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INTRODUCTION AND MAIN RESULTS

In this paper we are interested in the long time behaviour of the positive solutions of the nonlocal equation ∂u(t, x) ∂t = u(t, x) r(x) -Ω K(x, y)|u(t, y)| p dy + ∇ • (A(x)∇u(t, x)) in R + × Ω (1.1) ∂u(t, x) ∂n = 0, in R + × ∂Ω (1.2) u(0, x) = u 0 (x) (1.3) where Ω ⊂ R N is a bounded smooth domain, r(x) ∈ C 0,1 ( Ω) is positive, p ≥ 1, K(., .) ∈ C 0,1 ( Ω × Ω) and A(x) ∈ M n×n (R) is a uniform smooth (C 1,α ) elliptic matrix.

Such type of nonlocal model has been introduced to capture the evolution of a population structured by a phenotypical trait [START_REF] Bürger | The mathematical theory of selection, recombination, and mutation, Wiley series in mathematical and computational biology[END_REF][START_REF] Bürger | Mutation load and mutation -selection -balance in quantitative genetic traits[END_REF][START_REF] Diekmann | A beginners guide to adaptive dynamics[END_REF][START_REF] Perthame | Transport equations in biology[END_REF]. In this context u(x, t) represents the density of a population at the phenotypical trait x at time t, which is submitted to two essential interactions: mutation and selection. Here, the mutation process, which acts as a diffusion operator on the traits space, is modelled by a classical diffusion operator whereas the selection process is modelled by the nonlocal term u(t, x) Ω K(x, y)|u(t, y)| p dy. In the literature, the selection operator takes often the form u(t, x) Ω K(x, y)|u(t, y)| dy [START_REF] Barles | Dirac concentrations in lotka-volterra parabolic pdes[END_REF][START_REF] Bürger | The mathematical theory of selection, recombination, and mutation, Wiley series in mathematical and computational biology[END_REF][START_REF] Perthame | Transport equations in biology[END_REF]. A rigorous derivation of these equations from stochastic processes can be found in [START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF][START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF].

To our knowledge, a large part of the analysis of the long time behaviour of solutions of (2.1) concerns either situations where no mutation occurs [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Barles | Dirac concentrations in lotka-volterra parabolic pdes[END_REF][START_REF] Bürger | The mathematical theory of selection, recombination, and mutation, Wiley series in mathematical and computational biology[END_REF][START_REF] Calsina | Stationary solutions of a selection mutation model: The pure mutation case[END_REF][START_REF] Calsina | Asymptotic stability of equilibria of selection-mutation equations[END_REF][START_REF] Carrillo | Adaptive dynamics via hamilton-jacobi approach and entropy methods for a juvenile-adult model[END_REF][START_REF] Desvillettes | On selection dynamics for continuous structured populations[END_REF][START_REF] O; Diekmann | The dynamics of adaptation: An illuminating example and a hamilton-jacobi approach[END_REF][START_REF] Jabin | On selection dynamics for competitive interactions[END_REF] or in the context of "adaptive dynamics", i.e. the evolution of the population is driven by small mutations, [START_REF] Bürger | The mathematical theory of selection, recombination, and mutation, Wiley series in mathematical and computational biology[END_REF][START_REF] Bürger | Mutation load and mutation -selection -balance in quantitative genetic traits[END_REF][START_REF] Canizo | Measure solutions for some models in population dynamics[END_REF][START_REF] Carrillo | Adaptive dynamics via hamilton-jacobi approach and entropy methods for a juvenile-adult model[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] and references therein. In the latter case, the matrix A(x) := ǫA 0 (x) and some asymptotic regimes are studied when ǫ → 0. In this situation, an extensive work have been done in developing a constrained Hamilton-Jacobi approach in order to analyse the long time behaviour of positive solutions of this type of models see for instance [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Barles | Dirac concentrations in lotka-volterra parabolic pdes[END_REF][START_REF] Carrillo | Adaptive dynamics via hamilton-jacobi approach and entropy methods for a juvenile-adult model[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] O; Diekmann | The dynamics of adaptation: An illuminating example and a hamilton-jacobi approach[END_REF].

Analysis of variants of (1.1) involving a nonlocal mutation process of the form ǫ Ω µ(x, y)(u(t, y)u(t, x)) dy instead of an elliptic diffusion can be found [START_REF] Calsina | Stationary solutions of a selection mutation model: The pure mutation case[END_REF][START_REF] Calsina | Asymptotic stability of equilibria of selection-mutation equations[END_REF][START_REF] Calsina | Asymptotics of steady states of a selection mutation equation for small mutation rate[END_REF][START_REF] Raoul | Long time evolution of populations under selection and vanishing mutations[END_REF][START_REF]Local stability of evolutionary attractors for continuous structured populations[END_REF]. For these variants, approaches based on semi-group theory have been developed to analyse the asymptotic behaviour and local stability of the positive stationary solution of (1.1) when ǫ → 0, see [START_REF] Calsina | Stationary solutions of a selection mutation model: The pure mutation case[END_REF][START_REF] Calsina | Asymptotic stability of equilibria of selection-mutation equations[END_REF][START_REF] Calsina | Asymptotics of steady states of a selection mutation equation for small mutation rate[END_REF].

In all those works, the small mutation assumptions appears to be a key feature in the analysis. Our goal here is to analyse the long time behaviour of the solution to (1.1) - (1.3) in situations where no restriction on the mutation operator are imposed. In particular, we want to understand situations where the rate of mutations is not small compared to selection. This appears for example in some virus population where the rate of mutation per reproduction cycle is high [START_REF] Cuevas | Following the very initial growth of biological rna viral clones[END_REF][START_REF] Fabre | Modelling the evolutionary dynamics of viruses within their hosts: A case study using high-throughput sequencing[END_REF][START_REF] Sanjuan | Viral mutation rates[END_REF][START_REF] Zhu | Growth of an rna virus in single cells reveals a broad fitness distribution[END_REF].

In what follows, we will always make the following assumptions on r, K

(1.4)

           A ∈ M n×n (R) is a smooth uniform elliptic matrix, r ∈ C 0,1 (Ω) is positive, Ω is a bounded Lipschitz domain in R N . K ∈ C 0,1 ( Ω × Ω), K > 0,
Under the above assumptions the existence of a positive solution to the Cauchy problem (1.1)-(1.3) is guarantee. Namely, we can easily prove Theorem 1.1. Assume A, r, K satisfy (1.4) and p ≥ 1 then for all u 0 ∈ L p (Ω) there exists a positive smooth solution u to (1.1) -(1.3) so that u ∈ C([0, +∞), L p (Ω)) ∩ C 1 ((0, +∞), C 2,α (Ω)).

The main problematic then remains to characterise the long time behaviour of these solutions. In this direction our first result concerns the situations of blind competition, that is when the kernel K(x, y) is independent of x. In this context the equations (1.1) -(1.3) rewrite ∂u ∂t (t, x) = u(t, x) r(x) -Ω k(y)|u(t, y)| p dy + ∇ • (A(x)∇u(t, x)) in R + × Ω (1.5) ∂u ∂n (t, x) = 0 in R + × ∂Ω (1.6) u(x, 0) = u 0 (x) in Ω. (1.7) In this situation, we have Theorem 1.2. Assume A, r, k satisfy (1.4) and p ≥ 1.Let λ 1 be the first eigenvalue of the operator ∇ • (A(x)∇) + r(x) with Neumann boundary condition and let φ 1 be a positive eigenfunction associated with λ 1 , that is φ 1 satisfies ∇ • (A(x)∇φ 1 ) + r(x)φ 1 = -λ 1 φ 1 in Ω, (1.8) ∂φ 1 ∂n (x) = 0 on ∂Ω. (1.9)

Then we have the following asymptotic behaviour for any positive smooth ( at least C 2 ) solution u(t, x) to (1.5) -(1.6)

• if λ 1 ≥ 0, there is no positive stationary solution and u(t, x) → 0 as t → ∞ • if λ 1 < 0, then u(t, x) → µφ 1

where µ = -λ1

Ω k(y)|φ1| p (y) dy 1 p and φ 1 has been normalized by φ 1 L 2 (Ω) = 1.

Next we establish an optimal existence criteria for the positive stationary solution to (1.1)-(1.2). Namely, we prove Theorem 1.3. Assume A, r, K satisfy (1.4) and p ≥ 1. Then there exists at least a positive smooth solution ū of (1.1) -(1.3) if and only if λ 1 < 0, where λ 1 is defined in Theorem 1.2.

Finally, we prove that the dynamic observed for blind selection kernel K(x, y) = k(y) still holds for some perturbation of k. More precisely, let us consider a kernel k ǫ (x, y) = k 0 (y) + ǫk 1 (x, y) with k i satisfying the assumption (1.4), then we have the following Theorem 1.4. Assume A, r, K satisfy (1.4) and p = 1 or p = 2. Assume further that K = k ǫ and let u(t, x) be a positive smooth solution to (1.1)-(1.2) with K = k ǫ . Then we have the following asymptotic behaviour:

• if λ 1 ≥ 0, there is no positive stationary solution and u(t, x) → 0 as t → ∞ uniformly.

• if λ 1 < 0, then there exists ǫ * so that for all ǫ ≤ ǫ * there exists a unique positive globally attractive equilibrium ūǫ to (1.1)-(1.2) i.e. for all u 0 ≥ ≡ 0, then we have for all x ∈ Ω, lim t→∞ u(t, x) → ūǫ (x).

1.1. Comments. Before going to the proofs of these results, we would like to make some comments. First, it comes directly from the proofs that the Theorems 1.2 and 1.3 can be generalised to more general selection process. In particular, Theorem 1.2 holds true if instead of considering a selection of the form u Ω k(y)|u(t, y)| p dy, we consider a selection of the form uR(u) with R : dom(R) → R + a positive functional satisfying: ∃p, q ≥ 1 and c p , α p , R p , C q , α q , R q positive constants such that ,

R(u) > c p u pαp L p (Ω) when u L p (Ω) ≥ R p , R(u) < C q u qαq L q (Ω) when u L q (Ω) ≤ R q .
A simple example of such R is the functional R(u) := u p L p (Ω) u q L q (Ω) . Similarly, the optimal existence criteria Theorem 1.3 will hold as well for a selection process uR(x, u) such that

R 1 (•) ≤ R(x, •) ≤ R 2 (•),
where the R i satisfy the above assumptions.

We also wanted to stress that the regularity on the coefficient is far from optimal and extension of our results for rougher coefficients r, k, A should hold true. In order to keep our analysis of the asymptotic behaviour as simple as possible, we deliberately impose some regularity on the considered coefficients. We believe that theses assumptions highlight the important point of the method we used without altering the pertinence of the results obtained.

We also want to emphasize that these results are strongly related to the eigenvalue problem obtained by linearising the equation (1.5) around the steady state 0 which is a common feature for classical reaction diffusion

∂u ∂t = ∆u + f (x, u),
where f is a KPP type. However, the extension of Theorems 1.2, 1.3 to unbounded domains Ω is far from obvious considering the multiplicity of notion of generalised eigenvalue [START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF]. Moreover, in these situation the strict positivity of the kernel k seems to introduce a strong dichotomy for the properties of the stationary solutions and consequently the dynamics observed for evolution problem. Indeed, in this direction some progress have recently been made for the so called nonlocal Fisher-KPP equation :

(1.10)

∂u ∂t = ∆u + u(1 -φ ⋆ u),
where φ is a non-negative kernel. When φ is a positive integrable function, the constant 1 is a positive solution. Moreover, for φ ∈ L 1 ∩ C 1 positive so that x 2 φ ∈ L 1 , it is shown in [START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF] that travelling semi-front exists for all speed c ≥ c * , i.e there exists (U, c), so that U > 0 and U satisfies

U xx + cU x + U (1 -φ ⋆ U ) = 0, lim x→+∞ U = 0, lim inf x→-∞ U > 0.
In particular when c is large or φ is sufficiently concentrated or has a positive Fourier transform, we have lim inf x→-∞ U = lim sup x→-∞ U = 1, see [START_REF] Alfaro | Rapid traveling waves in the nonlocal Fisher equation connect two unstable states[END_REF][START_REF] Berestycki | The non-local Fisher-KPP equation: travelling waves and steady states[END_REF][START_REF] Fang | Monotone wavefronts of the nonlocal Fisher-KPP equation[END_REF][START_REF] Nadin | Can a traveling wave connect two unstable states? The case of the nonlocal Fisher equation[END_REF]. On the contrary, from our analysis the positive solution of (1.11)

∂u ∂t = ∆u + u 1 - R n u(t, y) dy ,
converges uniformly to 0, which is actually the only non-negative stationary solution.

