    

represents the matrix of first partial derivatives of the 

inversion system (10) with respect to  : 

   (
   
   

(    ))
  [     ]   [   ]

 (18) 

   represents the matrix of first partial derivatives of the 

inversion system (10) with respect to measurements  : 

   (
   
   

(    ))
  [     ]   [     ]

     (19) 

And    is the exact solution of the system (10). These 

expressions give an estimation of    ( ̂) with only first 

partials of the system (10), separating those with respect to 

measurements and those with respect to output parameters.  

The analytical expressions of    and    are very complex. 

Therefore, we perform a numerical analysis of these matrices. 

   can be factorized as follows, using a Singular Value 

Decomposition (SVD): 

      
  (20) 

With   a unitary matrix whose columns correspond to the 

output space.   is a diagonal matrix of the non-zero singular 

values of   : 

{
            
          

 (21) 

With    the singular values of   . These singular values 

verify: 

     ⃗⃗⃗        ⃗⃗  ⃗ (22) 

The system kernel is thus given by the vectors   ⃗⃗⃗   verifying: 

     ⃗⃗⃗     (23) 

In order to determine the system kernel, we compute the 

partial inertia of each vector   . This partial inertia is defined 

as follows: 

    
  
∑    

 (24) 

Fig. 6 shows an example of the PCA of the inversion system 

with a moving target model with constant acceleration and 

colinearity. The results are represented on a logarithmic scale. 

The synthetic moving target is the same as the one described 

in Table I. The partial inertia     of each singular value    is 

represented with respect to the angular span (from 0 to 180°). 

These results (and simulations with other synthetic 

trajectories) show that even with a large angular span, the 

partial inertia of the singular value    (black curve) is very low 

(      ) even with a large angular span. So the system 

kernel is the vector    ⃗⃗⃗⃗ , which corresponds to the moving 

target orientation (  ⃗⃗⃗⃗          ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗       , with         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   the unit 

vector corresponding to         in the observation basis 

(               ). These curves show the difficulties to 

reconstruct the target trajectory if the acceleration is a degree 

of freedom. 

 
Fig. 6: PCA of the inversion system (model with constant acceleration 
hypothesis and colinearity) given a moving target with constant velocity (5 

m/s towards West). The partial inertia of the singular value    (red ellipse) is 
very weak, even with a large angular span. 

A PCA is computed again on the system with the same 

moving target, but with a constant velocity model. The results 

0.00001

0.001

0.1

10

0 50 100 150 200

P
a
rt

ia
l 

in
er

ti
a
 

(%
) 

Angular span (°) 

s1

s2

s3

s4

s5



of the PCA with the partial inertia of the 4 new singular values 

are presented Fig. 7. All the singular values bring significant 

information from a certain angle (the lowest singular value   , 

which corresponds to the moving target velocity is greater 

than    if the angular span is greater than    ). All the results 

about PCA confirm the results observed on the Fig. 4 and Fig. 

5.  

 
Fig. 7: PCA of the inversion system (model with constant velocity). All 
singular values bring significant information (from a certain angle, the lowest 

is higher than 1%).  

D. Conclusion on synthetic data 

In this part, we proposed to validate the moving target 

trajectory reconstruction methodology, testing two different 

moving target models: one with constant acceleration and one 

with constant velocity, both of them considering targets 

moving along a straight line during calculation time. We 

performed inversion with synthetic trajectories, testing 

different measurement noises. The results show a high 

sensitivity of the constant acceleration model to measurement 

errors, and these observations are confirmed by a 

mathematical analysis of the system. We can suppose that the 

results on real data will confirm these observations. 

IV. EXPERIMENTAL RESULTS ANALYSIS 

In this section, we present some results concerning real 

moving target tracking around the city of Nîmes and Istres 

(two cities in the South of France). We first present the 

opportunity data sets and then we show the results about target 

trajectory reconstruction. 

A. Presentation of the data sets 

We now test the moving target tracking methodology 

on real SAR data, acquired along circular trajectories. The 

data were acquired with two different sensors from ONERA, 

the SETHI sensor and the new sensor RAMSES NG. 

The new RAMSES NG sensor [10] is dedicated to 

defense and security applications. The main improvement is 

the ability to operate as long range and ultra-high resolution in 

X band. One opportunity data was acquired in Istres area in 

2012, and we focus on X band data which have a 50 cm slant 

range resolution. We examine a moving target (Fig. 8) with 

ground truth (GPS data). The vehicle is a Renault Master with 

an average speed of       .  

