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CONVERGENCE TO EQUILIBRIUM FOR POSITIVE SOLUTIONS OF SOME

MUTATION-SELECTION MODEL

JEROME COVILLE

ABSTRACT. In this paper we are interested in the long time behaviour of the positive solutions of
the mutation selection model with Neumann Boundary condition:

∂u(x, t)

dt
= u

[

r(x)−

∫

Ω

K(x, y)|u|p(y) dy

]

+∇ · (A(x)∇u(x)) , in R
+ × Ω

where Ω ⊂ R
N is a bounded smooth domain, k(., .) ∈ C(Ω̄×C(Ω̄),R), p ≥ 1 and A(x) is a smooth

elliptic matrix.
In a blind competition situation, i.e K(x, y) = k(y), we show the existence of a unique positive

steady state which is positively globally stable. That is, the positive steady state attracts all the
possible trajectories initiated from any non negative initial datum. When K is a general positive
kernel, we also present a necessary and sufficient condition for the existence of a positive steady
states. We prove also some stability result on the dynamic of the equation when the competition
kernel K is of the form K(x, y) = k0(y) + ǫk1(x, y). That is, we prove that for sufficiently small ǫ
there exists a unique steady state, which in addition is positively asymptotically stable. The proofs
of the global stability of the steady state essentially rely on non-linear relative entropy identities and
an orthogonal decomposition. These identities combined with the decomposition provide us some a
priori estimates and differential inequalities essential to characterise the asymptotic behaviour of the
solutions.

1. INTRODUCTION AND MAIN RESULTS

In this paper we are interested in the long time behaviour of the positive solutions of the
nonlocal equation

∂u(t, x)

∂t
= u(t, x)

[
r(x) −

∫

Ω

K(x, y)|u(t, y)|p dy

]
+∇ · (A(x)∇u(t, x)) in R

+ × Ω(1.1)

∂u(t, x)

∂n
= 0, in R

+ × ∂Ω(1.2)

u(0, x) = u0(x)(1.3)

where Ω ⊂ R
N is a bounded smooth domain, r(x) ∈ C0,1(Ω̄) is positive, p ≥ 1, K(., .) ∈ C0,1(Ω̄×

Ω̄) and A(x) ∈ Mn×n(R) is a uniform smooth (C1,α) elliptic matrix.
Such type of nonlocal model has been introduced to capture the evolution of a population

structured by a phenotypical trait [9, 10, 22, 32]. In this context u(x, t) represents the density of
a population at the phenotypical trait x at time t, which is submitted to two essential interac-
tions: mutation and selection. Here, the mutation process, which acts as a diffusion operator
on the traits space, is modelled by a classical diffusion operator whereas the selection process is
modelled by the nonlocal term u(t, x)

∫
Ω
K(x, y)|u(t, y)|p dy. In the literature, the selection op-

erator takes often the form u(t, x)
∫
ΩK(x, y)|u(t, y)| dy [5, 9, 32]. A rigorous derivation of these

equations from stochastic processes can be found in [17, 26].
To our knowledge, a large part of the analysis of the long time behaviour of solutions of (2.1)

concerns either situations where no mutation occurs [4, 5, 9, 11, 12, 15, 20, 21, 28] or in the context
of "adaptive dynamics", i.e. the evolution of the population is driven by small mutations, [9, 10,
14, 15, 16, 29] and references therein.
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In the latter case, the matrix A(x) := ǫA0(x) and some asymptotic regimes are studied when
ǫ→ 0. In this situation, an extensive work have been done in developing a constrained Hamilton-
Jacobi approach in order to analyse the long time behaviour of positive solutions of this type of
models see for instance [4, 5, 15, 16, 21].

Analysis of variants of (1.1) involving a nonlocal mutation process of the form
ǫ
∫
Ω µ(x, y)(u(t, y) − u(t, x)) dy instead of an elliptic diffusion can be found [11, 12, 13, 34, 35].

For these variants, approaches based on semi-group theory have been developed to analyse the
asymptotic behaviour and local stability of the positive stationary solution of (1.1) when ǫ → 0,
see [11, 12, 13].

In all those works, the small mutation assumptions appears to be a key feature in the analysis.
Our goal here is to analyse the long time behaviour of the solution to (1.1) – (1.3) in situations
where no restriction on the mutation operator are imposed. In particular, we want to under-
stand situations where the rate of mutations is not small compared to selection. This appears
for example in some virus population where the rate of mutation per reproduction cycle is high
[19, 24, 36, 38].

In what follows, we will always make the following assumptions on r, K

(1.4)





A ∈ Mn×n(R) is a smooth uniform elliptic matrix,

r ∈ C0,1(Ω) is positive,

Ω is a bounded Lipschitz domain in R
N .

K ∈ C0,1(Ω̄× Ω̄),K > 0,

Under the above assumptions the existence of a positive solution to the Cauchy problem (1.1)–
(1.3) is guarantee. Namely, we can easily prove

Theorem 1.1. Assume A, r,K satisfy (1.4) and p ≥ 1 then for all u0 ∈ Lp(Ω) there exists a positive
smooth solution u to (1.1) – (1.3) so that u ∈ C([0,+∞), Lp(Ω)) ∩ C1((0,+∞), C2,α(Ω)).

The main problematic then remains to characterise the long time behaviour of these solutions.
In this direction our first result concerns the situations of blind competition, that is when the
kernel K(x, y) is independent of x. In this context the equations (1.1) – (1.3) rewrite

∂u

∂t
(t, x) = u(t, x)

(
r(x) −

∫

Ω

k(y)|u(t, y)|p dy

)
+∇ · (A(x)∇u(t, x)) in R

+ × Ω(1.5)

∂u

∂n
(t, x) = 0 in R

+ × ∂Ω(1.6)

u(x, 0) = u0(x) in Ω.(1.7)

In this situation, we have

Theorem 1.2. Assume A, r, k satisfy (1.4) and p ≥ 1.Let λ1 be the first eigenvalue of the operator ∇ ·
(A(x)∇)+ r(x) with Neumann boundary condition and let φ1 be a positive eigenfunction associated with
λ1, that is φ1 satisfies

∇ · (A(x)∇φ1) + r(x)φ1 = −λ1φ1 in Ω,(1.8)

∂φ1

∂n
(x) = 0 on ∂Ω.(1.9)

Then we have the following asymptotic behaviour for any positive smooth ( at least C2) solution u(t, x) to
(1.5) – (1.6)

• if λ1 ≥ 0, there is no positive stationary solution and u(t, x) → 0 as t→ ∞
• if λ1 < 0, then

u(t, x) → µφ1

where µ =
(

−λ1∫
Ω
k(y)|φ1|p(y) dy

) 1
p

and φ1 has been normalized by ‖φ1‖L2(Ω) = 1.
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Next we establish an optimal existence criteria for the positive stationary solution to (1.1)-(1.2).
Namely, we prove

Theorem 1.3. Assume A, r,K satisfy (1.4) and p ≥ 1. Then there exists at least a positive smooth
solution ū of (1.1) – (1.3) if and only if λ1 < 0, where λ1 is defined in Theorem 1.2.

Finally, we prove that the dynamic observed for blind selection kernel K(x, y) = k(y) still
holds for some perturbation of k. More precisely, let us consider a kernel kǫ(x, y) = k0(y) +
ǫk1(x, y) with ki satisfying the assumption (1.4), then we have the following

Theorem 1.4. Assume A, r,K satisfy (1.4) and p = 1 or p = 2. Assume further that K = kǫ and let
u(t, x) be a positive smooth solution to (1.1)–(1.2) with K = kǫ. Then we have the following asymptotic
behaviour:

• if λ1 ≥ 0, there is no positive stationary solution and u(t, x) → 0 as t→ ∞ uniformly.
• if λ1 < 0, then there exists ǫ∗ so that for all ǫ ≤ ǫ∗ there exists a unique positive globally attractive

equilibrium ūǫ to (1.1)-(1.2) i.e. for all u0 ≥ 6≡ 0, then we have for all x ∈ Ω,

lim
t→∞

u(t, x) → ūǫ(x).

1.1. Comments. Before going to the proofs of these results, we would like to make some com-
ments. First, it comes directly from the proofs that the Theorems 1.2 and 1.3 can be generalised
to more general selection process. In particular, Theorem 1.2 holds true if instead of consid-
ering a selection of the form u

∫
Ω
k(y)|u(t, y)|p dy, we consider a selection of the form uR(u)

with R : dom(R) → R
+ a positive functional satisfying: ∃p, q ≥ 1 and cp, αp, Rp, Cq, αq, Rq

positive constants such that ,

R(u) > cp‖u‖
pαp

Lp(Ω) when ‖u‖Lp(Ω) ≥ Rp,

R(u) < Cq‖u‖
qαq

Lq(Ω) when ‖u‖Lq(Ω) ≤ Rq.

A simple example of such R is the functional R(u) := ‖u‖p
Lp(Ω)‖u‖

q

Lq(Ω).

Similarly, the optimal existence criteria Theorem 1.3 will hold as well for a selection process
uR(x, u) such that

R1(·) ≤ R(x, ·) ≤ R2(·),

where the Ri satisfy the above assumptions.
We also wanted to stress that the regularity on the coefficient is far from optimal and extension

of our results for rougher coefficients r, k, A should hold true. In order to keep our analysis of
the asymptotic behaviour as simple as possible, we deliberately impose some regularity on the
considered coefficients. We believe that theses assumptions highlight the important point of the
method we used without altering the pertinence of the results obtained.