We mention also a recent related study [START_REF] Alfaro | Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypical trait[END_REF] on a spatial demo-genetic model

(1.12) ∂u ∂t (t, x, y) = ∆u(t, x, y) + u r(x -By) - R u(t, x, y ′ ) dy ′ ,
which can be viewed as an extension of (1.1) where a spatial local adaptation is taken into account.

The interplay between the space variable x and the phenotypical trait variable y corresponding to local adaptation is modelled through the growth term r(x -By) which is a function taking its maximum at 0. Generalisation of (1.12) have been studied in [START_REF] Arnold | Existence of non trivial steady states for populations structured with respect to space and a continuous trait[END_REF][START_REF] Prevost | Etude mathématique et numérique d'équations aux dérivées partielles liées à la physique et à la biologie[END_REF] The extension of Theorems 1.2, 1.3 and 1.4 for mutation-selection equations involving a mutation kernel such as

∂u ∂t = u r(x) - Ω k ǫ (y)|u| p (t, y) dy + Ω M (x, y)[u(t, y) -u(t, x)] dy in R + × Ω (1.13)
is still a work in progress. However, although the technique and tools developed in this article are quite robust and can be applied in many situation, the lack of regularity of the positive solutions to (1.13) introduces some strong difficulty that cannot be easily overcome. Moreover, it has been proved by the author that such nonlocal problem can generates blow up phenomena, i.e. u(x, t) ⇀ δ x0 + g with δ x0 the Dirac mass and g a singular L 1 function. This blow up phenomena is in accordance with a recent result showing that in some situation the only stationary solution to (1.13) are positive measure having a non-zero singular part [START_REF] Coville | Singular measure as principal eigenfunction of some nonlocal operators[END_REF]. The understanding of the long time behaviour of the positive solution to (1.13) require then the development of new analytical tools in order to analyse these blow-up phenomena.

This paper is organised as follows. The Section 2 is dedicated to the nonlinear relative entropies and some functional inequalities that we will frequently use along this article. Next, we prove in Section 3 the Theorem 1.2. Finally in Section 4 and 5 we prove the existence of positive steady states (Theorem 1.3) and the global stability (Theorem 1.4). A construction of a smooth positive solution to the Cauchy problem is made in the appendix.

NON-LINEAR RELATIVE ENTROPY IDENTITIES AND RELATED FUNCTIONAL INEQUALITY

In this section we first establish a general identity which can be assimilated to a nonlinear relative entropy principle. We consider a parabolic equation of the form

∂u ∂t (t, x) = u(t, x)(r(x) -Ψ(x, u)(t)) + ∇ • (A(x)∇u(t, x)) in R + × Ω, (2.1) ∂u ∂n (t, x) = 0, in R + × ∂Ω (2.2)
where Ψ(x, u)(t) denotes Ψ(x, u)(t) := Ω K(x, y)|u| p (t, y) dy. Then for any solution of (2.1)-(2.2) we have Theorem 2.1 (General Identity). Let H be a smooth (at least C 2 ) function. Let ū > 0 and u be two smooth solutions of (2.1)-(2.2). Assume further that ū is a stationary solution of (2.1)-(2.2). Then we have

(2.3) dH H, ū [u](t) dt = -D(u) + Ω ū(x)H ′ u ū (t, x) Γ(t, x)u(t, x) dx
where H H, ū [u](t), D are the following quantity:

Γ(t, x) := Ψ(x, ū) -Ψ(x, u) H H, ū [u](t) := Ω ū2 (x)H u(x) ū(x) dx D(u) := Ω ū2 (x)H ′′ u(x) ū(x) ∇ u ū t A(x)∇ u ū dx
where ( a) t denotes the transpose of a vector of R N .

Proof:

By (2.1), by defining Γ(t, x) := Ψ(x, ū(x)) -Ψ(x, u(t, x)) we have

(2.4) ∂u ∂t = (r(x) -Ψ(x, ū)u + ∇ • (A(x)∇u)) + Γ(t, x)u(x)
Using that ū is also a stationary solution, we have for all x

(r(x) -Ψ(x, ū))ū = -∇ • (A(x)∇ū),
and we can rewrite the above equation as follows

∂u(x) ∂t = ∇ • (A(x)∇u) - u ū ∇ • (A(x)∇ū) + Γ(t, x)u(x)
By multiplying the above equality by ū(x)H ′ u(x) ū(x) and by integrating over Ω we achieve (2.5)

Ω ū(x)H ′ u(x) ū(x) ∂u(x) ∂t dx = Ω ū(x)H ′ u(x) ū(x) Γ(t, x)u(x) dx + Ω H ′ u(x) ū(x) [ū(x) ∇ • (A(x)∇u) -u(x) ∇ • (A(x)∇ū(x))] dx.
By integrating by part the last term and rearranging the terms, it follows that (2.6)

Ω ū(x)H ′ u(x) ū(x) ∂u(x) ∂t dx = Ω ū(x)H ′ u(x) ū(x) Γ(t, x)u(x) dx - Ω ū2 (x)H ′′ u(x) ū(x) ∇ u ū t A(x)∇ u ū dx.
Hence, we have

dH H, ū [u](t) dt = Ω ū(x)H ′ u(x) ū(x) Γ(t, x)u(x) dx -D(u).
Remark 2.2. We want to stress that if we replace ū by any positive function u satisfying

∇ • (A(x)∇ u(x)) = -u(x) r(x) -Ψ(x, u)(t) in Ω, ∂ u ∂n (x) = 0, in ∂Ω
it will affect the equality in Theorem 2.1 only through the term Γ which will be transform into Remark 2.4. We remark that the above formula do not require any particular assumption on the Ψ and as a consequence no particular assumption on the kernel K. Thus the formula holds as well for K(x, y) = δ 0 , which turns the equation (2.1) into a semi-linear PDE. In particular when Ψ(x, u) is independent of u i.ep = 0, K = δ 0 then the formula in Theorem 2.1 is known as the standard relative entropy principle for linear equations see [START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF].

Γ(t, x) = Ψ(x, u(x)) -Ψ(x,
Next we establish a useful functional inequality satisfied by vectors h ∈ v⊥ where v⊥ denotes the linear subspace of H 1 (Ω):

v⊥ := h ∈ H 1 (Ω) Ω hv = 0, v∇h • n -h∇v • n = 0 on ∂Ω Lemma 2.5.
Let v be a smooth (C 1,α (Ω)) positive bounded function in Ω, so that inf Ω v > 0. Then there exists ρ 1 > 0 so that for all h ∈ v⊥

ρ 1 h 2 L 2 (Ω) ≤ Ω v2 ∇ h v t A(x)∇ h v .
Moreover ρ 1 = λ 2 where λ 2 is the second eigenvalue of the linear eigenvalue problem

∇ • A(x)v 2 ∇ h v = -λhv in Ω v ∂h ∂n -h ∂v ∂n = 0 in ∂Ω Proof :
Let I be the following functional in H 1 (Ω),

(2.7)

I(h) := 1 h 2 2 Ω v2 ∇ h v t A(x)∇ h v .
Observe that from the homogeneity of the L 2 norm we have

(2.8) inf h∈v ⊥ , h 2=1 I(h) = inf h∈v ⊥ I(h),
and the first part of the Lemma is proved if we show that (2.9)

inf h∈v ⊥ , h 2=1 I(h) > 0,
Let dµ denotes the positive measure v2 dx, then by construction dµ is absolutely continuous with respect to the Lebesgue measure and vice versa. So the Hilbert functional spaces L 2 dµ and H 1 dµ below are well defined :

L 2 dµ (Ω) := u Ω u 2 (x)dµ(x) < +∞ , H 1 dµ (Ω) := u ∈ L 2 dµ (Ω) Ω |∇u| 2 (x)dµ(x) < +∞ .
Moreover the Rellich-Kondrakov compact embedding H 1 dµ (Ω) ֒→ L 2 dµ (Ω) holds [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. To obtain (2.9), we argue as follows. Let (h n ) n∈N be a minimising sequence, by (2.9) we can take (h n ) n∈N so that h n ∈ v⊥ , h n 2 = 1 for all n. Let g n := hn v , then by straightforward computation, from (2.7) -(2.9), we see that (g n ) n∈N is a minimising sequence of the functional

J (g) := 1 g L 2 µ (Ω) Ω (∇(g)) t A(x)∇(g) dµ,
satisfying for all n, g n L 2 µ (Ω) = h n 2 = 1. Moreover, we have for all n, ∂gn ∂n = 0 on ∂Ω and

(2.10)

Ω g n (x) dµ(x) = Ω h n (x)v(x) dx = 0.
We can also easily verify that

inf h∈v ⊥ , h 2=1 I(h) = inf g∈H 1 dµ , Ω g dµ=0 J (g).
By construction the sequence (g n ) n∈N is uniformly bounded in H 1 dµ (Ω) and thanks to Rellich-Kondrakov compact embedding, there exists a subsequence (g n k ) k∈N which converges weakly in H 1 dµ (Ω) and strongly in L 2 dµ (Ω) to some g ∈ H 1 dµ (Ω). Moreover, g is a weak solution of

∇ • A(x)v 2 ∇ ( g) = -λ gv 2 in Ω, (2.11) ∂ g ∂n = 0 (2.12) for some λ ∈ R. Furthermore g satisfies (2.13) Ω g(x) dµ(x) = 0.
Now assume that λ = 0, then the above equations (2.11)-(2.13) enforce g = 0 leading to the contradiction 0 = g L 2 µ (Ω) = 1. Therefore λ = 0 and (2.9) holds. Now, since A(x) and v are smooth and µ is absolutely continuous with respect to the Lebesgue measure, by standard elliptic regularity we have g ∈ C 2,α (Ω) for some α and the function h

:= v g ∈ C 2 satisfies ∇ • A(x)v 2 ∇ h v = -λ hv in Ω, Ω hv dx = 0, v ∂h ∂n -h ∂v ∂n = 0 in ∂Ω.
Now by dividing (2.11) by v2 we get the following eigenvalue problem

1 v2 ∇ • A(x)v 2 ∇g = -λg in Ω, ∂g ∂n = 0 in ∂Ω,
From standard Theory [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] there exists a sequence λ 1 < λ 2 < λ 3 < . . . of eigenvalue of the above problem. Moreover there exists an orthonormal basis

{ψ k } ∞ k=1 of L 2 , so that ψ k satisfies 1 v2 ∇ • A(x)v 2 ∇ψ k = -λ k ψ k in Ω, ∂ψ k ∂n = 0 in ∂Ω.
By setting

φ k := ψ k v , we can check that ∇ • A(x)v 2 ∇ φ k v = -λ k φ k v in Ω, (2.14) v ∂φ k ∂n -φ k ∂v ∂n = 0 in ∂Ω. (2.15)
Here since (0, v) is a solution to (2.14)-(2.15) and v > 0, we see that

φ 1 = v and λ 1 = 0. So inf h∈v ⊥ , h 2=1 I(h) = λ 2 ,
since the λ i are ordered and φ 2 ∈ v⊥ .