The SETHI sensor [9] is an airborne radar more 

dedicated to civilian applications, equipped with different 

bands (P, L, X) on a Falcon 20. In this paper, we focus on the 

X data acquired around the city of Nîmes in 2009, which have 

a 12 cm slant range resolution. We particularly examine a 

moving target with unknown trajectory which is supposed to 

be a train: we see several horizontal lines probably due to train 

cars. The residual curvature of the horizontal lines is due to 

range migration, which appears on images with high azimuth 

resolution (see Fig. 8). The main characteristics of the two 

acquisitions are summarized by the Table III. 

 

         
a.                                                  b. 

Fig. 8: examples of signatures of moving targets on SAR images at the city of 

Nîmes (a.) and Istres (b.). The azimuth direction is horizontal so the 
defocusing effect appears as horizontal lines, with a residual curvature in the 

range direction for the train (a.). 

TABLE III 

AIRCRAFT TRAJECTORY PARAMETERS FOR NIMES (SETHI) 
AND ISTRES (RAMES NG) 

Symbol Quantity Value 

 Acquisition around the city of Nîmes 

 

 

   Near Range        

   
   

Range resolution 

Average sensor velocity 
        

           
  Center wavelength      

   Incidence 60° 

   
 
 

 

   

   
   
  

   
   

Time interval between two images 
 

Acquisition around the city of Istres 

 
Near Range 

Range resolution 
Average sensor velocity 

Center wavelength 

Incidence 
Time interval between two images 

   
 
 

 

       

        
           

     
60° 

   

 

B. Moving target tracking results 

We first focus on Istres data and on the moving target 

presented in Fig. 8. We applied the inversion algorithm to 

calculate the moving target trajectory and to compare it to the 

GPS truth. Fig. 9 shows the RMS differences between the 

estimated trajectory of the real moving target on Istres data 

and its GPS position. The   axis represents the index of the 

first image used to solve the system. Since the sensor is 

moving along the circular trajectory, this number is linked 

with the difference of orientation between sensor velocity and 

target velocity. The   axis represents      . We tested again 

the two different moving target models: the one with constant 

velocity (see Fig. 9, left) and the one with constant 

acceleration (see Fig. 9, right). As the real trajectory is not a 

trajectory with a perfect constant acceleration, the results are 

disturbed, depending on the images used to solve the system. 

These results show that from a certain angular span 

(corresponding to          , see Fig. 9), the estimated 

trajectory is close to the GPS truth when we use a constant 

velocity model. It is not the case if we add the acceleration as 

a degree of freedom, which confirms the results of the PCA of 

the system (see Fig. 6 and Table II).  

Another way to encompass the instability responses 

of the constant acceleration model is to add an orientation 

constrain given by the road network [25]. The addition of the 

road orientation thus allows to reduce the computation time 
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and to find solutions that are close to the ground truth. The 

calculation results of RMS differences are shown Fig. 10. 

  

 
Fig. 9: RMS differences between the estimated trajectory of a real moving 

target around the city of Istres and its ground truth (GPS data). On the left is 

the result with the constant velocity model and on the right is the result with 
the constant acceleration model. The red line on the left represent the angular 

span at which the trajectory estimation is close to the GPS truth. 

These results are obtained using the moving target 

model with constant acceleration. In this case, 3 different 

directions are proposed to the system. The method 

automatically selects the orientation that minimizes  (   ) 
given by (13). We can see that in most cases, the estimated 

trajectory corresponds to the GPS truth. 

 
Fig. 10: RMS between the estimated trajectory of a real moving target around 

the city of Istres and its ground truth (GPS data), with a model containing an 

information about the road network. 

These results show that if we use the road directions (in urban 

context), the trajectory estimation is very precise, even with 

small angular spans. As the results are obtained with the 

constant acceleration model, the trajectory reconstruction 

method is efficient for more complex movements. If the road 

network is not used, we have to choose the moving target 

model with constant velocity and a large enough angular span 

to retrieve precisely the moving target trajectory. It induces a 

tradeoff between the angular span, the precision of the 

reconstruction and the constant velocity hypothesis. 