We also want to emphasize that these results are strongly related to the eigenvalue problem
obtained by linearising the equation (1.5) around the steady state 0 which is a common feature
for classical reaction diffusion

∂u

∂t
= ∆u+ f(x, u),

where f is a KPP type. However, the extension of Theorems 1.2, 1.3 to unbounded domains Ω
is far from obvious considering the multiplicity of notion of generalised eigenvalue [7]. More-
over, in these situation the strict positivity of the kernel k seems to introduce a strong dichotomy
for the properties of the stationary solutions and consequently the dynamics observed for evolu-
tion problem. Indeed, in this direction some progress have recently been made for the so called
nonlocal Fisher-KPP equation :

(1.10)
∂u

∂t
= ∆u+ u(1− φ ⋆ u),

where φ is a non-negative kernel. When φ is a positive integrable function, the constant 1 is
a positive solution. Moreover, for φ ∈ L1 ∩ C1 positive so that x2φ ∈ L1, it is shown in [6] that
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travelling semi-front exists for all speed c ≥ c∗, i.e there exists (U, c), so that U > 0 and U satisfies

Uxx + cUx + U(1− φ ⋆ U) = 0,

lim
x→+∞

U = 0, lim inf
x→−∞

U > 0.

In particular when c is large or φ is sufficiently concentrated or has a positive Fourier transform,
we have lim infx→−∞ U = lim supx→−∞ U = 1, see [1, 6, 25, 31]. On the contrary, from our
analysis the positive solution of

(1.11)
∂u

∂t
= ∆u+ u

(
1−

∫

Rn

u(t, y) dy

)
,

converges uniformly to 0, which is actually the only non-negative stationary solution.
We mention also a recent related study [2] on a spatial demo-genetic model

(1.12)
∂u

∂t
(t, x, y) = ∆u(t, x, y) + u

(
r(x −By)−

∫

R

u(t, x, y′) dy′
)
,

which can be viewed as an extension of (1.1) where a spatial local adaptation is taken into account.
The interplay between the space variable x and the phenotypical trait variable y corresponding
to local adaptation is modelled through the growth term r(x−By) which is a function taking its
maximum at 0. Generalisation of (1.12) have been studied in [3, 33]

The extension of Theorems 1.2, 1.3 and 1.4 for mutation-selection equations involving a muta-
tion kernel such as

∂u

∂t
= u

(
r(x) −

∫

Ω

kǫ(y)|u|
p(t, y) dy

)
+

∫

Ω

M(x, y)[u(t, y)− u(t, x)] dy in R
+ × Ω(1.13)

is still a work in progress. However, although the technique and tools developed in this article
are quite robust and can be applied in many situation, the lack of regularity of the positive solu-
tions to (1.13) introduces some strong difficulty that cannot be easily overcome. Moreover, it has
been proved by the author that such nonlocal problem can generates blow up phenomena, i.e.
u(x, t)⇀ δx0

+ g with δx0
the Dirac mass and g a singular L1 function. This blow up phenomena

is in accordance with a recent result showing that in some situation the only stationary solution
to (1.13) are positive measure having a non-zero singular part [18]. The understanding of the long
time behaviour of the positive solution to (1.13) require then the development of new analytical
tools in order to analyse these blow-up phenomena.

This paper is organised as follows. The Section 2 is dedicated to the nonlinear relative en-
tropies and some functional inequalities that we will frequently use along this article. Next, we
prove in Section 3 the Theorem 1.2. Finally in Section 4 and 5 we prove the existence of positive
steady states (Theorem 1.3) and the global stability (Theorem 1.4). A construction of a smooth
positive solution to the Cauchy problem is made in the appendix.

2. NON-LINEAR RELATIVE ENTROPY IDENTITIES AND RELATED FUNCTIONAL INEQUALITY

In this section we first establish a general identity which can be assimilated to a nonlinear
relative entropy principle. We consider a parabolic equation of the form

∂u

∂t
(t, x) = u(t, x)(r(x) −Ψ(x, u)(t)) +∇ · (A(x)∇u(t, x)) in R

+ × Ω,(2.1)

∂u

∂n
(t, x) = 0, in R

+ × ∂Ω(2.2)

where Ψ(x, u)(t) denotes Ψ(x, u)(t) :=
∫
ΩK(x, y)|u|p(t, y) dy. Then for any solution of (2.1)–(2.2)

we have

Theorem 2.1 (General Identity). Let H be a smooth (at least C2) function. Let ū > 0 and u be two
smooth solutions of (2.1)–(2.2). Assume further that ū is a stationary solution of (2.1)–(2.2). Then we
have
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(2.3)
dH

H,ū
[u](t)

dt
= −D(u) +

∫

Ω

ū(x)H ′
(u
ū
(t, x)

)
Γ(t, x)u(t, x) dx

where H
H,ū

[u](t), D are the following quantity:

Γ(t, x) := Ψ(x, ū)−Ψ(x, u)

H
H,ū

[u](t) :=

∫

Ω

ū2(x)H

(
u(x)

ū(x)

)
dx

D(u) :=

∫

Ω

ū2(x)H ′′

(
u(x)

ū(x)

)(
∇
(u
ū

))t
A(x)∇

(u
ū

)
dx

where (~a)t denotes the transpose of a vector of RN .

Proof:

By (2.1), by defining Γ(t, x) := Ψ(x, ū(x)) −Ψ(x, u(t, x)) we have

(2.4)
∂u

∂t
= (r(x) −Ψ(x, ū)u+∇ · (A(x)∇u)) + Γ(t, x)u(x)

Using that ū is also a stationary solution, we have for all x

(r(x) −Ψ(x, ū))ū = −∇ · (A(x)∇ū),

and we can rewrite the above equation as follows

∂u(x)

∂t
= ∇ · (A(x)∇u) −

u

ū
∇ · (A(x)∇ū) + Γ(t, x)u(x)

By multiplying the above equality by ū(x)H ′
(
u(x)
ū(x)

)
and by integrating over Ω we achieve

(2.5)

∫

Ω

ū(x)H ′

(
u(x)

ū(x)

)
∂u(x)

∂t
dx =

∫

Ω

ū(x)H ′

(
u(x)

ū(x)

)
Γ(t, x)u(x) dx

+

∫

Ω

H ′

(
u(x)

ū(x)

)
[ū(x)∇ · (A(x)∇u) − u(x)∇ · (A(x)∇ū(x))] dx.

By integrating by part the last term and rearranging the terms, it follows that

(2.6)

∫

Ω

ū(x)H ′

(
u(x)

ū(x)

)
∂u(x)

∂t
dx =

∫

Ω

ū(x)H ′

(
u(x)

ū(x)

)
Γ(t, x)u(x) dx

−

∫

Ω

ū2(x)H ′′

(
u(x)

ū(x)

)(
∇
(u
ū

))t
A(x)∇

(u
ū

)
dx.

Hence, we have

dH
H,ū

[u](t)

dt
=

∫

Ω

ū(x)H ′

(
u(x)

ū(x)

)
Γ(t, x)u(x) dx −D(u).

�

Remark 2.2. We want to stress that if we replace ū by any positive function ũ satisfying

∇ · (A(x)∇ũ(x)) = −ũ(x)
(
r(x) − Ψ̃(x, ũ)(t)

)
in Ω,

∂ũ

∂n
(x) = 0, in ∂Ω

it will affect the equality in Theorem 2.1 only through the term Γ which will be transform into

Γ(t, x) = Ψ̃(x, ũ(x)) −Ψ(x, u(t, x)).
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Remark 2.3. Under the extra assumption u
ū
∈ L∞(Ω), we remark that the formulas will holds as

well if we consider homogeneous Dirichlet boundary conditions instead of Neumann boundary
conditions. It is worth noticing that this extra condition is always satisfied in the Neumann case
since for all positive stationary solution with homogeneous Neumann Boundary condition, we
can show that infΩ̄ ū > 0.

Remark 2.4. We remark that the above formula do not require any particular assumption on the
Ψ and as a consequence no particular assumption on the kernel K . Thus the formula holds as
well for K(x, y) = δ0, which turns the equation (2.1) into a semi-linear PDE. In particular when
Ψ(x, u) is independent of u i.ep = 0,K = δ0 then the formula in Theorem 2.1 is known as the
standard relative entropy principle for linear equations see [30].

Next we establish a useful functional inequality satisfied by vectors h ∈ v̄⊥ where v̄⊥ denotes
the linear subspace of H1(Ω):

v̄⊥ :=

{
h ∈ H1(Ω)

∣∣∣∣
∫

Ω

hv̄ = 0, v̄∇h · n− h∇v̄ · n = 0 on ∂Ω

}

Lemma 2.5. Let v̄ be a smooth (C1,α(Ω)) positive bounded function in Ω, so that infΩ̄ v̄ > 0. Then there
exists ρ1 > 0 so that for all h ∈ v̄⊥

ρ1‖h‖
2
L2(Ω) ≤

∫

Ω

v̄2
(
∇

(
h

v̄

))t
A(x)∇

(
h

v̄

)
.

Moreover ρ1 = λ2 where λ2 is the second eigenvalue of the linear eigenvalue problem

∇ ·

(
A(x)v̄2∇

(
h

v̄

))
= −λhv̄ in Ω

v̄
∂h

∂n
− h

∂v̄

∂n
= 0 in ∂Ω

Proof :

Let I be the following functional in H1(Ω),

(2.7) I(h) :=
1

‖h‖22

∫

Ω

v̄2
(
∇

(
h

v̄

))t
A(x)∇

(
h

v̄

)
.

Observe that from the homogeneity of the L2 norm we have

(2.8) inf
h∈v̄⊥,‖h‖2=1

I(h) = inf
h∈v̄⊥

I(h),

and the first part of the Lemma is proved if we show that

(2.9) inf
h∈v̄⊥,‖h‖2=1

I(h) > 0,

Let dµ denotes the positive measure v̄2dx, then by construction dµ is absolutely continuous
with respect to the Lebesgue measure and vice versa. So the Hilbert functional spaces L2

dµ and

H1
dµ below are well defined :

L2
dµ(Ω) :=

{
u

∣∣∣∣
∫

Ω

u2(x)dµ(x) < +∞

}
,

H1
dµ(Ω) :=

{
u ∈ L2

dµ(Ω)

∣∣∣∣
∫

Ω

|∇u|2(x)dµ(x) < +∞

}
.