THE BLIND COMPETITION CASE:

In this section we analyse the asymptotic behaviour of a positive smooth solution to (1.1)-(1.3) when the competition kernel K(x, y) is independent of x, i.e K(x, y) = k(y) with k satisfying (1.4). As we expressed in Theorem 1.2 that we recall below, in this situation the problem (1.5)-(1.6) has a unique positive stationary solution which attracts all the trajectories initiated from any nonnegative and non zero initial data. More precisely, we prove Theorem 3.1. Assume A, r, k satisfy (1.4) and p ≥ 1.Let λ 1 be the first eigenvalue of the problem

∇ • (A(x)∇φ(x)) + r(x)φ(x) = -λφ(x) in Ω, (3.1) ∂φ(x) ∂n = 0 on ∂Ω, (3.2)
then we have the following asymptotic behaviour for any positive smooth solution u(t, x) to (1.5)-(1.6)

• if λ 1 ≥ 0, there is no positive stationary solution and

u(t, x) → 0 as t → ∞ • if λ 1 < 0, then u(t, x) → µφ 1 where µ = -λ1 Ω k(y)|φ1(y)| p dy 1 p and φ 1 is the positive eigenfunction associated to λ 1 normalized by φ 1 L 2 (Ω) = 1.
In the sequel of this section to simplify the presentation we introduce the notation

Ψ(u) := Ω k(z)|u(y)| p dy.
Before proving the Theorem, we start by establishing some useful Lemmas.

Lemma 3.2. Assume λ 1 < 0, then there exists µ > 0 so that µφ 1 is a positive stationary solution of (1.5).

Proof:

Let us normalised φ 1 by φ 1 L 2 (Ω) = 1. Then, by plugging µφ 1 in (1.5), we end up finding µ so that Ψ(µφ 1 ) = -λ 1 .

Thus for µ = -λ1

Ω k(y)|φ1(y)| p dy 1 p
, µφ 1 is a stationary solution of (1.5).

. Next, we establish some useful identities. Namely, we show Lemma 3.3. Let q ≥ 1 and H be the smooth convex function H(s) : s → s q . Let ū be a positive stationary solution of (1.5)-(1.6), then a positive smooth solution u(t, x) of (1.5)-(??) satisfies

(3.3) dH q, ū [u](t) dt = -q(q-1) Ω u(t, x) ū(x) q-2 ū2 ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx+q(Ψ(ū)-Ψ(u))H q, ū [u](t).
where

H q, ū [u](t) := Ω ū2 (x) u(t,x) ū(x) q dx. Furthermore, the functional F (u) := log H q, ū [u](t) (H 1, ū [u](t)) q satisfies: (3.4) d dt F (u) = - q(q -1) H q, ū [u](t) Ω u(t, x) ū(x) q ū2 ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx.
Remark 3.4. Note that in the particular case of

H(s) = s 2 , H 2, ū [u] = u 2 2 .
So we get a Lyapunov functional involving the L 2 norm of u instead of a weighted L q norm of u. Indeed, we have

∂ ∂t log u 2 2 H 1, ū [u] 2 = - 2 u 2 2 Ω ū2 ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx.

Proof:

The identity (3.3) is a straightforward consequence of Lemma 2.1. Indeed, for H(s) := s q , by the Theorem 2.1 we have:

dH q, ū [u](t) dt = -D(u) + Ω ū(x)H ′ u(t, x) ū(x) Γ(x)u(x) dx
where Γ, D are the following quantity:

Γ(u(t)) := Ψ(ū) -Ψ(u) D(u) := Ω H ′′ u(t, x) ū(x) ū2 (x) ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx By observing that ū(x)u(x)H ′ u(t,x) ū(x)
= qH q, ū [u](t) and that Γ is independent of x, we see that

dH q, ū [u](t) dt = -D(u) + qΓH q, ū [u](t),
and the formula (3.3) holds.

To obtain (3.4), we observe that by taking q = 1 in the formula (3.3) we get

dH 1, ū [u](t) dt = ΓH 1, ū [u](t).
Since H 1, ū [u](t) = Ω u(t, x)ū(x) dx > 0 for all times we see that

(3.5) d dt log(H 1, ū [u](t)) = (Ψ(ū) -Ψ(u)).
Similarly, since H q, ū [u](t) > 0 for all times we have also

(3.6) d dt log(H q, ū [u](t)) = - q(q -1) H q, ū [u](t) Ω u(t, x) ū(x) q-2 ū2 (x) ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx + q(Ψ(ū) -Ψ(u)).
By combining (3.5) and (3.6) we end up with

d dt log H q, ū [u](t) H 1, ū [u](t) q = - q(q -1) H q, ū [u](t) Ω u(t, x) ū(t, x) q-2 ū2 (x) ∇ u(t, x) ū(x) t A(x)∇ u(t, x) ū(x) dx.
As a straightforward application of this Lemma, we deduce the following a priori estimates on the solution of (1.5)-(1.7). Namely, we have Lemma 3.5. Let u(t, x) ∈ C 1 ((0, +∞), C 2,α (Ω)) be a positive solution of (1.5)-(1.6) then for all q ≥ 1 there exists a positive constant c q (q, u(x, 1)) < C q (q, u(x, 1)) so that for all t ≥ 1 c q ≤ u L q (Ω) ≤ C q .

Proof:

Let us first show that for all q ≥ 1 then there exists C q (q, u(x, 1)) so that for all t ≥ 1

(3.7) u L q (Ω) ≤ C q .
First, let us obtain an upper bound for u when q = 1. By Lemma 3.3, we have

dH 1,µφ 1 [u](t) dt = (Ψ(µφ 1 ) -Ψ(u))H 1,µφ 1 [u](t),
where µφ 1 is the stationary solution constructed in Lemma 3.2. By using the definition of Ψ and H 1,µφ 1 [u](t), and Hölder's inequality , we have for some c 0 > 0

dH 1,φ 1 [u](t) dt ≤ λ 1 -c 0 Ω |u(t, y)| dy p H 1,φ 1 [u](t). Since u L 1 (Ω) ∼ H 1,φ 1 [u](t), we get for some c 0 dH 1,φ 1 [u](t) dt ≤ λ 1 -c 0 H 1,φ 1 [u](t) p H 1,φ 1 [u](t).
So H 1,φ 1 [u](t) satisfies a logistic differential inequation, therefore there exists C 1 (u(x, 1)) > 0 so that for all t ≥ 1,

(3.8) H 1,φ 1 [u](t) ≤ C 1 .
Now we can get an upper bounded for u for all q ≥ 1. Indeed, let us assume that q > 1 then by a straightforward application of the Lemma 3.3 we have for all q > 1 and for all t ≥ 1,

H q,µφ 1 [u](t) ≤ H 1,µφ 1 [u](t) q H q,µφ 1 [u](1) H 1,µφ 1 [u](1) q .
By using the homogeneity of the norm H q,µφ 1 [u] and (3.8) we see that for all q > 1 and for all t ≥ 1,

H q,φ 1 [u](t) ≤ H 1,φ 1 [u](t) q H q,φ 1 [u](1) H 1,φ 1 [u](1) q ≤ C q 1 H q,φ 1 [u](1) H 1,φ 1 [u](1) q . Since for q ≥ 1 u L q (Ω) ∼ H q,φ 1 [u], (3.7) holds.
To prove the lower bound for u, by Hölder's inequality, it is enough to have a lower bound for

u L 1 (Ω) . Recall that H 1,µφ 1 [u](t) satisfies dH 1,µφ 1 [u](t) dt = Ψ(µφ 1 ) - Ω k(y)|u(t, y)| p dy H 1,µφ 1 [u](t).
Since (3.7) holds for all q ≥ 1, by interpolation there exits positive constants C, α so that for all

t > 1 u L p (Ω) ≤ C u α L 1 (Ω) . Therefore H 1,µφ 1 [u](t) satisfies for all t > 1 dH 1,µφ 1 [u](t) dt ≥ Ψ(µφ 1 ) -C p |k| ∞ H 1,µφ 1 [u] αp H 1,µφ 1 [u](t).
By using the logistic character of the above differential inequation, we deduce that

H 1,µφ 1 [u](t) ≥ c 1 (u(x, 1 
)) for all t > 1.

We are now in position to prove the Theorem 1.2.

Proof of Theorem 1.2:

Let u(t, x) ∈ C 1 ((0, +∞), C 2,α (Ω)) be a positive solution of (1.5)- (1.6). Assume first that λ

1 < 0. Since u > 0 then u is a sub-solution of ∂v(t, x) ∂t = ∇ • (A(x)∇v(t, x)) + r(x)v(t, x) in R + × Ω (3.9) ∂v(t, x) ∂n = 0 in R + × ∂Ω (3.10) v(x, 0) = u(1, x) in Ω. (3.11)
Since λ 1 > 0 and u(1, x) ∈ L ∞ , for a large constant Ce λ1t φ 1 (x) is then a super-solution of (3.9)- (3.11) and by the parabolic maximum principle we have

u(x, t) ≤ Ce λ1t φ 1 (x) → 0 as t → ∞.
Now let us assume that λ 1 = 0. In this situation, by Lemma 3.3 and using Remark (2.2), we observe that for all q ≥ 1 we have,

dH q,φ 1 [u](t) dt = -q(q-1) Ω u(t, x) φ 1 (x) q-2 φ 2 1 ∇ u(t, x) φ 1 (x) t A(x)∇ u(t, x) φ 1 (x) dx-qΨ(u))H q,φ 1 [u](t).
Therefore, since Ψ(u) is non-negative, we get ∇u 2 → 0 and for all q ≥ 1 u L q (Ω) → 0 as t → +∞. Since the coefficients of the parabolic equation are uniformly bounded, by a bootstrap argument using the Parabolic regularity, we get u ∞ → 0 as t → ∞.

Lastly, we assume λ 1 < 0 and let us denote <, > the standard scalar product of L 2 (Ω). Let ū be the stationary solution of (1.5)-(1.6) constructed in Lemma 3.2 , i.e ū := µφ 1 . Since for all t > 0, the solution u(t, x) ∈ L ∞ , then we can decompose u the following way:

u(t, x) := λ(t)ū(x) + h(t, x)
with h so that < φ 1 , h >= 0.

Substituting u by this decomposition in (1.5) and using the equation satisfied by ū it follows that

λ ′ (t)ū(x) + ∂h(t, x) ∂t = (λ 1 -Ψ(u(t)))λ(t)ū(x) + (r(x) -Ψ(u))h(t, x) + ∇ • (A(x)∇(h(t, x))).
(3.12)

By multiplying the above equation by h and integrating over Ω, it follows that

< ∂h(t) ∂t , h >=< (r(x) -Ψ(u))h + ∇ • (A(x)∇(h)), h > .
where we use that h is orthogonal to ū. Thus since

H 2, ū [h](t) := h(t) 2 L 2 (Ω) , we have < ∂h ∂t , h >= 1 2 dH 2, ū [h](t) dt =< (r -Ψ(u))h + ∇ • (A∇(h)), h > .
By following the computation developed for the proof of Theorem 2.1 with H(s) = s 2 , we see that

(3.13) dH 2, ū [h](t) dt = - Ω ū2 (x) ∇ h(t, x) ū(x) t A(x)∇ h(t, x) ū(x) + (λ 1 -Ψ(u(t))H 2, ū [h](t).
Since H 2, ū [h](t) ≥ 0 for all times, let us analyse separately the two situations: H 2, ū [h](t) > 0 for all times t or there exists t 0 ∈ R so that H 2, ū [h](t 0 ) = 0. In the latter case, from the above equation we see that we must have H 2, ū [h](t) = 0 for all t ≥ t 0 and so for all t ≥ t 0 , we must have u(t) = λ(t)ū almost everywhere. Hence from (3.12) we are reduced to analyse the following ODE equation

λ ′ (t) = λ(t)(λ 1 -Ψ(λ(t)))
where Ψ is the increasing locally Lipschitz function defined by Ψ(s) := s p Ω k(y)ū(y) p dx. Note that since by Lemma 3.5 we have

(3.14) λ(t) < ū, ū >=< ū, u >= H 1, ū [u](t) ≤ C 1 ,
we have λ(t) ≥ 0 for all times t. The above ODE is of logistic type with non negative initial datum therefore by a standard argumentation we see that λ(t) converges to λ > 0 where λ is the unique solution of Ψ( λ) = λ 1 . By construction we have Ψ(1) = λ 1 , so we deduce that λ = 1. Hence, in this situation, u converges pointwise to ū as time goes to infinity.