One of the configurations of Fig. 9 is used to show an 

example of trajectory reconstruction of the moving target (see 

Fig. 11). We took a time interval       between the two 

farthest images equal to     (corresponding to a total angular 

span       equal to     approximately) to calculate this 

trajectory. The red dots represent the result of the trajectory 

computation and the green dots represent the apparent 

trajectory of the moving target. We then compare the result of 

the calculation with the GPS data and we compute the RMS 

differences between the result of the trajectory computation 

and the GPS data (the results are listed in the table IV).  

The moving target trajectory reconstruction is very 

accurate. The average position RMS error on the whole target 

trajectory is less than   . The error of the velocity 

is           , which correspond to an average error about 

2%. Concerning the acceleration and orientation errors, they 

are very low (          and      , respectively).  

 

 
Fig. 11: trajectory reconstruction for a real known trajectory (with ground 

truth) near the Istres airport. The red dots represent the result of the trajectory 
computation, and the green dots represent the apparent trajectory of the 

moving target. The moving target is a Renault Master travelling at an average 

speed of       . 
 

TABLE IV 
RMS DIFFERENCES BETWEEN THE RESULT OF THE TRAJECTORY COMPUTATION 

AND THE GROUND TRUTH (GPS DATA) AROUND THE CITY OF ISTRES 

Symbol Quantity Value 

    Ground position RMS differences        

   Velocity RMS differences            
   

         
Acceleration RMS differences 

Orientation RMS differences 
           
       

 

Fig. 12 shows the trajectory of the moving target 

obtained around the city of Nîmes concerning the moving 

target with unknown movements. We took a time interval 

      between the two farthest images equal to     
(corresponding to a total angular span       equal to     
approximately) to calculate this trajectory.  

 

 
Fig. 12: trajectory reconstruction for a real unknown trajectory. Red circle is 
the train station of the city of Nîmes. The red dots represent the result of the 

trajectory computation, and the green dots represent the apparent trajectory of 

the moving target. The green (dotted) line represents the railway. 

The moving target model used for calculation is a 

constant velocity model. The green dots represent the apparent 

trajectory of the moving target during the time      , i. e. the 

coordinates of the moving target centre in all the SAR images 

used for the trajectory calculation. The coordinates of the 

moving target centre is obtained by using the measurement 

methodology described on the section II. We projected all 



these coordinates on a single image for visualising. We can 

see the apparent position of the moving target on the image 

shown here in the yellow rectangle. The measured velocity of 

the moving target is almost constant and equal to       . 

Furthermore, the target is very close to the railway (green 

dotted lines). The result of the trajectory computation is shown 

in the white circle (red dots). All these characteristics are 

consistent with a train arrival in the Nîmes station (red circle). 

V. CONCLUSION 

This paper presents a novel methodology to track 

moving target from the apparent coordinates of the moving 

targets in a set of SAR images acquired along a circular 

trajectory in monosensor spotlight mode. This method consists 

in inverting a     equation system,   being the number of 

used images. The apparent coordinates measurements are 

given by an autofocus and relocation method. A validation 

with synthetic aircraft and target trajectories was carried out, 

testing two different moving target models: one with a 

constant velocity and one with a constant acceleration. The 

computation of the RMS differences between the estimated 

trajectory and the synthetic ground truth combined with a 

mathematical analysis of the system has highlighted the 

sensitivity of the method when we consider the moving target 

acceleration and its stability with the constant velocity model. 

Some results concerning real moving targets 

trajectory reconstruction are shown around the city of Istres 

and Nîmes. The computation of the RMS differences confirms 

the results on synthetic trajectories and proved the efficiency 

of the method with the constant velocity model and from a 

certain angular span. Concerning Istres data, we examine a 

moving target with ground truth (GPS data), and the 

comparison between the estimated trajectory and the GPS data 

gives position RMS differences of less than   meters. For 

Nîmes data, the results concern a moving target which is 

supposed to be a train and the inversion method gives a 

trajectory which is close to the railway.  

Another way to encompass the instabilities using the 

constant acceleration model is to add an orientation constrain 

given by the road network. With these constrains, we obtain 

effective results in almost all cases. Further studies could be 

done following this work. For example, the impacts of the 

azimuth resolution on the validity of the second order phase 

history of the moving target. Indeed, a good azimuth 

resolution is linked to a large integration time, and in this case, 

high order terms in the phase history cannot be neglected. The 

impacts of these terms have been studied in a multisensor 

context [8] but not yet in a circular monosensor case. The 

contribution of a second antenna can also be discussed, 

especially if the acceleration of the moving target is taken into 

account.  
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