Moreover the Rellich-Kondrakov compact embedding H1
dµ(Ω) →֒ L2

dµ(Ω) holds [27]. To obtain

(2.9), we argue as follows. Let (hn)n∈N be a minimising sequence, by (2.9) we can take (hn)n∈N so

that hn ∈ v̄⊥, ‖hn‖2 = 1 for all n. Let gn := hn

v̄
, then by straightforward computation, from (2.7)

– (2.9), we see that (gn)n∈N is a minimising sequence of the functional

J (g) :=
1

‖g‖L2
µ(Ω)

∫

Ω

(∇(g))tA(x)∇(g) dµ,
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satisfying for all n, ‖gn‖L2
µ(Ω) = ‖hn‖2 = 1. Moreover, we have for all n, ∂gn

∂n
= 0 on ∂Ω and

(2.10)

∫

Ω

gn(x) dµ(x) =

∫

Ω

hn(x)v̄(x) dx = 0.

We can also easily verify that

inf
h∈v̄⊥,‖h‖2=1

I(h) = inf
g∈H1

dµ
,
∫
Ω
g dµ=0

J (g).

By construction the sequence (gn)n∈N is uniformly bounded in H1
dµ(Ω) and thanks to Rellich-

Kondrakov compact embedding, there exists a subsequence (gnk
)k∈N which converges weakly

in H1
dµ(Ω) and strongly in L2

dµ(Ω) to some g̃ ∈ H1
dµ(Ω). Moreover, g̃ is a weak solution of

∇ ·
(
A(x)v̄2∇ (g̃)

)
= −λg̃v̄2 in Ω,(2.11)

∂g̃

∂n
= 0(2.12)

for some λ ∈ R. Furthermore g̃ satisfies

(2.13)

∫

Ω

g̃(x) dµ(x) = 0.

Now assume that λ = 0, then the above equations (2.11)–(2.13) enforce g̃ = 0 leading to the
contradiction 0 = ‖g̃‖L2

µ(Ω) = 1. Therefore λ 6= 0 and (2.9) holds.

Now, since A(x) and v̄ are smooth and µ is absolutely continuous with respect to the Lebesgue

measure, by standard elliptic regularity we have g̃ ∈ C2,α(Ω) for some α and the function h̃ :=
v̄g̃ ∈ C2 satisfies

∇ ·

(
A(x)v̄2∇

(
h̃

v̄

))
= −λh̃v̄ in Ω,

∫

Ω

h̃v̄ dx = 0,

v̄
∂h

∂n
− h

∂v̄

∂n
= 0 in ∂Ω.

Now by dividing (2.11) by v̄2 we get the following eigenvalue problem

1

v̄2
∇ ·
(
A(x)v̄2∇g

)
= −λg in Ω,

∂g

∂n
= 0 in ∂Ω,

From standard Theory [27] there exists a sequence λ1 < λ2 < λ3 < . . . of eigenvalue of the
above problem. Moreover there exists an orthonormal basis {ψk}

∞
k=1 of L2, so that ψk satisfies

1

v̄2
∇ ·
(
A(x)v̄2∇ψk

)
= −λkψk in Ω,

∂ψk

∂n
= 0 in ∂Ω.

By setting φk := ψk

v̄
, we can check that

∇ ·

(
A(x)v̄2∇

(
φk

v̄

))
= −λkφk v̄ in Ω,(2.14)

v̄
∂φk

∂n
− φk

∂v̄

∂n
= 0 in ∂Ω.(2.15)

Here since (0, v̄) is a solution to (2.14)–(2.15) and v̄ > 0, we see that φ1 = v̄ and λ1 = 0. So

inf
h∈v̄⊥,‖h‖2=1

I(h) = λ2,

since the λi are ordered and φ2 ∈ v̄⊥.
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�

3. THE BLIND COMPETITION CASE:

In this section we analyse the asymptotic behaviour of a positive smooth solution to (1.1)–(1.3)
when the competition kernel K(x, y) is independent of x, i.e K(x, y) = k(y) with k satisfying
(1.4). As we expressed in Theorem 1.2 that we recall below, in this situation the problem (1.5)–
(1.6) has a unique positive stationary solution which attracts all the trajectories initiated from any
nonnegative and non zero initial data. More precisely, we prove

Theorem 3.1. Assume A, r, k satisfy (1.4) and p ≥ 1.Let λ1 be the first eigenvalue of the problem

∇ · (A(x)∇φ(x)) + r(x)φ(x) = −λφ(x) in Ω,(3.1)

∂φ(x)

∂n
= 0 on ∂Ω,(3.2)

then we have the following asymptotic behaviour for any positive smooth solution u(t, x) to (1.5)–(1.6)

• if λ1 ≥ 0, there is no positive stationary solution and u(t, x) → 0 as t→ ∞
• if λ1 < 0, then

u(t, x) → µφ1

where µ =
(

−λ1∫
Ω
k(y)|φ1(y)|p dy

) 1
p

and φ1 is the positive eigenfunction associated to λ1 normalized

by ‖φ1‖L2(Ω) = 1.

In the sequel of this section to simplify the presentation we introduce the notation

Ψ(u) :=

∫

Ω

k(z)|u(y)|p dy.

Before proving the Theorem, we start by establishing some useful Lemmas.

Lemma 3.2. Assume λ1 < 0, then there exists µ > 0 so that µφ1 is a positive stationary solution of (1.5).

Proof:

Let us normalised φ1 by ‖φ1‖L2(Ω) = 1. Then, by plugging µφ1 in (1.5), we end up finding µ
so that

Ψ(µφ1) = −λ1.

Thus for µ =
(

−λ1∫
Ω
k(y)|φ1(y)|p dy

) 1
p

, µφ1 is a stationary solution of (1.5).

� .
Next, we establish some useful identities. Namely, we show

Lemma 3.3. Let q ≥ 1 and H be the smooth convex function H(s) : s 7→ sq . Let ū be a positive
stationary solution of (1.5)-(1.6), then a positive smooth solution u(t, x) of (1.5)–(??) satisfies
(3.3)
dH

q,ū
[u](t)

dt
= −q(q−1)

∫

Ω

(
u(t, x)

ū(x)

)q−2

ū2
(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx+q(Ψ(ū)−Ψ(u))H

q,ū
[u](t).

where H
q,ū

[u](t) :=
∫
Ω
ū2(x)

(
u(t,x)
ū(x)

)q
dx. Furthermore, the functional F(u) := log

(
Hq,ū [u](t)

(H1,ū
[u](t))q

)

satisfies:

(3.4)
d

dt
F(u) = −

q(q − 1)

H
q,ū

[u](t)

∫

Ω

(
u(t, x)

ū(x)

)q
ū2
(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx.

Remark 3.4. Note that in the particular case of H(s) = s2, H
2,ū

[u] = ‖u‖22. So we get a Lyapunov

functional involving the L2 norm of u instead of a weighted Lq norm of u. Indeed, we have

∂

∂t

(
log

(
‖u‖22(

H
1,ū

[u]
)2

))
= −

2

‖u‖22

∫

Ω

ū2
(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx.
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Proof:

The identity (3.3) is a straightforward consequence of Lemma 2.1. Indeed, for H(s) := sq , by
the Theorem 2.1 we have:

dH
q,ū

[u](t)

dt
= −D(u) +

∫

Ω

ū(x)H ′

(
u(t, x)

ū(x)

)
Γ(x)u(x) dx

where Γ, D are the following quantity:

Γ(u(t)) := Ψ(ū)−Ψ(u)

D(u) :=

∫

Ω

H ′′

(
u(t, x)

ū(x)

)
ū2(x)

(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx

By observing that ū(x)u(x)H ′
(
u(t,x)
ū(x)

)
= qH

q,ū
[u](t) and that Γ is independent of x, we see that

dH
q,ū

[u](t)

dt
= −D(u) + qΓH

q,ū
[u](t),

and the formula (3.3) holds.
To obtain (3.4), we observe that by taking q = 1 in the formula (3.3) we get

dH
1,ū

[u](t)

dt
= ΓH

1,ū
[u](t).

Since H
1,ū

[u](t) =
∫
Ω
u(t, x)ū(x) dx > 0 for all times we see that

(3.5)
d

dt
log(H

1,ū
[u](t)) = (Ψ(ū)−Ψ(u)).

Similarly, since H
q,ū

[u](t) > 0 for all times we have also

(3.6)

d

dt
log(H

q,ū
[u](t)) = −

q(q − 1)

H
q,ū

[u](t)

∫

Ω

(
u(t, x)

ū(x)

)q−2

ū2(x)

(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx

+ q(Ψ(ū)−Ψ(u)).

By combining (3.5) and (3.6) we end up with

d

dt

(
log

(
H

q,ū
[u](t)

(
H

1,ū
[u](t)

)q

))
= −

q(q − 1)

H
q,ū

[u](t)

∫

Ω

(
u(t, x)

ū(t, x)

)q−2

ū2(x)

(
∇

(
u(t, x)

ū(x)

))t
A(x)∇

(
u(t, x)

ū(x)

)
dx.

�

As a straightforward application of this Lemma, we deduce the following a priori estimates on
the solution of (1.5)–(1.7). Namely, we have

Lemma 3.5. Let u(t, x) ∈ C1((0,+∞), C2,α(Ω)) be a positive solution of (1.5)-(1.6) then for all q ≥ 1
there exists a positive constant cq(q, u(x, 1)) < Cq(q, u(x, 1)) so that for all t ≥ 1

cq ≤ ‖u‖Lq(Ω) ≤ Cq.

Proof:

Let us first show that for all q ≥ 1 then there exists Cq(q, u(x, 1)) so that for all t ≥ 1

(3.7) ‖u‖Lq(Ω) ≤ Cq.