In the other situation, H 2, ū [h](t) > 0 for all t and we claim that

Claim 3.6. H 2, ū [h](t) → 0 as t → +∞.
Assume the Claim holds true then we can conclude the proof by arguing as follows. From the decomposition u(t, x) = λ(t)ū(x)+h(t, x), we can express the function

H 1, ū [u](t) by H 1, ū [u](t) =< u, ū >= λ(t) < ū, ū >.
Therefore by using Theorem 3.3 we deduce that

(3.15) λ ′ (t) = (λ 1 -Ψ[λ(t)ū(x) + h(t, x)]) λ(t).
By using the definition of Ψ and the binomial expansion it follows that λ verifies the following ODE

λ ′ (t) = (λ 1 -Ψ(λ(t)))λ(t) + λ(t)(Ψ(λ(t)ū(x)) -Ψ(λ(t)ū + h(t))) = (λ 1 -Ψ(λ(t)))λ(t) + λ(t) p i=1 i p λ i (t) Ω ūi h p-i (t, x) dx ,
where i p denotes the binomial coefficient. Now by using h(t) 2 2 = H 2, ū [h](t) → 0 and Lemma 3.5, by interpolation we deduce that h(t) L q (Ω) → 0 for all q ≥ 1. Therefore, since ū ∈ L ∞ and by (3.14) λ is bounded, we have

lim t→∞ p i=1 i p λ i (t) Ω ūi h p-i (t, x) dx = 0. Thus λ satisfies λ ′ (t) = (λ 1 -Ψ(λ(t)))λ(t) + λ(t)o(1),
and as above we can conclude that λ(t) → 1 and u converges to ū almost everywhere.

Proof of Claim 3.6:

Since H 2, ū [h](t) > 0 for all t, from (3.13) and by following the proof of Lemma 3.3 we see that

(3.16) d dt log H 2, ū [h](t) H 1, ū [u](t) 2 = - 1 H 2, ū [h](t) Ω ū2 (x) ∇ h(t, x) ū(x) t A(x)∇ h(t, x) ū(x) dx.
Thus the function F := log

H 2, ū [h](t) (H 1, ū [u](t))
2 is a decreasing smooth function. First we observe that the claim is proved if there exists a sequence (t n ) n∈N going to infinity so that H 2, ū [h](t n ) → 0. Indeed, assume such sequence exists and let (s k ) k∈N be a sequence going to +∞. Then there exists k 0 and a subsequence (t n k ) k∈N of (t n ) n∈N so that for all k ≥ k 0 , we have

s k ≥ t n k . Therefore from the monotonicity of F we have for all k ≥ k 0 log H 2, ū [h](s k ) H 1, ū [u](s k ) 2 ≤ log H 2, ū [h](t n k ) H 1, ū [u](t n k ) 2 .
By letting k to infinity in the above inequality, we deduce that 

lim k→∞ log H 2, ū [h](s k ) H 1, ū [u](s k ) 2 = -∞, which implies that H 2, ū [h](s k ) → 0,
inf t∈R + H 2, ū [h](t) > 0.
From the monotonicity and the smoothness of F we deduce that there is c 0 ∈ R so that

F (h(t)) → c 0 and d dt F (h(t)) → 0 as t → +∞.
Thus by Lemma 3.5 and (3.16) it follows that (3.17)

lim t→∞ Ω ū2 (x) ∇ h(t, x) ū(x) t A(x)∇ h(t, x) ū(x) dx = 0.
Since for all t, h(t) ∈ ū⊥ , H 2, ū [h](t) = h(t) 2 2 and ū = µφ 1 ∈ C 2,α is strictly positive in Ω, by combining (3.17) and the Lemma 2.5 we get the contradiction

0 < lim t→∞ h(t) 2 2 ≤ 1 ρ 1 lim t→∞ Ω ū2 (x) ∇ h(t, x) ū(x) t A(x)∇ h(t, x) ū(x) dx = 0.

THE GENERAL COMPETITION CASE: EXISTENCE OF POSITIVE STATIONARY SOLUTION

In this section we investigate the existence of a positive stationary solution of (2.1) and prove Theorem 1.3. That is we look for positive solution of

∇ • (A(x)∇v) + v (r(x) -Ψ(x, v)) = 0 in Ω, (4.1) ∂v ∂n (x) = 0 in ∂Ω, (4.2)
where Ψ(x, v) = Ω K(x, y)|v(y)| p dy. First observe that when λ 1 ≥ 0, then there is no positive solution of (4.1)-(4.2). Indeed, by multiplying by φ 1 the equation (4.1) and integrating by parts it follows that

0 = -λ 1 Ω v(x)φ 1 (x) dx - Ω Ψ(x, v)v(x)φ 1 (x) dx, which implies λ 1 Ω v(x)φ 1 (x) dx = Ω Ψ(x, v)v(x)φ 1 (x) dx = 0 since Ψ(x, v), v and φ 1 are non negative. Thus v = 0 almost everywhere since φ 1 > 0.
Let us then assume that λ 1 < 0. Let k > 0 so that the operator ∇ • (A(x)∇) + r(x)k with Neumann boundary condition is invertible in C 0,α (Ω) and a positive solution of (4.1)-(4.2) is a positive fixed point of the map T

T : C 0,α (Ω) → C 0,α (Ω) v → T v := (∇ • (A(x)∇) + r(x) -k) -1 n [Ψ(x, v)v -kv]
.

To check that T has a positive fixed point we use a degree argument. Let x 0 ∈ Ω be fixed and let K s (x, y) be defined by

K s (x, y) := sK(x, y) + (1 -s)K(x 0 , y).
Let us now consider the homotopy H ∈ C([0, 1] × C 0,α (Ω), C 0,α (Ω)) defined by

H : [0, 1] × C 0,α (Ω) → C 0,α (Ω) (s, v) → H(s, v) := (∇ • (A(x)∇) + r(x) -k) -1 n [Ψ s (x, v)v -kv].
, where Ψ s (x, v) := Ω K s (x, y)|v| p (y) dy.

One can see that H(1, .) = T and H(0, .) = T 0 where T 0 corresponds to the map

T 0 : C 0,α (Ω) → C 0,α (Ω) v → T 0 v := (Ψ 0 (v) -k)(∇ • (A(x)∇) + r(x) -k) -1 n v.
Note that there exists an unique positive fixed point to T 0 which can be constructed as in Section 3.

Before computing the degree of T 1 , we obtain some a priori estimates on the fixed point of the map H(•, •). That is some estimates on the positive solution to the equation 

(∇ • (A(x)∇) + r(x) -k) -1 n [Ψ s (x, v)v -kv] = v which rewrites: ∇ • (A(x)∇v) + r(x)v = Ψ s (x, v)v (4.3) ∂ n v = 0 on ∂Ω (4.

Proof:

The strict positivity of the solution v is a straightforward consequence of the strong maximum principle. Therefore either v ≡ 0 or v > 0. So let us assume that v > 0 and then by multiplying by v the equation (4.3) and integrating by parts we see that

Ω r(x)v 2 (x) dx- Ω (∇v(x)) t A(x)∇v(x) dx = Ω Ψ s (x, v)v(x) 2 dx ≥ K min Ω |v(y)| p dy Ω v 2 (x) dx,
where K min := min x,y∈ Ω× Ω K(x, y). Therefore we get

r ∞ K min ≥ Ω |v(y)| p dy.
We also get

Ω r(x)v 2 (x) dx - Ω (∇v(x)) t A(x)∇v(x) dx ≤ K max Ω |v(y)| p dy Ω v 2 (x) dx
with K max := max x,y∈ Ω× Ω K(x, y) which leads to

λ 1 K max ≤ Ω |v(y)| p dy.
We are now in position to prove the existence of a positive solution to the equation ( 

O := v ∈ C 0,α (Ω), v ≥ 0 | c 2 ≤ Ω v p (x) dx ≤ C 2

STABILITY OF THE DYNAMICS, CONVERGENCE TO THE EQUILIBRIA

In this section we prove Theorem 1.4. That is to say, we analyse the stability under some perturbation of the dynamics established for (1.5)-(1.6) in Section 3. More precisely we investigate the global dynamics of solution of

∂u(x, t) ∂t = u r(x) - Ω k ǫ (x, y)|u| p (y) dy + ∇ • (A(x)∇u(t, x)) in Ω × R + , (5.1) ∂u ∂n (t, x) = 0 in ∂Ω × R +, * , (5.2) u(x, 0) = u 0 (x) ≥ 0, (5.3)
where p = 1 or 2 and k ǫ (x, y) := k 0 (y) + ǫk 1 (x, y) with ǫ a small parameter. To obtain the asymptotic behaviour in this case, we follow the strategy developed in Section 3. Namely, we start by showing some a priori estimates on the solution u(t, x), then we analyse the convergence by means of some differential inequalities. For convenience, we dedicate a subsection to each essential part of the proof.

A priori estimate.

We start by establishing some useful differential inequalities. Namely we show that Lemma 5.1. Assume that A, r, k i satisfies (1.4) and let φ 1 be the positive eigenfunction associated to λ 1 (∇ • (A(x)∇)) + r(x) with Neumann boundary condition. Let q ≥ 1 and H be the smooth convex function H(s) : s → s q . Then there exists ǫ 0 so that for all ǫ ≤ ǫ 0 and for all positive solution u ∈ C 1 ((0, ∞), C 2,α (Ω)) of (5.1)-(5.2), we have for t > 0

dH q,φ 1 [u](t) dt ≤ -D q,φ1 [u](t) + q(-λ 1 -α ǫ,-(u))H q,φ 1 [u](t) dH q,φ 1 [u](t) dt ≥ -D q,φ1 [u](t) + q(-λ 1 -α ǫ,+ (u))H q,φ 1 [u](t)
where

D q,φ1 [u](t) := q(q -1) Ω u(t, x) φ 1 (x) q-2 φ 2 1 (x) ∇ u(t, x) φ 1 (x) t A(x)∇ u(t, x) φ 1 (x) dx H q,φ 1 [u] := Ω u(t, x) φ 1 (x) q φ 2 1 (x) dx α ǫ,± (u) := Ω (k 0 (y) ± ǫ k 1 ∞ ) |u(t, y)| p dy

Proof:

Observe that since u is positive, from (5.1) it follows that

∂u ∂t (t, x) ≤ [r(x) -α -,ǫ (u)]u(t, x) + ∇ • (A(x)∇u(t, x)) , ∂u ∂t (t, x) ≥ [r(x) -α +,ǫ (u)]u(t, x) + ∇ • (A(x)∇u(t, x)) .
Let ω+ ǫ and ωǫ be the stationary solutions of the corresponding equations with homogeneous Neumann boundary condition:

∂ω - ǫ (t, x) ∂t = [r(x) -α -,ǫ (ω - ǫ )]ω - ǫ (t, x) + ∇ • A(x)∇ω - ǫ (t, x) , ∂ω + ǫ (t, x) ∂t = [r(x) -α +,ǫ (ω + ǫ )]ω + ǫ (t, x) + ∇ • A(x)∇ω + ǫ (t, x) .
Let ǫ small enough, says ǫ ≤ k0,min 2 k1 ∞ , then by construction ω± ǫ exists and we have ω± ǫ = µ ± ǫ φ 1 . Now by arguing as in the proof of Theorem 2.1, we obtain

dH - H, ω- ǫ [u](t) dt ≤ -D H,ω - ǫ [u](t) + q[-λ 1 -α ǫ,-(u)]H - H, ω- ǫ [u](t), dH + H, ω+ ǫ [u](t) dt ≥ -D H,ω + ǫ [u](t) + q[-λ 1 -α ǫ,+ (u)]H + H, ω+ ǫ [u](t).
where

H ± H, ω± ǫ [u](t) := Ω (ω ± ǫ ) 2 (x)H u(t, x) ω± ǫ (x) dx, D H,ω ± ǫ [u](t) := Ω H ′′ u(t, x) ω± ǫ (x) (ω ± ǫ (x)) 2 ∇ u(t, x) ω± ǫ (x) t A(x)∇ u(t, x) ω± ǫ (x) dx.
By using that ω± ǫ = µ ± ǫ φ 1 , the definition of H and the homogeneity of H q,µ ± ǫ φ 1

[u], we deduce

that dH q,φ 1 [u](t) dt ≤ -D q,φ1 [u](t) + q[-λ 1 -α ǫ,-(u)]H q,φ 1 [u](t), dH q,φ 1 [u](t) dt ≥ -D q,φ1 [u](t) + q[-λ 1 -α ǫ,+ (u)]H q,φ 1 [u](t).
Next, we derive some a priori estimates for the solutions u ∈ C 1 ((0, ∞), C 2,α (Ω))of (5.1)-(5.2).