First, let us obtain an upper bound for u when q = 1. By Lemma 3.3, we have

dH
1,µφ1

[u](t)

dt
= (Ψ(µφ1)−Ψ(u))H

1,µφ1
[u](t),

where µφ1 is the stationary solution constructed in Lemma 3.2. By using the definition of Ψ and
H

1,µφ1
[u](t), and Hölder’s inequality , we have for some c0 > 0

dH
1,φ1

[u](t)

dt
≤

[
λ1 − c0

(∫

Ω

|u(t, y)| dy

)p]
H

1,φ1
[u](t).
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Since ‖u‖L1(Ω) ∼ H
1,φ1

[u](t), we get for some c̃0

dH
1,φ1

[u](t)

dt
≤
[
λ1 − c̃0

(
H

1,φ1
[u](t)

)p]
H

1,φ1
[u](t).

So H
1,φ1

[u](t) satisfies a logistic differential inequation, therefore there exists C1(u(x, 1)) > 0 so
that for all t ≥ 1,

(3.8) H
1,φ1

[u](t) ≤ C1.

Now we can get an upper bounded for u for all q ≥ 1. Indeed, let us assume that q > 1 then
by a straightforward application of the Lemma 3.3 we have for all q > 1 and for all t ≥ 1,

H
q,µφ1

[u](t) ≤
(
H

1,µφ1
[u](t)

)q
(

H
q,µφ1

[u](1)
(
H

1,µφ1
[u](1)

)q

)
.

By using the homogeneity of the norm H
q,µφ1

[u] and (3.8) we see that for all q > 1 and for all
t ≥ 1,

H
q,φ1

[u](t) ≤
(
H

1,φ1
[u](t)

)q
(

H
q,φ1

[u](1)
(
H

1,φ1
[u](1)

)q

)
≤ C

q
1

(
H

q,φ1
[u](1)

(
H

1,φ1
[u](1)

)q

)
.

Since for q ≥ 1 ‖u‖Lq(Ω) ∼ H
q,φ1

[u], (3.7) holds.
To prove the lower bound for u, by Hölder’s inequality, it is enough to have a lower bound for

‖u‖L1(Ω). Recall that H
1,µφ1

[u](t) satisfies

dH
1,µφ1

[u](t)

dt
=

(
Ψ(µφ1)−

∫

Ω

k(y)|u(t, y)|p dy

)
H

1,µφ1
[u](t).

Since (3.7) holds for all q ≥ 1, by interpolation there exits positive constants C,α so that for all
t > 1 ‖u‖Lp(Ω) ≤ C‖u‖α

L1(Ω). Therefore H
1,µφ1

[u](t) satisfies for all t > 1

dH
1,µφ1

[u](t)

dt
≥
(
Ψ(µφ1)− Cp|k|∞H

1,µφ1
[u]αp

)
H

1,µφ1
[u](t).

By using the logistic character of the above differential inequation, we deduce that H
1,µφ1

[u](t) ≥

c1(u(x, 1)) for all t > 1.
�

We are now in position to prove the Theorem 1.2.

Proof of Theorem 1.2:

Let u(t, x) ∈ C1((0,+∞), C2,α(Ω)) be a positive solution of (1.5)–(1.6). Assume first that λ1 <
0. Since u > 0 then u is a sub-solution of

∂v(t, x)

∂t
= ∇ · (A(x)∇v(t, x)) + r(x)v(t, x) in R

+ × Ω(3.9)

∂v(t, x)

∂n
= 0 in R

+ × ∂Ω(3.10)

v(x, 0) = u(1, x) in Ω.(3.11)

Since λ1 > 0 and u(1, x) ∈ L∞, for a large constant Ceλ1tφ1(x) is then a super-solution of (3.9)–
(3.11) and by the parabolic maximum principle we have

u(x, t) ≤ Ceλ1tφ1(x) → 0 as t→ ∞.

Now let us assume that λ1 = 0. In this situation, by Lemma 3.3 and using Remark (2.2), we
observe that for all q ≥ 1 we have,

dH
q,φ1

[u](t)

dt
= −q(q−1)

∫

Ω

(
u(t, x)

φ1(x)

)q−2

φ21

(
∇

(
u(t, x)

φ1(x)

))t
A(x)∇

(
u(t, x)

φ1(x)

)
dx−qΨ(u))H

q,φ1
[u](t).

Therefore, since Ψ(u) is non-negative, we get ‖∇u‖2 → 0 and for all q ≥ 1 ‖u‖Lq(Ω) → 0 as
t → +∞. Since the coefficients of the parabolic equation are uniformly bounded, by a bootstrap
argument using the Parabolic regularity, we get ‖u‖∞ → 0 as t→ ∞.
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Lastly, we assume λ1 < 0 and let us denote <,> the standard scalar product of L2(Ω). Let ū be
the stationary solution of (1.5)– (1.6) constructed in Lemma 3.2 , i.e ū := µφ1. Since for all t > 0,
the solution u(t, x) ∈ L∞, then we can decompose u the following way:

u(t, x) := λ(t)ū(x) + h(t, x)

with h so that < φ1, h >= 0.
Substituting u by this decomposition in (1.5) and using the equation satisfied by ū it follows

that

λ′(t)ū(x) +
∂h(t, x)

∂t
= (λ1 −Ψ(u(t)))λ(t)ū(x) + (r(x) −Ψ(u))h(t, x) +∇ · (A(x)∇(h(t, x))).

(3.12)

By multiplying the above equation by h and integrating over Ω, it follows that

<
∂h(t)

∂t
, h >=< (r(x) −Ψ(u))h+∇ · (A(x)∇(h)), h > .

where we use that h is orthogonal to ū. Thus since H
2,ū

[h](t) := ‖h(t)‖2
L2(Ω), we have

<
∂h

∂t
, h >=

1

2

dH
2,ū

[h](t)

dt
=< (r −Ψ(u))h+∇ · (A∇(h)), h > .

By following the computation developed for the proof of Theorem 2.1 with H(s) = s2, we see
that

(3.13)
dH

2,ū
[h](t)

dt
= −

∫

Ω

ū2(x)

(
∇

(
h(t, x)

ū(x)

))t
A(x)∇

(
h(t, x)

ū(x)

)
+ (λ1 −Ψ(u(t))H

2,ū
[h](t).

Since H
2,ū

[h](t) ≥ 0 for all times, let us analyse separately the two situations: H
2,ū

[h](t) > 0 for all
times t or there exists t0 ∈ R so that H

2,ū
[h](t0) = 0. In the latter case, from the above equation we

see that we must have H
2,ū

[h](t) = 0 for all t ≥ t0 and so for all t ≥ t0, we must have u(t) = λ(t)ū
almost everywhere. Hence from (3.12) we are reduced to analyse the following ODE equation

λ′(t) = λ(t)(λ1 − Ψ̃(λ(t)))

where Ψ̃ is the increasing locally Lipschitz function defined by Ψ̃(s) := sp
∫
Ω k(y)ū(y)

p dx.
Note that since by Lemma 3.5 we have

(3.14) λ(t) < ū, ū >=< ū, u >= H
1,ū

[u](t) ≤ C1,

we have λ(t) ≥ 0 for all times t. The above ODE is of logistic type with non negative initial datum
therefore by a standard argumentation we see that λ(t) converges to λ̄ > 0 where λ̄ is the unique

solution of Ψ̃(λ̄) = λ1. By construction we have Ψ̃(1) = λ1, so we deduce that λ̄ = 1. Hence, in
this situation, u converges pointwise to ū as time goes to infinity.

In the other situation, H
2,ū

[h](t) > 0 for all t and we claim that

Claim 3.6. H
2,ū

[h](t) → 0 as t→ +∞.

Assume the Claim holds true then we can conclude the proof by arguing as follows. From the
decomposition u(t, x) = λ(t)ū(x)+h(t, x), we can express the function H

1,ū
[u](t) by H

1,ū
[u](t) =<

u, ū >= λ(t) < ū, ū >. Therefore by using Theorem 3.3 we deduce that

(3.15) λ′(t) = (λ1 −Ψ[λ(t)ū(x) + h(t, x)])λ(t).

By using the definition of Ψ and the binomial expansion it follows that λ verifies the following
ODE

λ′(t) = (λ1 − Ψ̃(λ(t)))λ(t) + λ(t)(Ψ(λ(t)ū(x)) −Ψ(λ(t)ū + h(t)))

= (λ1 − Ψ̃(λ(t)))λ(t) + λ(t)

(
p∑

i=1

(
i

p

)
λi(t)

∫

Ω

ūihp−i(t, x) dx

)
,
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where
(
i
p

)
denotes the binomial coefficient. Now by using ‖h(t)‖22 = H

2,ū
[h](t) → 0 and Lemma

3.5, by interpolation we deduce that ‖h(t)‖Lq(Ω) → 0 for all q ≥ 1. Therefore, since ū ∈ L∞ and
by (3.14) λ is bounded, we have

lim
t→∞

(
p∑

i=1

(
i

p

)
λi(t)

∫

Ω

ūihp−i(t, x) dx

)
= 0.

Thus λ satisfies

λ′(t) = (λ1 − Ψ̃(λ(t)))λ(t) + λ(t)o(1),

and as above we can conclude that λ(t) → 1 and u converges to ū almost everywhere.
�

Proof of Claim 3.6:

Since H
2,ū

[h](t) > 0 for all t, from (3.13) and by following the proof of Lemma 3.3 we see that

(3.16)
d

dt
log

[
H

2,ū
[h](t)

(
H

1,ū
[u](t)

)2

]
= −

1

H
2,ū

[h](t)

∫

Ω

ū2(x)

(
∇

(
h(t, x)

ū(x)

))t
A(x)∇

(
h(t, x)

ū(x)

)
dx.

Thus the function F̃ := log

[
H

2,ū
[h](t)

(H1,ū
[u](t))2

]
is a decreasing smooth function.