Lemma 5.2. Assume that A, r, k i satisfies (1.4). Then there exists ǫ 1 so that we have : (i) For all q ′ ≥ 1 there exists cq ′ < Cq ′ so that for all ǫ ≤ ǫ 1 and for all positive continuous stationary solution ūǫ to (5.1)-(5.2) cq ′ ≤ ūǫ L q ′ (Ω) < Cq ′ .

(ii) There exists 0 < c∞ < C∞ , so that for all ǫ ≤ ǫ 1 and for all continuous stationary solution ūǫ to (5.1)-(5.2) c∞ ≤ ūǫ ≤ C∞ . (iii) For all 1 ≤ q ′ ≤ p, there exists 0 < C q ′ , so that for all ǫ ≤ ǫ 1 and for all

u ǫ ∈ C 1 ((0, ∞), C 2,α (Ω))
positive solution to (5.1)-(5.2) there exists t so that for all t ≥ t

u ǫ (t) L q ′ (Ω) ≤ C q ′ .
(iv) For p = 1 or p = 2 there exists a positive constant c 1 , so that for all ǫ ≤ ǫ 1 and for all u ǫ ∈ C 1 ((0, ∞), C 2,α (Ω)) positive solution to (5.1)-(5.2) there exists t so that for all t ≥ t

u ǫ (t) L 1 (Ω) ≥ c 1 .

Proof:

Let us first observe that (ii) is a straightforward consequence of (i) since ūǫ satisfies an elliptic equation with uniformly bounded continuous coefficient with respect to ǫ and ūǫ . To prove (i), we first show the estimates for q ′ = p. First let us observe that by replacing u ǫ by ūǫ and taking q = 1 in the formulas of Lemma 5.1, we get for ǫ ≤ ǫ 0

0 ≤ [-λ 1 -α ǫ,-(ū ǫ )]H 1,φ 1 [ū ǫ ], 0 ≥ (-λ 1 -α ǫ,+ (ū ǫ ))H 1,φ 1 [ū ǫ ].
From the latter inequalities, by using the positivity of ūǫ and φ 1 it follows that

-λ 1 ≥ Ω (k 0 (y) -σ)ū p ǫ (y) dy ≥ inf x∈Ω (k 0 (x) -σ) ūǫ p L p (Ω) , -λ 1 ≤ Ω (k 0 (y) + σ)ū p ǫ (y) dy ≤ sup x∈Ω (k 0 (x) + σ) ūǫ p L p (Ω)
,

where σ := ǫ k 1 ∞ . Let κ 0 := infx∈Ω k0(x)
2 and choose ǫ small enough, says so that ǫ < κ0 k1 ∞ =: ǫ ′ , we achieve for all ǫ ≤ ǫ ′ and all stationary solution ūǫ

(5.4) -λ 1 k 0 ∞ + ǫ 1 k 1 ∞ ) 1 p =: cp ≤ ūǫ L p (Ω) ≤ Cp := -λ 1 κ 0 1 p
. Now recall that ūǫ satisfies the elliptic equation

∇ • (A(x)∇ū ǫ (x)) + r(x) - Ω k ǫ (x, y)ū p ǫ (y) dy ūǫ (x) = 0 in Ω, ∂ ūǫ (x) ∂n = 0 in ∂Ω.
From (5.4), the coefficients of this linear equation are uniformly bounded in L ∞ with respect to ǫ ∈ [0, ǫ ′ ]. So by using the elliptic regularity and Sobolev's embedding [START_REF] Brezis | Functional analysis, sobolev spaces and partial differential equations[END_REF], we can show that for all q ≥ 1 there exists C > 0 so that ūǫ W 2,q (Ω) ≤ C, with C independent of ǫ and ūǫ . Thus there exists C ∞ > 0 independent of ūǫ , so that

(5.5) ūǫ ∞ ≤ C ∞ .
To obtain the desired uniform lower bound cq , a standard interpolation argument can be used [START_REF] Brezis | Functional analysis, sobolev spaces and partial differential equations[END_REF] combining (5.4) and (5.5).

Let us now prove (iii). Let κ

1 := k 0 ∞ + ǫ 1 k 1 ∞ and κ 0 := infx∈Ω k0(x) 2
then by Lemma 5.1, since ǫ ≤ ǫ ′ we get for all q ≥ 1 and all t > 0

dH q,φ 1 [u ǫ ](t) dt ≤ -q(q -1) Ω u ǫ (t, x) φ 1 (x) q-2 φ 2 1 (x) ∇ u(t, x) φ 1 (x) t A(x)∇ u ǫ (t, x) φ 1 (x) dx + q[-λ 1 -κ 0 u ǫ p L p (Ω) ]H q,φ 1 [u ǫ ](t). Since H 1 (u) ∼ u L 1 (Ω)
, by Hölder's inequality and by choosing q = 1 in the above inequality, it follows that (5.6)

dH 1,φ 1 [u ǫ ](t) dt ≤ [-λ 1 -κ 0 H 1,φ 1 [u ǫ ](t) p ]H 1,φ 1 [u ǫ ](t) in (0, ∞).
Using the logistic character of the above equation, there exists t 1 so that

H 1,φ 1 [u ǫ ](t) ≤ -2λ1
κ0 for all t ≥ t 1 . A similar argument can be done for q = p, thus H p,φ 1 [u ǫ ](t) ≤ C p for all t ≥ t p and by interpolation we get for all 1 ≤ q ≤ p (5.7) u ǫ L q (Ω) ≤ C q for all t ≥ t ′ := sup{t 1 , t p }.

To obtain the lower bound (iv), it is enough to get an uniform lower bound for H 1,φ 1 [u ǫ ](t). By Lemma 5.1 we have (5.8)

dH 1,φ 1 [u ǫ ](t) dt ≥ -λ 1 -k ∞ Ω u p ǫ (y) dy H 1,φ 1 [u ǫ ](t).
Case 1: p = 1. In this situation, since

H 1,φ 1 [u ǫ ](t) ∼ u ǫ L 1 (Ω) , we deduce that dH 1,φ 1 [u ǫ ](t) dt ≥ (-λ 1 -κ 1 H 1,φ 1 [u ǫ ](t))H 1,φ 1 [u ǫ ](t),
for some κ 1 > 0. Hence, there exists t so that

H 1,φ 1 [u ǫ ](t) ≥ -λ1
2κ1 for all t > t.

Case 2: p = 2. In this situation, let us rewrite u ǫ (x, t) := µ ǫ (t)φ 1 (x) + g ǫ (t, x) with g(t, x) ⊥ φ 1 in L 2 (Ω). Equipped with this decomposition, we have

H 1,φ 1 [u](t) = µ ǫ (t) (5.9) u(t) 2 2 = H 2,φ 1 [u](t) = µ 2 ǫ (t) + g ǫ (t) 2 2
(5.10)

dH 2,φ 1 [g ǫ ](t) dt = dH 2,φ 1 [u ǫ ](t) dt -2µ ǫ (t)µ ′ ǫ (t) (5.11)
So from (5.8), we get (5.12)

µ ′ ǫ (t) ≥ -λ 1 -k ǫ ∞ µ 2 ǫ (t) -k ǫ ∞ g ǫ (t) 2 2 µ ǫ (t)
. Now by combining (5.9), (5.11) and Lemma 5.1 we see that

(5.13) dH 2,φ 1 [g ǫ ](t) dt ≤ -2 Ω φ 2 1 (x) ∇ g ǫ (t, x) φ 1 (x) t A(x)∇ g ǫ (t, x) φ 1 (x) dx + d log µ 2 ǫ (t) dt H 2,φ 1 [g ǫ ](t) + 2[α ǫ,+ (u ǫ ) -α ǫ,-(u ǫ )] µ 2 ǫ (t) + H 2,φ 1 [g ǫ ] (t 
) By Lemma 2.5 and using (5.7) it follows that for t ≥ t ′ (5.14)

dH 2,φ 1 [g ǫ ](t) dt - d log µ 2 ǫ (t) dt H 2,φ 1 [g ǫ ](t) ≤ -(2ρ 1 (φ 1 ) -4ǫ k 1 ∞ C 2 )H 2,φ 1 [g ǫ ](t) + 4ǫ k 1 ∞ C 2 C 2 1 . Let Σ := {t ≥ t ′ | H 2,φ 1 [g ǫ ](t) > 0}, then we have for all t ∈ Σ (5.15) d dt log H 2,φ 1 [g ǫ ](t) µ 2 ǫ (t) ≤ -(2ρ 1 (φ 1 ) -4ǫ k 1 ∞ C 2 ) + 4ǫ k 1 ∞ C 2 C 2 1 H 2,φ 1 [g ǫ ](t) .
By choosing ǫ small enough, say ǫ ≤ ǫ" := min ǫ ′ , ρ1(φ1) 4C2 k1 ∞ , and by letting δ

:= 4 k 1 ∞ C 2 C 2 1
, by (5.15) we achieve for all t ∈ Σ (5.16)

d dt log H 2,φ 1 [g ǫ ](t) µ 2 ǫ (t) ≤ -ρ 1 (φ 1 ) + ǫδ H 2,φ 1 [g ǫ ](t)
.

To obtain the lower bound, the proof follows now three steps:

Step One. We claim that Claim 5.3. For all ǫ ≤ ǫ ′′ , there exists t 0 > t ′ so that

H 2,φ 1 [g ǫ ](t 0 ) < 2δǫ ρ 1 (φ 1 )
.

Proof:

Assume by contradiction that for all t ≥ t ′ we have

H 2,φ 1 [g ǫ ](t 0 ) ≥ 2δǫ ρ 1 (φ 1 )
.

Therefore it follows from (5.16) that for all t > t ′

(5.17)

d dt log H 2,φ 1 [g ǫ ](t) µ 2 ǫ (t) ≤ - ρ 1 (φ 1 ) 2 .
Thus F (t) := log

H 2,φ 1 [gǫ](t) µ 2 ǫ (t)
is a decreasing function which by assumption is bounded from below for all t ≥ t ′ . Therefore F converges as t tends to +∞ and dF dt → 0. Hence for t large enough, we get the contradiction

- ρ 1 (φ 1 ) 4 ≤ d dt log H 2,φ 1 [g ǫ ](t) µ 2 ǫ (t) ≤ - ρ 1 (φ 1 ) 2 .
Step Two. Let ǫ 1 and γ(t 0 ) be the following quantities

ǫ 1 := min ǫ", -λ 1 ρ 1 (φ 1 ) 8 k ǫ ∞ δ , γ(t 0 ) := min µ ǫ (t 0 ), -λ 1 2 k ǫ ∞
and let Q be the real map

R + → R + x → A Bx Bx+C where A := -λ1 2 k ∞ , B := ρ 1 (φ 1
) and C := 2ǫδ. We claim that Claim 5.4. For all ǫ ≤ ǫ 1 we have

(i) For all t ≥ t 0 , µ 2 ǫ (t) ≥ γ 2 (t 0 ). (ii) There exists t ′ 1 ≥ t 0 so that for all t > t ′ 1 µ 2 ǫ (t) ≥ Q(γ 2 (t 0 )).