First we observe that the claim is proved if there exists a sequence (tn)n∈N going to infinity so
that H

2,ū
[h](tn) → 0. Indeed, assume such sequence exists and let (sk)k∈N be a sequence going to

+∞. Then there exists k0 and a subsequence (tnk
)k∈N of (tn)n∈N so that for all k ≥ k0, we have

sk ≥ tnk
. Therefore from the monotonicity of F̃ we have for all k ≥ k0

log

[
H

2,ū
[h](sk)

(
H

1,ū
[u](sk)

)2

]
≤ log

[
H

2,ū
[h](tnk

)
(
H

1,ū
[u](tnk

)
)2

]
.

By letting k to infinity in the above inequality, we deduce that

lim
k→∞

log

[
H

2,ū
[h](sk)

(
H

1,ū
[u](sk)

)2

]
= −∞,

which implies that H
2,ū

[h](sk) → 0, since by Lemma 3.5 (H
1,ū

[u](tk))k∈N is uniformly bounded.
The sequence (sk)k∈N being chosen arbitrarily this implies that H

2,ū
[h](t) → 0 as t→ +∞.

Let us now prove that such sequence (tn)n∈N exists. Let us assume by contradiction that
inft∈R+ H

2,ū
[h](t) > 0.

From the monotonicity and the smoothness of F̃ we deduce that there is c0 ∈ R so that

F̃ (h(t)) → c0 and
d

dt
F̃ (h(t)) → 0 as t→ +∞.

Thus by Lemma 3.5 and (3.16) it follows that

(3.17) lim
t→∞

∫

Ω

ū2(x)

(
∇

(
h(t, x)

ū(x)

))t
A(x)∇

(
h(t, x)

ū(x)

)
dx = 0.

Since for all t, h(t) ∈ ū⊥, H
2,ū

[h](t) = ‖h(t)‖22 and ū = µφ1 ∈ C2,α is strictly positive in Ω̄, by
combining (3.17) and the Lemma 2.5 we get the contradiction

0 < lim
t→∞

‖h(t)‖22 ≤
1

ρ1
lim
t→∞

∫

Ω

ū2(x)

(
∇

(
h(t, x)

ū(x)

))t
A(x)∇

(
h(t, x)

ū(x)

)
dx = 0.

�
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4. THE GENERAL COMPETITION CASE: EXISTENCE OF POSITIVE STATIONARY SOLUTION

In this section we investigate the existence of a positive stationary solution of (2.1) and prove
Theorem 1.3. That is we look for positive solution of

∇ · (A(x)∇v) + v (r(x) −Ψ(x, v)) = 0 in Ω,(4.1)

∂v

∂n
(x) = 0 in ∂Ω,(4.2)

where Ψ(x, v) =
∫
Ω
K(x, y)|v(y)|p dy. First observe that when λ1 ≥ 0, then there is no positive

solution of (4.1)–(4.2). Indeed, by multiplying by φ1 the equation (4.1) and integrating by parts it
follows that

0 = −λ1

∫

Ω

v(x)φ1(x) dx−

∫

Ω

Ψ(x, v)v(x)φ1(x) dx,

which implies λ1
∫
Ω v(x)φ1(x) dx =

∫
Ω Ψ(x, v)v(x)φ1(x) dx = 0 since Ψ(x, v), v and φ1 are non

negative. Thus v = 0 almost everywhere since φ1 > 0.
Let us then assume that λ1 < 0. Let k > 0 so that the operator ∇ · (A(x)∇) + r(x) − k with

Neumann boundary condition is invertible in C0,α(Ω) and a positive solution of (4.1)–(4.2) is a
positive fixed point of the map T

T : C0,α(Ω) → C0,α(Ω)

v 7→ Tv := (∇ · (A(x)∇) + r(x) − k)−1
n [Ψ(x, v)v − kv]

.

To check that T has a positive fixed point we use a degree argument. Let x0 ∈ Ω be fixed and
let Ks(x, y) be defined by

Ks(x, y) := sK(x, y) + (1 − s)K(x0, y).

Let us now consider the homotopy H ∈ C([0, 1]× C0,α(Ω), C0,α(Ω)) defined by

H : [0, 1]× C0,α(Ω) → C0,α(Ω)
(s, v) 7→ H(s, v) := (∇ · (A(x)∇) + r(x) − k)−1

n [Ψs(x, v)v − kv].
,

where Ψs(x, v) :=
∫
Ω
Ks(x, y)|v|p(y) dy.

One can see that H(1, .) = T and H(0, .) = T0 where T0 corresponds to the map

T0 : C
0,α(Ω) → C0,α(Ω)

v 7→ T0v := (Ψ0(v) − k)(∇ · (A(x)∇) + r(x) − k)−1
n v.

Note that there exists an unique positive fixed point to T0 which can be constructed as in
Section 3.

Before computing the degree of T1, we obtain some a priori estimates on the fixed point of
the map H(·, ·). That is some estimates on the positive solution to the equation

(∇ · (A(x)∇) + r(x) − k)−1
n [Ψs(x, v)v − kv] = v

which rewrites:

∇ · (A(x)∇v) + r(x)v = Ψs(x, v)v(4.3)

∂nv = 0 on ∂Ω(4.4)

Lemma 4.1. Let v be a continuous non negative solution of (4.3)-(4.4). Then either v ≡ 0 or v > 0 and
there exists c̄1 and C̄1 independent of s so that

c̄1 ≤

∫

Ω

|v|p(x) dx ≤ C̄1.
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Proof:

The strict positivity of the solution v is a straightforward consequence of the strong maximum
principle. Therefore either v ≡ 0 or v > 0. So let us assume that v > 0 and then by multiplying
by v the equation (4.3) and integrating by parts we see that
∫

Ω

r(x)v2(x) dx−

∫

Ω

(∇v(x))tA(x)∇v(x) dx =

∫

Ω

Ψs(x, v)v(x)2 dx ≥ Kmin

∫

Ω

|v(y)|p dy

∫

Ω

v2(x) dx,

where Kmin := minx,y∈Ω̄×Ω̄K(x, y). Therefore we get

‖r‖∞
Kmin

≥

∫

Ω

|v(y)|p dy.

We also get
∫

Ω

r(x)v2(x) dx −

∫

Ω

(∇v(x))
t
A(x)∇v(x) dx ≤ Kmax

∫

Ω

|v(y)|p dy

∫

Ω

v2(x) dx

with Kmax := maxx,y∈Ω̄×Ω̄K(x, y) which leads to

λ1

Kmax

≤

∫

Ω

|v(y)|p dy.

�

We are now in position to prove the existence of a positive solution to the equation (4.1) by
means of the computation of the topological degree of T − id on a well chosen set O ⊂ C0,α(Ω).
Let us choose positive constants c2 and C2 so that c2 < c̄1 and C2 > C̄1 where c̄1 and C̄1 are the
constants obtained in Lemma 4.1. Let Ω be the following open set

O :=

{
v ∈ C0,α(Ω), v ≥ 0 | c2 ≤

∫

Ω

vp(x) dx ≤ C2

}

and let us compute deg(T − Id,O, 0). By Lemma 4.1 for all s ∈ [0, 1] H(s, v) − v 6= 0 on ∂O.
Therefore using that H(., .) is an homotopy, since T is a compact operator, we conclude that
deg(T − Id,O, 0) = deg(H(1, .)− Id,O, 0) = deg(H(0, .)− Id,O, 0). By construction, from Section
3, one can check that deg(H(0, .) − Id,O, 0) 6= 0 since the map T0 has a unique positive non
degenerated fixed point. Thus deg(T − Id,O, 0) 6= 0 which shows that T has a fixed point in O.

�

5. STABILITY OF THE DYNAMICS, CONVERGENCE TO THE EQUILIBRIA

In this section we prove Theorem 1.4. That is to say, we analyse the stability under some per-
turbation of the dynamics established for (1.5)–(1.6) in Section 3. More precisely we investigate
the global dynamics of solution of

∂u(x, t)

∂t
= u

[
r(x) −

∫

Ω

kǫ(x, y)|u|
p(y) dy

]
+∇ · (A(x)∇u(t, x)) in Ω× R

+,(5.1)

∂u

∂n
(t, x) = 0 in ∂Ω× R

+,∗,(5.2)

u(x, 0) = u0(x) ≥ 0,(5.3)

where p = 1 or 2 and kǫ(x, y) := k0(y) + ǫk1(x, y) with ǫ a small parameter. To obtain the
asymptotic behaviour in this case, we follow the strategy developed in Section 3. Namely, we
start by showing some a priori estimates on the solution u(t, x), then we analyse the convergence
by means of some differential inequalities. For convenience, we dedicate a subsection to each
essential part of the proof.
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5.1. A priori estimate.
We start by establishing some useful differential inequalities. Namely we show that

Lemma 5.1. Assume that A, r, ki satisfies (1.4) and let φ1 be the positive eigenfunction associated to
λ1(∇ · (A(x)∇)) + r(x) with Neumann boundary condition. Let q ≥ 1 and H be the smooth convex
function H(s) : s 7→ sq . Then there exists ǫ0 so that for all ǫ ≤ ǫ0 and for all positive solution u ∈
C1((0,∞), C2,α(Ω)) of (5.1)–(5.2), we have for t > 0

dH
q,φ1

[u](t)

dt
≤ −Dq,φ1

[u](t) + q(−λ1 − αǫ,−(u))Hq,φ1
[u](t)

dH
q,φ1

[u](t)

dt
≥ −Dq,φ1

[u](t) + q(−λ1 − αǫ,+(u))Hq,φ1
[u](t)

where

Dq,φ1
[u](t) := q(q − 1)

∫

Ω

(
u(t, x)

φ1(x)

)q−2

φ21(x)

(
∇

(
u(t, x)

φ1(x)

))t
A(x)∇

(
u(t, x)

φ1(x)

)
dx

H
q,φ1

[u] :=

∫

Ω

(
u(t, x)

φ1(x)

)q
φ21(x) dx

αǫ,±(u) :=

∫

Ω

(k0(y)± ǫ‖k1‖∞) |u(t, y)|p dy

Proof:

Observe that since u is positive, from (5.1) it follows that

∂u

∂t
(t, x) ≤ [r(x) − α−,ǫ(u)]u(t, x) +∇ · (A(x)∇u(t, x)) ,

∂u

∂t
(t, x) ≥ [r(x) − α+,ǫ(u)]u(t, x) +∇ · (A(x)∇u(t, x)) .