Proof:

Let us denote Σ ± and Σ 0 the following sets

Σ + := t ≥ t 0 | H 2,φ 1 [g ǫ ](t) > 2δǫ ρ 1 (φ 1 )
,

Σ -:= t ≥ t 0 | H 2,φ 1 [g ǫ ](t) ≤ 2δǫ ρ 1 (φ 1 )
,

Σ 0 := t ≥ t 0 | µ ǫ (t) ≥ min µ ǫ (t 0 ), -λ 1 2 k ǫ ∞ .
By construction [t 0 , +∞) = Σ + ∪ Σ -, t 0 ∈ Σ -and for all ǫ ≤ ǫ 1 we have

-λ 1 -k ǫ ∞ 2ǫδ ρ 1 (φ 1 ) ≥ - -λ 1 2 .
Let us now prove (i). Let t 0 be the following time

t 0 := sup{t ≥ t 0 | [t 0 , t] ⊂ Σ -}. By continuity of H 2,φ 1 [g ǫ ](t), it follows from H 2,φ 1 [g ǫ ](t 0 ) < 2δǫ ρ1(φ1) that t 0 > t 0 .
Moreover we deduce from (5.12) that µ ǫ satisfies on (t 0 , t 0 ):

(5.18) µ ′ ǫ (t) ≥ - λ 1 2 -k ǫ ∞ µ 2 ǫ (t) µ ǫ (t). Therefore µ ǫ (t) ≥ min µ ǫ (t 0 ), -λ1 2 kǫ ∞ for t ∈ [t 0 , t 0 ) which enforces (t 0 , t 0 ) ⊂ Σ 0 . Let t * be the following quantity t * := sup{t ≥ t 0 | (t 0 , t) ⊂ Σ 0 }.
From above (t 0 , t 1 ) ⊂ Σ 0 , so we have t * ∈ (t 0 , +∞]. We will show that t * = +∞. If not, t * < +∞ and from the above arguments we can see that

H 2,φ 1 [g ǫ ](t * ) ≥ 2δǫ ρ1(φ1)
. By definition of t * , we have the following dichotomy since [t 0 , +∞) = Σ + ∪ Σ -:

• t * ∈ Σ -and there exists t * < t * ,+ ∈ Σ + so that (t * , t * ,+ ) ⊂ Σ + • t * ∈ Σ + and there exists t * ,-< t * < t * ,+ so that t * ,-∈ Σ 0 ∩ Σ -, t * ,+ ∈ Σ + and (t * ,-, t * ,+ ] ⊂ Σ +

In both cases we see from (5.17) that on (t * ,-, t * ,+ ] the function

F (t) = log H 2,φ 1 [gǫ](t) µ 2 ǫ (t)
is decreasing and we have for all t ∈ (t * ,-, t * ,+ ]F (t) < F (t * ,-) which leads to

µ 2 ǫ (t * ,-) ≤ µ 2 ǫ (t) H 2,φ 1 [g ǫ ](t * ,-) H 2,φ 1 [g ǫ ](t) .
Thus we get for all t ∈ (t * ,-, t * ,+ ] γ(t 0 ) ≤ µ ǫ (t), since t * ,-∈ Σ -∩ Σ 0 and t ∈ Σ + . As a consequence we have t * < t * ,+ ∈ Σ 0 , which contradicts the definition of t * .

Hence t * = ∞ and

(5.19) µ ǫ (t) ≥ min µ ǫ (t 0 ), -λ 1 2 k ǫ ∞ for all t ≥ t 0 .
Let us now prove (ii). By arguing on each connected component of Σ + , since by (5.16)

F (t) = log H 2,φ 1 [gǫ](t) µ 2 ǫ (t)
is a decreasing function one has for all t ∈ Σ +

H 2,φ 1 [g ǫ ](t) ≤ µ 2 ǫ (t) γ 2 (t 0 ) 2ǫδ ρ 1 (φ 1 )
.

By construction, from (5.19) we also have for all t ∈ Σ -

H 2,φ 1 [g ǫ ](t) ≤ µ 2 ǫ (t) γ 2 (t 0 ) 2ǫδ ρ 1 (φ 1 )
.

Therefore for all t ≥ t 0 we get (5.20)

H 2,φ 1 [g ǫ ](t) ≤ µ 2 ǫ (t) γ 2 (t 0 ) 2ǫδ ρ 1 (φ 1 )
.

Now by combining (5.20) with (5.12) it follows that for all t ≥ t 0 , µ ǫ (t) satisfies

µ ′ ǫ (t) ≥ -λ 1 -k ∞ µ 2 ǫ (t) 1 + 2ǫδ ρ 1 (φ 1 )γ 2 (t 0 ) µ ǫ (t).
Hence, by using the logistic character of the above equation we have for some

t ′ 1 for all t ≥ t ′ 1 (5.21) µ 2 ǫ (t) ≥ -λ 1 2 k ∞ ρ 1 (φ 1 )γ 2 (t 0 ) γ 2 (t 0 )ρ 1 (φ 1 ) + 2ǫδ = Q(γ 2 (t 0 )).
Step Three. Finally we claim that Claim 5.5. There exists t so that for all t ≥ t

µ 2 ǫ (t) ≥ -λ 1 8 k ∞ .

Proof:

By an elementary analysis, one can check that the map Q(x) = A Bx Bx+C is monotone increasing and has a unique positive fixed point

x 0 = AB-C B = -λ1 2 k ∞ -2ǫδ ρ1(φ1) ≥ -λ1 4 k ∞ > 0.
We can also check that the iterated map Q n+1 (x) := Q(Q n (x)) satisfies for any x * ∈ (0, +∞)

(5.22) lim n→∞ Q n (x * ) = x 0 .
Now recall that by the previous step, we have for all t ≥ t ′ 1 ,

µ 2 ǫ (t) ≥ Q(γ 2 (t 0 )) = Q min µ 2 ǫ (t 0 ), -λ 1 2 k ∞ .
Since Q is monotone increasing and -λ1 2 k ∞ > x 0 we deduce from (5.21) that for all t ≥ t ′ 1 (5.23) µ 2 ǫ (t) ≥ min x 0 , Q(µ 2 ǫ (t 0 )) . By using now step one with t ′ 1 instead of t ′ , it follows that there exists t 1 ≥ t ′ 1 so that H 2,φ 1 [g ǫ ](t 1 ) < 2δǫ ρ1(φ1) . We can then replace t 0 by t 1 in Step two, to obtain the existence of t ′ 2 > t 1 so that for all t ≥ t ′ 2 we have

µ 2 ǫ (t) ≥ Q(γ(t 1 ) 2 ) = Q min µ 2 ǫ (t 1 ), -λ 1 2 k ∞ ,
which by using the monotonicity of Q, -λ1 2 k ∞ > x 0 and (5.23) leads to (5.24)

µ 2 ǫ (t) ≥ min x 0 , Q min x 0 , Q(µ 2 ǫ (t 0 ) for all t ≥ t ′ 2 . Since x 0 is a fixed point of Q, it follows from (5.24) that for all t ≥ t ′ 2 (5.25) µ 2 ǫ (t) ≥ min x 0 , Q[Q(µ 2 ǫ (t 0 ))] = min x 0 , Q 2 (µ 2 ǫ (t 0 ))
. By arguing inductively, we can then construct an increasing sequence (t ′ n ) n∈N0 so that for all n and for all t ≥ t ′ n we have (5.26)

µ 2 ǫ (t) ≥ min x 0 , Q n (µ 2 ǫ (t 0 )) .
Since µ 2 ǫ (t 0 ) > 0, by (5.22) there exists n 0 so that Q n (µ 0 ǫ (t 0 )) ≥ x0 4 = -λ1 8 k ∞ . Hence, by (5.26) we have for all

t ≥ t ′ n0 µ 2 ǫ (t) ≥ -λ 1 8 k ∞ .
Finally, we establish an estimate on ρ 1 (ū ǫ ) where ρ 1 (ū ǫ ) is the constant defined in Lemma 2.5 for the positive vector ūǫ . Namely, we show that Lemma 5.6. There exists ρ > 0, so that for all ǫ ∈ [0, ǫ 1 ) and for all positive stationary solution ūǫ of (5.1)-(5.2), we have ρ(ū ǫ ) ≥ ρ

Proof:

From the proof of Lemma 2.5, if we let dµ ǫ , L 2 µǫ and H 1 µǫ be respectively the positive measure dµ ǫ = ū2 ǫ dx, the following functional space:

L 2 µǫ (Ω) := u Ω u 2 (x)dµ ǫ (x) < +∞ H 1 µǫ (Ω) := u ∈ L 2 µǫ Ω |∇u| 2 (x)dµ ǫ (x) < +∞ we have 0 < ρ(ū ǫ ) = inf g∈H 1 dµǫ , Ω g dµǫ=0 J (g)
with J the functional

J (g) := 1 g L 2 µǫ (Ω) Ω (∇(g)) t A(x)∇(g) dµ ǫ . Let ν := inf dµǫ=ū 2 ǫ dx ρ(ū ǫ ),
where ǫ ∈ [0, ǫ 1 ] and ūǫ is any stationary solution of (5.1)-(5.2), then we have

ρ(ū ǫ ) ≥ ν ≥ 0.
We claim that ν > 0. Indeed, if not then there exists a sequence of positive measure ū2 n dx so that lim n→∞ ρ(ū n ) = 0.

Since 0 ≤ ǫ ≤ ǫ 1 , by Lemma 5.2 the sequence (ū n ) n∈N is uniformly bounded in W 2,q (Ω) for all q ≥ 1. Therefore by the Rellich-Kondrakov Theorem, there exists a subsequence (ū n k ) k∈N which converges to u a non-negative solution of (5.1)-(5.2) for some ǭ. By Lemma 5.2, we see also that u is non trivial and positive. Thus by applying Lemma 2.5 with u we get the contradiction 0 < ρ( u) = 0.

Asymptotic Behaviour.

We are now in position to obtain the asymptotic behaviour of the solution u ǫ (t, x) as t goes to +∞ for ǫ ∈ [0, ǫ * ], where ǫ * is to be determined later on.

Let us first introduce some practical notation:

Ψ 0 (v) := Ω k 0 (y)|v(y)| p dy, Ψ 1 (x, v) := Ω k 1 (x, y)|v(y)| p dy, Ψ ǫ (x, v) := Ψ 0 (v) + ǫΨ 1 (x, v) Ψ ǫ (v) := Ω Ψ ǫ (x, v)v 2 (x) dx.
When λ 1 ≤ 0, then the proof of Section 3 holds as well for solution of (5.1) -( 5.3) and u(t, x) → 0 as t → 0. So let us assume λ 1 < 0 and let us denote <, > the standard scalar product of L 2 (Ω).

Let ūǫ be a positive stationary solution of (5.1)-(5.2). Such solution exists from Section 4. Since for all t > 0 the solution u ǫ (t, x) ∈ L 2 , we can decompose u ǫ as follows:

u ǫ (t, x) := λ ǫ (t)ū ǫ + h ǫ (t, x)
with h ǫ so that < ūǫ , h ǫ >= 0.

From this decomposition and by using Theorem 2.1 we get:

λ ǫ (t) < ūǫ , ūǫ >= H 1, ūǫ [u ǫ ](t), (5.27) dH 2, ūǫ [h ǫ ](t) dt = dH 2, ūǫ [u ǫ ](t) dt -2λλ ′ < ūǫ , ūǫ > (5.28) λ ′ ǫ (t) < ūǫ , ūǫ >= Ω (Ψ ǫ (x, ūǫ ) -Ψ ǫ (x, u ǫ ))ū ǫ (x)u ǫ (x, t) dx. (5.29)
By Lemma 5.2 and (5.27), we can check that when ǫ ≤ ǫ 1 there exists positives constants c 1 , C 1 , c2 , C2 independent of ǫ such that for any positive smooth solutions u ǫ to (5.1)-(5.2) there exists t(u ǫ ) so that (5.30)

ĉ := c 1 C2 ≤ λ ǫ (t) ≤ C 1 c2 =: Ĉ for all t > t.
From the decomposition, by using (5.30) and Lemma 5.2 we can also check that h ǫ is smooth (i.e C 2,α (Ω)) and therefore belongs to L 2 (Ω) for all times. By plugging the decomposition of u ǫ in (5.29) and using the definition of Ψ ǫ , we can check that

(5.31) λ ′ ǫ (t) = Ψ ǫ (ū ǫ )λ ǫ (t) ūǫ 2 L 2 (Ω) (1 -λ p ǫ (t)) + R 1 (t) + R 2 (t)
where R i are the following quantity:

R 1 (t) := 1 ūǫ 2 L 2 (Ω) Ω [Ψ ǫ (x, ūǫ ) -Ψ ǫ (x, u ǫ )]ū ǫ (x)h ǫ (t, x) dx (5.32) R 2 (t) := λ ǫ (t) ūǫ 2 L 2 (Ω) Ω p k=1 k p λ p-k ǫ (t) Ω k ǫ (x, y)ū p-k ǫ (y)h k ǫ (t, y) dy ūǫ (x) 2 dx (5.33)
Next, we show that Lemma 5.7. Let p = 1 or p = 2 then there exists ǫ * ≤ min{ǫ 0 , ǫ 1 }, so that for all ǫ ≤ ǫ * then any positive smooth solution u ǫ of (5.1)-(5.2) satisfies

lim t→∞ H 2, ūǫ [h ǫ ](t)) = 0.
Assume the lemma holds true, then we can conclude the proof of Theorem 1.4 by arguing as follows. By combining Lemma 5.2, Lemma 5.7 and by using Hölder's inequality, since p = 1 or 2 we see that R i (t) → 0 as t → +∞. Thus λ ǫ (t) satisfies (5.34)

λ ′ ǫ (t) = Ψ ǫ (ū ǫ )λ ǫ (t) ūǫ 2 L 2 (Ω) (1 + o(1) -λ p ǫ (t)),
The above ODE is of logistic type with a perturbation o(1) → 0 with a non negative initial datum. Therefore, when ǫ ≤ ǫ * λ ǫ (t) converges to 1 and we conclude that when ǫ ≤ ǫ * then any positive solution u ǫ to (5.1)-(5.2) converges to ūǫ almost everywhere.

Let us now turn our attention to the proof of the Lemma 5.7.

Proof of Lemma 5.7:

First, let us denote Γ(t, x) := Ψ ǫ (x, ūǫ ) -Ψ ǫ (x, u ǫ ). By (5.28) (5.29) and by using Theorem 2.1 we achieve

dH 2, ūǫ [h ǫ ](t) dt = -2 Ω ū2 ǫ ∇ h ǫ (t, x) ūǫ (x) t A(x)∇ h ǫ ūǫ + 2 Ω Γ(t, x)h ǫ (x)u ǫ (x) dx.
Therefore using the definition of Ψ ǫ and that ūǫ ⊥ h ǫ we have

dH 2, ūǫ [h ǫ ](t) dt = -2 Ω ū2 ǫ ∇ h ǫ (t, x) ūǫ (x) t A(x)∇ h ǫ ūǫ + 2(Ψ 0 (ū ǫ ) -Ψ 0 (u ǫ ))H 2, ūǫ [h ǫ ](t) + 2ǫ Ω (Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ ))h 2 ǫ (x) dx + 2ǫλ ǫ Ω (Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ ))h ǫ (x)ū ǫ dx.
Let ǫ ≤ min{ǫ 1 , ǫ 2 }, by Lemma 5.2 any stationary solution ūǫ to (5.1)-(5.2) is bounded in L p (Ω) and for any positive solution u ǫ to (5.1)-(5.2) there exists t(u ǫ ) so that for all times t ≥ t,

c p ≤ u ǫ L p (Ω) < C p .
So for all times t ≥ t we have

|Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ )| ≤ 2 k 1 ∞ sup{C p , Cp } =: κ 1 ,
which implies that for t ≥ t

(5.35) dH 2, ūǫ [h ǫ ](t) dt ≤ -2 Ω ū2 ǫ (x) ∇ h ǫ (t, x) ūǫ (x) t A(x)∇ h ǫ ūǫ dx+ 2(Ψ 0 (ū ǫ )-Ψ 0 (u ǫ ))H 2, ūǫ [h ǫ ](t) + 2ǫκ 1 H 2, ūǫ [h ǫ ](t) + 2ǫλ ǫ Ω (Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ ))h ǫ (x)ū ǫ (x) dx.
By (5.27) (5.29), using the definition of Ψ ǫ we also have

d dt H 1, ūǫ [u ǫ ](t) = (Ψ 0 (ū ǫ ) -Ψ 0 (u ǫ ))H 1, ūǫ [u ǫ ](t) + ǫ Ω (Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ ))u ǫ (x)ū ǫ (x) dx. ≥ (Ψ 0 (ū ǫ ) -ǫκ 1 -Ψ 0 (u ǫ ))H 1, ūǫ [u ǫ ](t).
Since H 1, ūǫ [u ǫ ] > 0 for all t > 0, we have

d log(H 1, ūǫ [u ǫ ]) dt (t) ≥ (Ψ 0 (ū ǫ ) -ǫκ 1 -Ψ 0 (u ǫ )),
which combined with (5.35) implies that for t ≥ t

dH 2, ūǫ [h ǫ ](t) dt ≤ -2 Ω ū2 ǫ (x) ∇ h ǫ (t, x) ūǫ (x) t A(x)∇ h ǫ ūǫ dx+ d log H 1, ūǫ [u ǫ ] 2 dt (t) H 2, ūǫ [h ǫ ](t) + 4ǫκ 1 H 2, ūǫ [h ǫ ](t) + 2ǫλ ǫ (t) Ω Γ 1 (t, x)h ǫ (x)ū ǫ (x) dx.
where Γ 1 (t, x) := Ψ 1 (x, ūǫ ) -Ψ 1 (x, u ǫ ).

Since ǫ ≤ ǫ 1 , by Lemma 5.6, and by rearranging the terms in the above inequality we get for t ≥ t

(5.36) dH 2, ūǫ [h ǫ ](t) dt -H 2, ūǫ [h ǫ ](t) d log (H 1, ūǫ [u ǫ ]) 2 dt (t) ≤ (-ρ + 4ǫκ 1 )H 2, ūǫ [h ǫ ](t) + 2ǫλ ǫ (t) Ω Γ 1 (t, x)h ǫ (x)ū ǫ (x) dx.
Now, we estimate the last term of the above inequality.

Case p = 1. In this situation, by using the definition of Γ 1 and the Cauchy-Schwartz inequality we have

|Γ 1 (t, x)| ≤ |1 -λ ǫ | ūǫ 2 sup x∈Ω Ω k 1 (x, y) 2 dy + h ǫ 2 sup x∈Ω Ω k 1 (x, y) 2 dy. Since v 2 = H 2, ūǫ [v]
, by the Cauchy-Schwartz inequality we achieve for t ≥ bart

Ω Γ 1 (t, x)h ǫ (x)ū ǫ (x) ≤ κ H 2, ūǫ [ū ǫ ](t) H 2, ūǫ [h ǫ ](t) |1 -λ(t)| H 2, ūǫ [ū ǫ ] + H 2, ūǫ [h ǫ ](t) , ≤ κ C2 H 2, ūǫ [h ǫ ](t) |1 -λ(t)| C2 + H 2, ūǫ [h ǫ ](t) ,
where κ := sup x∈Ω Ω k 1 (x, y) 2 dy.

Case p = 2. In this situation, as above by using the definition of Γ 1 and the Cauchy-Schwartz inequality, we see that

|Γ 1 (t, x)| ≤ |1 -λ 2 ǫ | k 1 ∞ | ūǫ 2 2 + 2λ ǫ k 1 ∞ ūǫ 2 h ǫ 2 + k 1 ∞ h ǫ (t) 2 2 . So we get for t ≥ t Ω Γ 1 (x)h ǫ (x)ū ǫ (x) ≤ κ H 2, ūǫ [ū ǫ ](t) H 2, ūǫ [h ǫ ](t) |1 -λ 2 ǫ || ūǫ 2 2 + 2λ ǫ ūǫ 2 h ǫ 2 + h ǫ (t) 2 2 , ≤ κ C2 H 2, ūǫ [h ǫ ](t) |1 -λ 2 (t)| C2 2 + ( C 2 + Ĉ) H 2, ūǫ [h ǫ ](t) , where κ = k 1 ∞ .
In both case, we can see that there exists κ 2 and κ 3 independent of ǫ, ūǫ and u ǫ so that we have for t ≥ t.

(5.37)

Ω Γ 1 (x)h ǫ (x)ū ǫ (x) dx ≤ κ 2 H 2, ūǫ [h ǫ ](t) |1 -λ p (t)| + κ 3 H 2, ūǫ [h ǫ ](t) .
By combining (5.37) and (5.36), we achieve for t ≥ t

(5.38) dH 2, ūǫ [h ǫ ](t) dt -H 2, ūǫ [h ǫ ](t) d log (H 1, ūǫ [u ǫ ]) 2 dt (t) ≤ (-ρ + ǫκ 5 ) H 2, ūǫ [h ǫ ](t) + ǫκ 4 |1 -λ p (t)| H 2, ūǫ [h ǫ ](t),
where κ 4 := 2 Ĉκ 2 and κ 5 := 2 Ĉκ 2 κ 3 + 4κ 1 are positive constants independent of ǫ, u ǫ and ūǫ .

The proof now will follow several steps:

Step One: Since ǫ ≤ ǫ 1 by (5. Step Two: Recall that λ ǫ (t) satisfies Since p = 1 or p = 2 then by Lemma 5.2 and Hölder's inequality, we can see that there exists κ 7 independent of ǫ, ūǫ , u ǫ so that for all t ≥ t (5.45)

|R 1 (t) + R 2 (t)| ≤ κ 7 Ψ(ū ǫ )λ ǫ (t) ūǫ 2 L 2 (Ω) H 2, ūǫ [h ǫ ](t).
Next, we define some constant quantities: By the previous step, we see that for ǫ ≤ ǫ * we have for any positive solution u ǫ to (5.1)-(5.2) there exists t′ so that for all t ≥ t′ H 2, ūǫ [h ǫ ](t) ≤ ǫδ 0 .

We claim that Claim 5.9. For ǫ ≤ ǫ * , there exists t ǫδ0 ≥ t′ such that for all t ≥ t ǫδ0 H 2, ūǫ [h ǫ ](t) ≤ ǫδ 0 2 .

Proof:

First, we can check that for ǫ ≤ ǫ * there exists t * so that for all t ≥ t * |1λ p ǫ (t)| ≤ 2ǫδ 0 κ 7 . Let λ ±ǫδ 0 κ 7 ∈ C 1 (( t′ , ∞), R + ) be the solution of the ODE (1 ± ǫδ 0 κ 7λ p ±ǫδ 0 κ 7 (t)), λ ±ǫδ 0 κ 7 ( t′ ) = λ ǫ ( t′ ).