Let ω̄+
ǫ and ω̄−

ǫ be the stationary solutions of the corresponding equations with homogeneous
Neumann boundary condition:

∂ω−
ǫ (t, x)

∂t
= [r(x) − α−,ǫ(ω

−
ǫ )]ω

−
ǫ (t, x) +∇ ·

(
A(x)∇ω−

ǫ (t, x)
)
,

∂ω+
ǫ (t, x)

∂t
= [r(x) − α+,ǫ(ω

+
ǫ )]ω

+
ǫ (t, x) +∇ ·

(
A(x)∇ω+

ǫ (t, x)
)
.

Let ǫ small enough, says ǫ ≤
k0,min

2‖k1‖∞
, then by construction ω̄±

ǫ exists and we have ω̄±
ǫ = µ±

ǫ φ1.

Now by arguing as in the proof of Theorem 2.1, we obtain

dH−

H,ω̄
−
ǫ

[u](t)

dt
≤ −DH,ω̄−

ǫ
[u](t) + q[−λ1 − αǫ,−(u)]H

−

H,ω̄
−
ǫ

[u](t),

dH+

H,ω̄
+
ǫ

[u](t)

dt
≥ −DH,ω̄+

ǫ
[u](t) + q[−λ1 − αǫ,+(u)]H

+

H,ω̄
+
ǫ

[u](t).

where

H±

H,ω̄
±
ǫ

[u](t) :=

∫

Ω

(ω̄±
ǫ )

2(x)H

(
u(t, x)

ω̄±
ǫ (x)

)
dx,

DH,ω̄±
ǫ
[u](t) :=

∫

Ω

H ′′

(
u(t, x)

ω̄±
ǫ (x)

)
(ω̄±
ǫ (x))

2

(
∇

(
u(t, x)

ω̄±
ǫ (x)

))t
A(x)∇

(
u(t, x)

ω̄±
ǫ (x)

)
dx.

By using that ω̄±
ǫ = µ±

ǫ φ1, the definition of H and the homogeneity of H
q,µ

±
ǫ φ1

[u], we deduce

that

dH
q,φ1

[u](t)

dt
≤ −Dq,φ1

[u](t) + q[−λ1 − αǫ,−(u)]Hq,φ1
[u](t),

dH
q,φ1

[u](t)

dt
≥ −Dq,φ1

[u](t) + q[−λ1 − αǫ,+(u)]Hq,φ1
[u](t).
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�

Next, we derive some a priori estimates for the solutions u ∈ C1((0,∞), C2,α(Ω))of (5.1)–(5.2).

Lemma 5.2. Assume that A, r, ki satisfies (1.4). Then there exists ǫ1 so that we have :

(i) For all q′ ≥ 1 there exists c̄q′ < C̄q′ so that for all ǫ ≤ ǫ1 and for all positive continuous stationary
solution ūǫ to (5.1)–(5.2)

c̄q′ ≤ ‖ūǫ‖Lq′(Ω) < C̄q′ .

(ii) There exists 0 < c̄∞ < C̄∞, so that for all ǫ ≤ ǫ1 and for all continuous stationary solution ūǫ to
(5.1)–(5.2)

c̄∞ ≤ ūǫ ≤ C̄∞.

(iii) For all 1 ≤ q′ ≤ p, there exists 0 < Cq′ , so that for all ǫ ≤ ǫ1 and for all uǫ ∈ C1((0,∞), C2,α(Ω))
positive solution to (5.1)–(5.2) there exists t̄ so that for all t ≥ t̄

‖uǫ(t)‖Lq′ (Ω) ≤ Cq′ .

(iv) For p = 1 or p = 2 there exists a positive constant c1 , so that for all ǫ ≤ ǫ1 and for all uǫ ∈
C1((0,∞), C2,α(Ω)) positive solution to (5.1)–(5.2) there exists t̄ so that for all t ≥ t̄

‖uǫ(t)‖L1(Ω) ≥ c1.

Proof:

Let us first observe that (ii) is a straightforward consequence of (i) since ūǫ satisfies an elliptic
equation with uniformly bounded continuous coefficient with respect to ǫ and ūǫ. To prove (i),
we first show the estimates for q′ = p. First let us observe that by replacing uǫ by ūǫ and taking
q = 1 in the formulas of Lemma 5.1, we get for ǫ ≤ ǫ0

0 ≤ [−λ1 − αǫ,−(ūǫ)]H1,φ1
[ūǫ],

0 ≥ (−λ1 − αǫ,+(ūǫ))H1,φ1
[ūǫ].

From the latter inequalities, by using the positivity of ūǫ and φ1 it follows that

− λ1 ≥

∫

Ω

(k0(y)− σ)ūpǫ (y) dy ≥ inf
x∈Ω

(k0(x) − σ)‖ūǫ‖
p

Lp(Ω),

− λ1 ≤

∫

Ω

(k0(y) + σ)ūpǫ (y) dy ≤ sup
x∈Ω

(k0(x) + σ)‖ūǫ‖
p

Lp(Ω),

where σ := ǫ‖k1‖∞. Let κ0 := infx∈Ω k0(x)
2 and choose ǫ small enough, says so that ǫ < κ0

‖k1‖∞
=: ǫ′,

we achieve for all ǫ ≤ ǫ′ and all stationary solution ūǫ

(5.4)

(
−λ1

‖k0‖∞ + ǫ1‖k1‖∞)

) 1
p

=: c̄p ≤ ‖ūǫ‖Lp(Ω) ≤ C̄p :=

(
−λ1
κ0

) 1
p

.

Now recall that ūǫ satisfies the elliptic equation

∇ · (A(x)∇ūǫ(x)) +

(
r(x) −

∫

Ω

kǫ(x, y)ū
p
ǫ (y) dy

)
ūǫ(x) = 0 in Ω,

∂ūǫ(x)

∂n
= 0 in ∂Ω.

From (5.4), the coefficients of this linear equation are uniformly bounded in L∞ with respect to
ǫ ∈ [0, ǫ′]. So by using the elliptic regularity and Sobolev’s embedding [8], we can show that for
all q ≥ 1 there exists C > 0 so that

‖ūǫ‖W 2,q(Ω) ≤ C,

with C independent of ǫ and ūǫ. Thus there exists C∞ > 0 independent of ūǫ, so that

(5.5) ‖ūǫ‖∞ ≤ C∞.

To obtain the desired uniform lower bound c̄q , a standard interpolation argument can be used
[8] combining (5.4) and (5.5).
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Let us now prove (iii). Let κ1 := ‖k0‖∞ + ǫ1‖k1‖∞ and κ0 := infx∈Ω k0(x)
2 then by Lemma 5.1,

since ǫ ≤ ǫ′ we get for all q ≥ 1 and all t > 0

dH
q,φ1

[uǫ](t)

dt
≤ −q(q − 1)

∫

Ω

(
uǫ(t, x)

φ1(x)

)q−2

φ21(x)

(
∇

(
u(t, x)

φ1(x)

))t
A(x)∇

(
uǫ(t, x)

φ1(x)

)
dx

+ q[−λ1 − κ0‖uǫ‖
p

Lp(Ω)]Hq,φ1
[uǫ](t).

Since H1(u) ∼ ‖u‖L1(Ω), by Hölder’s inequality and by choosing q = 1 in the above inequality, it
follows that

(5.6)
dH

1,φ1
[uǫ](t)

dt
≤ [−λ1 − κ̃0H1,φ1

[uǫ](t)
p]H

1,φ1
[uǫ](t) in (0,∞).

Using the logistic character of the above equation, there exists t1 so that H
1,φ1

[uǫ](t) ≤
−2λ1

κ̃0
for

all t ≥ t1. A similar argument can be done for q = p, thus H
p,φ1

[uǫ](t) ≤ Cp for all t ≥ tp and by
interpolation we get for all 1 ≤ q ≤ p

(5.7) ‖uǫ‖Lq(Ω) ≤ Cq for all t ≥ t′ := sup{t1, tp}.

To obtain the lower bound (iv), it is enough to get an uniform lower bound for H
1,φ1

[uǫ](t). By
Lemma 5.1 we have

(5.8)
dH

1,φ1
[uǫ](t)

dt
≥

(
−λ1 − ‖k‖∞

∫

Ω

upǫ (y) dy

)
H

1,φ1
[uǫ](t).

Case 1: p = 1. In this situation, since H
1,φ1

[uǫ](t) ∼ ‖uǫ‖L1(Ω), we deduce that

dH
1,φ1

[uǫ](t)

dt
≥ (−λ1 − κ1H1,φ1

[uǫ](t))H1,φ1
[uǫ](t),

for some κ1 > 0. Hence, there exists t̄ so that H
1,φ1

[uǫ](t) ≥
−λ1

2κ1
for all t > t̄.

Case 2: p = 2. In this situation, let us rewrite uǫ(x, t) := µǫ(t)φ1(x) + gǫ(t, x) with g(t, x) ⊥ φ1 in
L2(Ω). Equipped with this decomposition, we have

H
1,φ1

[u](t) = µǫ(t)(5.9)

‖u(t)‖22 = H
2,φ1

[u](t) = µ2
ǫ(t) + ‖gǫ(t)‖

2
2(5.10)

dH
2,φ1

[gǫ](t)

dt
=
dH

2,φ1
[uǫ](t)

dt
− 2µǫ(t)µ

′
ǫ(t)(5.11)

So from (5.8), we get

(5.12) µ′
ǫ(t) ≥

(
−λ1 − ‖kǫ‖∞µ

2
ǫ (t)− ‖kǫ‖∞‖gǫ(t)‖

2
2

)
µǫ(t).

Now by combining (5.9), (5.11) and Lemma 5.1 we see that

(5.13)

dH
2,φ1

[gǫ](t)

dt
≤ −2

∫

Ω

φ21(x)

(
∇

(
gǫ(t, x)

φ1(x)

))t
A(x)∇

(
gǫ(t, x)

φ1(x)

)
dx+

d logµ2
ǫ (t)

dt
H

2,φ1
[gǫ](t)

+ 2[αǫ,+(uǫ)− αǫ,−(uǫ)]
(
µ2
ǫ(t) +H

2,φ1
[gǫ](t)

)

By Lemma 2.5 and using (5.7) it follows that for t ≥ t′

(5.14)
dH

2,φ1
[gǫ](t)

dt
−
d logµ2

ǫ (t)

dt
H

2,φ1
[gǫ](t) ≤ −(2ρ1(φ1)− 4ǫ‖k1‖∞C2)H2,φ1

[gǫ](t)

+ 4ǫ‖k1‖∞C2C
2
1 .

Let Σ := {t ≥ t′ | H
2,φ1

[gǫ](t) > 0}, then we have for all t ∈ Σ

(5.15)
d

dt

(
log

[
H

2,φ1
[gǫ](t)

µ2
ǫ (t)

])
≤ −(2ρ1(φ1)− 4ǫ‖k1‖∞C2) +

4ǫ‖k1‖∞C2C
2
1

H
2,φ1

[gǫ](t)
.
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By choosing ǫ small enough, say ǫ ≤ ǫ” := min
{
ǫ′,

ρ1(φ1)
4C2‖k1‖∞

}
, and by letting δ := 4‖k1‖∞C2C

2
1 ,

by (5.15) we achieve for all t ∈ Σ

(5.16)
d

dt

(
log

[
H

2,φ1
[gǫ](t)

µ2
ǫ (t)

])
≤ −ρ1(φ1) +

ǫδ

H
2,φ1

[gǫ](t)
.

To obtain the lower bound, the proof follows now three steps:

Step One. We claim that

Claim 5.3. For all ǫ ≤ ǫ
′′

, there exists t0 > t′ so that

H
2,φ1

[gǫ](t0) <
2δǫ

ρ1(φ1)
.

Proof:

Assume by contradiction that for all t ≥ t′ we have

H
2,φ1

[gǫ](t0) ≥
2δǫ

ρ1(φ1)
.

Therefore it follows from (5.16) that for all t > t′

(5.17)
d

dt

(
log

[
H

2,φ1
[gǫ](t)

µ2
ǫ(t)

])
≤ −

ρ1(φ1)

2
.

Thus F (t) := log

[
H

2,φ1
[gǫ](t)

µ2
ǫ(t)

]
is a decreasing function which by assumption is bounded from

below for all t ≥ t′. Therefore F converges as t tends to +∞ and dF
dt

→ 0. Hence for t large
enough, we get the contradiction

−
ρ1(φ1)

4
≤

d

dt

(
log

[
H

2,φ1
[gǫ](t)

µ2
ǫ(t)

])
≤ −

ρ1(φ1)

2
.

�

Step Two. Let ǫ1 and γ(t0) be the following quantities

ǫ1 := min

{
ǫ”,

−λ1ρ1(φ1)

8‖kǫ‖∞δ

}
,

γ(t0) := min

{
µǫ(t0),

√
−λ1

2‖kǫ‖∞

}

and let Q be the real map

R
+ → R

+

x 7→ A Bx
Bx+C

where A := −λ1

2‖k‖∞
, B := ρ1(φ1) and C := 2ǫδ. We claim that

Claim 5.4. For all ǫ ≤ ǫ1 we have

(i) For all t ≥ t0,

µ2
ǫ (t) ≥ γ2(t0).

(ii) There exists t′1 ≥ t0 so that for all t > t′1

µ2
ǫ (t) ≥ Q(γ2(t0)).
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Proof:

Let us denote Σ± and Σ0 the following sets

Σ+ :=

{
t ≥ t0 | H2,φ1

[gǫ](t) >
2δǫ

ρ1(φ1)

}
,

Σ− :=

{
t ≥ t0 | H2,φ1

[gǫ](t) ≤
2δǫ

ρ1(φ1)

}
,

Σ0 :=

{
t ≥ t0 |µǫ(t) ≥ min

{
µǫ(t0),

√
−λ1

2‖kǫ‖∞

}}
.

By construction [t0,+∞) = Σ+ ∪ Σ−, t0 ∈ Σ− and for all ǫ ≤ ǫ1 we have

−λ1 − ‖kǫ‖∞
2ǫδ

ρ1(φ1)
≥ −

−λ1
2
.

Let us now prove (i). Let t̃0 be the following time

t̃0 := sup{t ≥ t0 | [t0, t] ⊂ Σ−}.

By continuity of H
2,φ1

[gǫ](t), it follows from H
2,φ1

[gǫ](t0) <
2δǫ

ρ1(φ1)
that t̃0 > t0. Moreover we

deduce from (5.12) that µǫ satisfies on (t0, t̃0):

(5.18) µ′
ǫ(t) ≥

(
−
λ1

2
− ‖kǫ‖∞µ

2
ǫ(t)

)
µǫ(t).

Therefore µǫ(t) ≥ min
{
µǫ(t0),

√
−λ1

2‖kǫ‖∞

}
for t ∈ [t0, t̃0) which enforces (t0, t̃0) ⊂ Σ0. Let t∗ be the

following quantity
t∗ := sup{t ≥ t0 | (t0, t) ⊂ Σ0}.

From above (t0, t̃1) ⊂ Σ0, so we have t∗ ∈ (t0,+∞]. We will show that t∗ = +∞. If not, t∗ < +∞
and from the above arguments we can see that H

2,φ1
[gǫ](t

∗) ≥ 2δǫ
ρ1(φ1)

. By definition of t∗, we have

the following dichotomy since [t0,+∞) = Σ+ ∪Σ−:

• t∗ ∈ Σ− and there exists t∗ < t∗,+ ∈ Σ+ so that (t∗, t∗,+) ⊂ Σ+

• t∗ ∈ Σ+ and there exists t∗,− < t∗ < t∗,+ so that t∗,− ∈ Σ0 ∩ Σ−, t∗,+ ∈ Σ+ and
(t∗,−, t∗,+] ⊂ Σ+

In both cases we see from (5.17) that on (t∗,−, t∗,+] the function F (t) = log

[
H

2,φ1
[gǫ](t)

µ2
ǫ(t)

]
is de-

creasing and we have for all t ∈ (t∗,−, t∗,+]F (t) < F (t∗,−) which leads to

µ2
ǫ (t

∗,−) ≤ µ2
ǫ(t)

H
2,φ1

[gǫ](t
∗,−)

H
2,φ1

[gǫ](t)
.

Thus we get for all t ∈ (t∗,−, t∗,+]

γ(t0) ≤ µǫ(t),

since t∗,− ∈ Σ− ∩ Σ0 and t ∈ Σ+. As a consequence we have t∗ < t∗,+ ∈ Σ0, which contradicts
the definition of t∗.

Hence t∗ = ∞ and

(5.19) µǫ(t) ≥ min

{
µǫ(t0),

√
−λ1

2‖kǫ‖∞

}
for all t ≥ t0.

Let us now prove (ii). By arguing on each connected component of Σ+, since by (5.16) F (t) =

log

[
H

2,φ1
[gǫ](t)

µ2
ǫ(t)

]
is a decreasing function one has for all t ∈ Σ+

H
2,φ1

[gǫ](t) ≤
µ2
ǫ (t)

γ2(t0)

2ǫδ

ρ1(φ1)
.
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By construction, from (5.19) we also have for all t ∈ Σ−

H
2,φ1

[gǫ](t) ≤
µ2
ǫ (t)

γ2(t0)

2ǫδ

ρ1(φ1)
.

Therefore for all t ≥ t0 we get

(5.20) H
2,φ1

[gǫ](t) ≤
µ2
ǫ (t)

γ2(t0)

2ǫδ

ρ1(φ1)
.

Now by combining (5.20) with (5.12) it follows that for all t ≥ t0, µǫ(t) satisfies

µ′
ǫ(t) ≥

[
−λ1 − ‖k‖∞µ

2
ǫ (t)

(
1 +

2ǫδ

ρ1(φ1)γ2(t0)

)]
µǫ(t).

Hence, by using the logistic character of the above equation we have for some t′1 for all t ≥ t′1

(5.21) µ2
ǫ (t) ≥

−λ1
2‖k‖∞

ρ1(φ1)γ
2(t0)

γ2(t0)ρ1(φ1) + 2ǫδ
= Q(γ2(t0)).

�

Step Three. Finally we claim that

Claim 5.5. There exists t̄ so that for all t ≥ t̄

µ2
ǫ (t) ≥

−λ1
8‖k‖∞

.

Proof:

By an elementary analysis, one can check that the map Q(x) = A Bx
Bx+C is monotone increasing

and has a unique positive fixed point x0 = AB−C
B

= −λ1

2‖k‖∞
− 2ǫδ

ρ1(φ1)
≥ −λ1

4‖k‖∞
> 0. We can also

check that the iterated map Qn+1(x) := Q(Qn(x)) satisfies for any x∗ ∈ (0,+∞)

(5.22) lim
n→∞

Qn(x∗) = x0.

Now recall that by the previous step, we have for all t ≥ t′1,

µ2
ǫ(t) ≥ Q(γ2(t0)) = Q

(
min

{
µ2
ǫ(t0),

−λ1
2‖k‖∞

})
.

Since Q is monotone increasing and −λ1

2‖k‖∞
> x0 we deduce from (5.21) that for all t ≥ t′1

(5.23) µ2
ǫ(t) ≥ min

{
x0, Q(µ2

ǫ(t0))
}
.