Since the above equation is of logistic type and λ ±ǫδ 0 κ 7 ( t′ ) > 0, λ ±ǫδ 0 κ 7 (t) → λ± as t → ∞ where λ± is the solution of the algebraic equation 1 ± ǫδ 0 κ 7 -λp ± = 0. By (5.42) and (5.45), we can check that λ ǫ satisfies for t ≥ t′

λ ′ ǫ (t) ≥ Ψ ǫ (ū ǫ )λ ǫ (t) ūǫ 2 L 2 (Ω)
(1ǫδ 0 κ 7λ p ǫ (t)), (5.49)

λ ′ ǫ (t) ≤ Ψ ǫ (ū ǫ )λ ǫ (t) ūǫ 2 L 2 (Ω)
(1 + ǫδ 0 κ 7λ p ǫ (t)). (5.50) By the comparison principle, from (5.48) (5.49) and (5.50) we get λ -ǫδ0κ7 (t) ≤ λ ǫ (t) ≤ λ +ǫδ0κ7 (t) for all t ≥ t′ . Thanks to the convergence of λ ±ǫδ0κ7 (t) to λ±ǫδ0κ7 and the monotone behaviour of λ±ǫδ0κ7 with respect to ǫ we get λ-2ǫδ0κ7 ≤ λ ǫ (t) ≤ λ+2ǫδ0κ7 for t ≥ t * , for some t * ≥ t′ . Therefore, for t ≥ t * we have |1λ p ǫ (t)| ≤ 2ǫδ 0 κ 7 . From the latter estimate, since ǫ ≤ ǫ 3 we deduce from (5.38) 
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 441 Lemma Let v be a continuous non negative solution of (4.3)-(4.4). Then either v ≡ 0 or v > 0 and there exists c1 and C1 independent of s so that c1 ≤ Ω |v| p (x) dx ≤ C1 .

  4.1) by means of the computation of the topological degree of Tid on a well chosen set O ⊂ C 0,α (Ω). Let us choose positive constants c 2 and C 2 so that c 2 < c1 and C 2 > C1 where c1 and C1 are the constants obtained in Lemma 4.1. Let Ω be the following open set

  and let us compute deg(T -Id, O, 0). By Lemma 4.1 for all s ∈ [0, 1] H(s, v)v = 0 on ∂O. Therefore using that H(., .) is an homotopy, since T is a compact operator, we conclude that deg(T -Id, O, 0) = deg(H(1, .) -Id, O, 0) = deg(H(0, .) -Id, O, 0). By construction, from Section 3, one can check that deg(H(0, .) -Id, O, 0) = 0 since the map T 0 has a unique positive non degenerated fixed point. Thus deg(T -Id, O, 0) = 0 which shows that T has a fixed point in O.

( 5 . 2 L 2 2 L 2 2 L 2 (

 5222222 42) λ ′ ǫ (t) = Ψ ǫ (ū ǫ )λ ǫ (t) ūǫ (Ω) (1λ p ǫ (t)) + R 1 (t) + R 2 (t)where R i are the following quantity:R 1 (t) := 1 ūǫ (Ω) Ω [Ψ ǫ (x, ūǫ ) -Ψ ǫ (x, u ǫ )]ū ǫ (x)h(t, x) dx (5.43) R 2 (t) := λ ǫ (t) ūǫ x, y)ū p-k ǫ (y)h k (t,y) dy ūǫ (x) 2 dx (5.44)

(ū ǫ )λ ±ǫδ 0 κ 7 ūǫ 2 L 2

 22 (Ω) 

  Remark 2.3. Under the extra assumption u ū ∈ L ∞ (Ω), we remark that the formulas will holds as well if we consider homogeneous Dirichlet boundary conditions instead of Neumann boundary conditions. It is worth noticing that this extra condition is always satisfied in the Neumann case since for all positive stationary solution with homogeneous Neumann Boundary condition, we can show that inf Ω ū > 0.

u(t, x)).

  Indeed for ǫ ≤ ǫ 3 by (5.38) for t ≥ t we have(5.39)dH 2, ūǫ [h ǫ ](t) dt -H 2, ūǫ [h ǫ ](t) d dt log (H 1, ūǫ [u ǫ ](t)) 2 ≤ -ρ 2 H 2, ūǫ [h ǫ ](t) + ǫκ 4 κ 6 H 2, ūǫ [h ǫ ](t).From the above differential inequality we can check that there exists t ′ 0 > t so thatH 2, ūǫ [h ǫ ](t 0 ) ≤ ǫ4κ 4 κ 6 ρ .If not, then H 2, ūǫ [h ǫ ](t) > ǫ4κ4κ6 ρ for all t > t and by dividing (5.39) by H 2, ūǫ [h ǫ ](t) and by rearranging the terms, we get the inequality (5.40) H 2, ūǫ [h Thus F (t) := log H 2, ūǫ [hǫ](t) H 1, ūǫ [uǫ](t) 2 is a decreasing function which is bounded from below since λ ǫ ≤ Ĉ. Moreover H 2, ūǫ [h ǫ ](t) > ǫ4κ4κ6 ρ for all t > t. Therefore F converges as t tends to +∞ and dF dt → 0. Thus for t large enough, we get the contradiction Let Σ be the set Σ := t > t ′ 0 | H 2, ūǫ [h ǫ ](t) > ǫ4κ4κ6 ρ . Assume that Σ is non empty otherwise the claim is proved since Ĉ ĉ > 1. Let us denote t * := inf Σ. By construction, since h ǫ is continuous we have H 2, ūǫ [h ǫ ](t * ) = ǫ4κ4κ6 ρ . Again, by dividing(5.39) by H 2, ūǫ [h ǫ ](t) and rearranging the terms, we get for all t ∈ Σ (5.41) H 2, ūǫ [h ǫ ](t) d dt log H 2, ūǫ [h ǫ ](t) H 1, ūǫ [u ǫ ](t) 2 ≤ -ρ 4 H 2, ūǫ [h ǫ ](t) + ǫκ 4 κ 6 ≤ 0. H 1, ūǫ [uǫ](t) 2 is a decreasing function of t for all t ∈ Σ. By arguing on each connected component of Σ and by using Lemma 5.2 we can check that for t ≥ t * we have H 2, ūǫ [h ǫ ](t) ≤ Ĉ ĉ ǫ4κ 4 κ 6 ρ .

		-	ǫκ 4 κ 6 2 ρ ≤ H 2, ūǫ [h ǫ ](t)	d dt	log	H 2, ūǫ [h ǫ ](t) H 1, ūǫ [u ǫ ](t) 2 ≤ -	ǫκ 4 κ 6 ρ .
	Thus log	H 2, ūǫ [hǫ](t)			
	Hence, since Ĉ				
			H 2, ūǫ [h ǫ ](t) ≤ 2ǫ	Ĉ ĉ	2κ 4 κ 6 ρ .
	Proof:					

[START_REF] Michel | General relative entropy inequality: an illustration on growth models[END_REF] 

we have |1λ p (t)| ≤ κ 6 for all t > t, with κ 6 a universal constant independent of ǫ. We claim that Claim 5.8. Let ǫ ≤ ǫ 3 := min(ǫ 1 , ǫ 2 := ρ 2κ5 ), then for all u ǫ positive solution to (5.1)-(5.2) there exists t′ ≥ t so that for all t ≥ t′ we have ǫ ](t)

d dt log H 2, ūǫ [h ǫ ](t) H 1, ūǫ [u ǫ ](t) 2 ≤ -ρ 2 H 2,

ūǫ [h ǫ ](t) + ǫκ 4 κ 6 < -ǫκ 4 κ 6 ∀t ≥ t. ĉ > 1 we get for all t ≥ t 0 , H 2, ūǫ [h ǫ ](t) ≤ Ĉ ĉ ǫ4κ 4 κ 6 ρ .

  that for t ≥ t * dH 2, ūǫ [h ǫ ](t) dt -H 2, ūǫ [h ǫ ](t) d dt log (H 1, ūǫ [u ǫ ](t)) 2 ≤ -ρ 2 H 2, ūǫ [h ǫ ](t) + 2ǫ 2 κ 4 κ 7 δ 0 H 2, ūǫ [h ǫ ](t). By following the argumentation of Step one, we can show that there exists t ǫδ0 ≥ t * such that for t ≥ t ǫδ0 we have H 2, ūǫ [h ǫ ](t) ≤ 8ǫ Ĉκ 4 κ 7 ĉρ ǫδ 0 , which thanks to ǫ ≤ Since for all t ≥ t ǫδ0 , H 2, ūǫ [h ǫ ](t) ≤ ǫδ 0 2 , by arguing as in the proof of Claim 5.9, we see that there exists t ǫ δ 0 By reproducing inductively the above argumentation, we can construct a sequence (t n ) n∈N so that for all t ≥ t n we have H 2, ūǫ [h ǫ ](t) ≤ ǫδ 0 2 n . Hence, when ǫ ≤ ǫ * we deduce that lim t→∞ H 2, ūǫ [h ǫ ](t) → 0.

	ρĉ 16κ4κ7	Ĉ leads to	
		H 2, ūǫ [h ǫ ](t) ≤	ǫδ 0 2	.
	Step Three: 2	so that for all t ≥ t ǫ δ 0 2
		H 2, ūǫ [h ǫ ](t) ≤	ǫδ 0 4	.
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APPENDIX A. EXISTENCE OF A POSITIVE SOLUTION

In this appendix, we present a construction of a smooth positive solution of (1.1) The construction is rather simple and follows some of the ideas used in [START_REF] Calsina | Asymptotics of steady states of a selection mutation equation for small mutation rate[END_REF]. First, let p ≥ 1 be fixed and let us regularised u 0 by a smooth mollifier ρ ǫ and consider the solution of (1.1)-(1.3) with initial condition u ǫ,0 := ρ ǫ ⋆ u 0 instead of u 0 . Now we introduce the following sequence of function (u n (x, t)) n∈N where u n is defined recursively by u 0 (x, t) = u 0 (x) and for n ≥ 0, u n+1 is the solution of

Since by assumption u ǫ,0 ∈ C ∞ (Ω), (u n ) n∈N is well defined from the standard parabolic theory see [START_REF] Brezis | Functional analysis, sobolev spaces and partial differential equations[END_REF][START_REF] Evans | Partial differential equations[END_REF]. Moreover since u ǫ,0 ≥ 0 and 0 is a sub-solution of the problem (A.1)-(A.3) for each n, by the parabolic strong maximum principle we deduce that u n (x, t) > 0 for all n, x and t > 0.

Now since u n and K are non-negative functions, for all n ≥ 0, u n+1 is a subsolution of the linear problem:

and by the parabolic maximum principle, we have u n ≤ v ≤ u ǫ 0 ∞ e r ∞t in R + × Ω for all n. Therefore from the standard Schauder parabolic a priori estimates, we deduce that (u n ) n∈N is uniformly bounded in C 1,α ((0, T ), C 2,β (Ω)) for each T > 0. Thus by diagonal extraction, there exists a subsequence (u n k ) k∈N which converges to a solution u(x, t) ≥ 0 of (1.1)-(1.3) with initial condition u ǫ,0 .

Let us now take the limit ǫ → 0. By multiplying (1.1) by φ 1 and integrate it over Ω we have

Since u ǫ , φ 1 and K(x, y) are positives in Ω it follows that

for some positive constant C 0 which depends only on φ 1 and K. Thanks to the logistic character of the above inequality, we deduce that u ǫ L 1 (Ω) is bounded uniformly in time independently of ǫ. By using Theorem 2.1 and Remark 2.2 with H(s) : s → s p and φ 1 , it follows that

As above since u ǫ , φ 1 and K(x, y) are positives in Ω it follows that

for some positive constants C 1 and C 2 which depends only on φ 1 and K. Thus u ǫ L p (Ω) is bounded uniformly with respect to ǫ. Since the coefficient of the parabolic PDE are bounded in L ∞ independently of ǫ, by standard parabolic L p estimates [START_REF] Wu | Elliptic and parabolic equations[END_REF], it follows that for all T > 0, u ǫ is bounded independently of ǫ in W 1,2,1 ((0, T ) × Ω) ∩ W 1,1,1 0 (0, T ) × Ω), where for p ≥ 1 W 1,2,p and W 1,1,p 0 denote the Sobolev space

By a standard bootstrap argument using the Parabolic regularity, we see that for each T > 0, (u ǫ ) is bounded in C 1,α ((0, T ), C 2,β (Ω)) independently of ǫ. Thus by diagonal extraction, there exists a subsequence (u ǫn k ) k∈N which converges to a smooth solution u(x, t) ≥ 0 of (1.1)-(1.3) with initial condition u 0 .