By using now step one with t′1 instead of t′, it follows that there exists t1 ≥ t′1 so that H
2,φ1

[gǫ](t1) <
2δǫ

ρ1(φ1)
. We can then replace t0 by t1 in Step two, to obtain the existence of t′2 > t1 so that for all

t ≥ t′2 we have

µ2
ǫ(t) ≥ Q(γ(t1)

2) = Q

(
min

{
µ2
ǫ(t1),

−λ1
2‖k‖∞

})
,

which by using the monotonicity of Q, −λ1

2‖k‖∞
> x0 and (5.23) leads to

(5.24) µ2
ǫ(t) ≥ min

{
x0, Q

[
min

{
x0, Q(µ2

ǫ(t0)
}]}

for all t ≥ t′2.
Since x0 is a fixed point of Q, it follows from (5.24) that for all t ≥ t′2

(5.25) µ2
ǫ(t) ≥ min

{
x0, Q[Q(µ2

ǫ(t0))]
}
= min

{
x0, Q

2(µ2
ǫ (t0))

}
.

By arguing inductively, we can then construct an increasing sequence (t′n)n∈N0
so that for all n

and for all t ≥ t′n we have

(5.26) µ2
ǫ(t) ≥ min

{
x0, Q

n(µ2
ǫ(t0))

}
.



CONVERGENCE TO EQUILIBRIUM FOR POSITIVE SOLUTIONS OF SOME MUTATION-SELECTION MODEL 21

Since µ2
ǫ(t0) > 0, by (5.22) there exists n0 so that Qn(µ0

ǫ(t0)) ≥
x0

4 = −λ1

8‖k‖∞
. Hence, by (5.26) we

have for all t ≥ t′n0

µ2
ǫ (t) ≥

−λ1
8‖k‖∞

.

�

Finally, we establish an estimate on ρ1(ūǫ) where ρ1(ūǫ) is the constant defined in Lemma 2.5
for the positive vector ūǫ. Namely, we show that

Lemma 5.6. There exists ρ̄ > 0, so that for all ǫ ∈ [0, ǫ1) and for all positive stationary solution ūǫ of
(5.1)–(5.2), we have

ρ(ūǫ) ≥ ρ̄

Proof:

From the proof of Lemma 2.5, if we let dµǫ, L
2
µǫ

and H1
µǫ

be respectively the positive measure

dµǫ = ū2ǫdx, the following functional space:

L2
µǫ
(Ω) :=

{
u

∣∣∣∣
∫

Ω

u2(x)dµǫ(x) < +∞

}

H1
µǫ
(Ω) :=

{
u ∈ L2

µǫ

∣∣∣∣
∫

Ω

|∇u|2(x)dµǫ(x) < +∞

}

we have

0 < ρ(ūǫ) = inf
g∈H1

dµǫ
,
∫
Ω
g dµǫ=0

J (g)

with J the functional

J (g) :=
1

‖g‖L2
µǫ

(Ω)

∫

Ω

(∇(g))
t
A(x)∇(g) dµǫ.

Let

ν := inf
dµǫ=ū2

ǫdx
ρ(ūǫ),

where ǫ ∈ [0, ǫ1] and ūǫ is any stationary solution of (5.1)–(5.2), then we have

ρ(ūǫ) ≥ ν ≥ 0.

We claim that ν > 0. Indeed, if not then there exists a sequence of positive measure ū2ndx so that

lim
n→∞

ρ(ūn) = 0.

Since 0 ≤ ǫ ≤ ǫ1, by Lemma 5.2 the sequence (ūn)n∈N is uniformly bounded in W 2,q(Ω) for all
q ≥ 1. Therefore by the Rellich-Kondrakov Theorem, there exists a subsequence (ūnk

)k∈N which
converges to ũ a non-negative solution of (5.1)–(5.2) for some ǭ. By Lemma 5.2, we see also that ũ
is non trivial and positive. Thus by applying Lemma 2.5 with ũ we get the contradiction

0 < ρ(ũ) = 0.

�

5.2. Asymptotic Behaviour.
We are now in position to obtain the asymptotic behaviour of the solution uǫ(t, x) as t goes to
+∞ for ǫ ∈ [0, ǫ∗], where ǫ∗ is to be determined later on.

Let us first introduce some practical notation:

Ψ0(v) :=

∫

Ω

k0(y)|v(y)|
p dy, Ψ1(x, v) :=

∫

Ω

k1(x, y)|v(y)|
p dy, Ψǫ(x, v) := Ψ0(v) + ǫΨ1(x, v)

Ψ̃ǫ(v) :=

∫

Ω

Ψǫ(x, v)v
2(x) dx.

When λ1 ≤ 0, then the proof of Section 3 holds as well for solution of (5.1) – (5.3) and u(t, x) →
0 as t → 0. So let us assume λ1 < 0 and let us denote <,> the standard scalar product of L2(Ω).
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Let ūǫ be a positive stationary solution of (5.1)– (5.2). Such solution exists from Section 4. Since
for all t > 0 the solution uǫ(t, x) ∈ L2, we can decompose uǫ as follows:

uǫ(t, x) := λǫ(t)ūǫ + hǫ(t, x)

with hǫ so that < ūǫ, hǫ >= 0.
From this decomposition and by using Theorem 2.1 we get:

λǫ(t) < ūǫ, ūǫ >= H
1,ūǫ

[uǫ](t),(5.27)

dH
2,ūǫ

[hǫ](t)

dt
=
dH

2,ūǫ
[uǫ](t)

dt
− 2λλ′ < ūǫ, ūǫ >(5.28)

λ′ǫ(t) < ūǫ, ūǫ >=

∫

Ω

(Ψǫ(x, ūǫ)−Ψǫ(x, uǫ))ūǫ(x)uǫ(x, t) dx.(5.29)

By Lemma 5.2 and (5.27), we can check that when ǫ ≤ ǫ1 there exists positives constants
c1, C1, c̄2, C̄2 independent of ǫ such that for any positive smooth solutions uǫ to (5.1)–(5.2) there
exists t̄(uǫ) so that

(5.30) ĉ :=
c1

C̄2
≤ λǫ(t) ≤

C1

c̄2
=: Ĉ for all t > t̄.

From the decomposition, by using (5.30) and Lemma 5.2 we can also check that hǫ is smooth (i.e
C2,α(Ω)) and therefore belongs to L2(Ω) for all times.

By plugging the decomposition of uǫ in (5.29) and using the definition of Ψǫ, we can check that

(5.31) λ′ǫ(t) =
Ψ̃ǫ(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

(1− λpǫ (t)) +R1(t) +R2(t)

where Ri are the following quantity:

R1(t) :=
1

‖ūǫ‖2L2(Ω)

∫

Ω

[Ψǫ(x, ūǫ)−Ψǫ(x, uǫ)]ūǫ(x)hǫ(t, x) dx(5.32)

R2(t) :=
λǫ(t)

‖ūǫ‖2L2(Ω)

∫

Ω

(
p∑

k=1

(
k

p

)
λp−kǫ (t)

∫

Ω

kǫ(x, y)ū
p−k
ǫ (y)hkǫ (t, y) dy

)
ūǫ(x)

2 dx(5.33)

Next, we show that

Lemma 5.7. Let p = 1 or p = 2 then there exists ǫ∗ ≤ min{ǫ0, ǫ1}, so that for all ǫ ≤ ǫ∗ then any positive
smooth solution uǫ of (5.1)–(5.2) satisfies

lim
t→∞

H
2,ūǫ

[hǫ](t)) = 0.

Assume the lemma holds true, then we can conclude the proof of Theorem 1.4 by arguing as
follows. By combining Lemma 5.2, Lemma 5.7 and by using Hölder’s inequality, since p = 1 or 2
we see that Ri(t) → 0 as t→ +∞. Thus λǫ(t) satisfies

(5.34) λ′ǫ(t) =
Ψ̃ǫ(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

(1 + o(1)− λpǫ (t)),

The above ODE is of logistic type with a perturbation o(1) → 0 with a non negative initial datum.
Therefore, when ǫ ≤ ǫ∗ λǫ(t) converges to 1 and we conclude that when ǫ ≤ ǫ∗ then any positive
solution uǫ to (5.1)–(5.2) converges to ūǫ almost everywhere.

�

Let us now turn our attention to the proof of the Lemma 5.7.

Proof of Lemma 5.7:

First, let us denote Γ(t, x) := Ψǫ(x, ūǫ) − Ψǫ(x, uǫ). By (5.28) (5.29) and by using Theorem 2.1
we achieve

dH
2,ūǫ

[hǫ](t)

dt
= −2

∫

Ω

ū2ǫ

(
∇

(
hǫ(t, x)

ūǫ(x)

))t
A(x)∇

(
hǫ

ūǫ

)
+ 2

∫

Ω

Γ(t, x)hǫ(x)uǫ(x) dx.
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Therefore using the definition of Ψǫ and that ūǫ ⊥ hǫ we have

dH
2,ūǫ

[hǫ](t)

dt
= −2

∫

Ω

ū2ǫ

(
∇

(
hǫ(t, x)

ūǫ(x)

))t
A(x)∇

(
hǫ

ūǫ

)
+ 2(Ψ0(ūǫ)−Ψ0(uǫ))H2,ūǫ

[hǫ](t)

+ 2ǫ

∫

Ω

(Ψ1(x, ūǫ)−Ψ1(x, uǫ))h
2
ǫ(x) dx + 2ǫλǫ

∫

Ω

(Ψ1(x, ūǫ)−Ψ1(x, uǫ))hǫ(x)ūǫ dx.

Let ǫ ≤ min{ǫ1, ǫ2}, by Lemma 5.2 any stationary solution ūǫ to (5.1)–(5.2) is bounded in Lp(Ω)
and for any positive solution uǫ to (5.1)–(5.2) there exists t̄(uǫ) so that for all times t ≥ t̄,

cp ≤ ‖uǫ‖Lp(Ω) < Cp.

So for all times t ≥ t̄ we have

|Ψ1(x, ūǫ)−Ψ1(x, uǫ)| ≤ 2‖k1‖∞ sup{Cp, C̄p} =: κ1,

which implies that for t ≥ t̄

(5.35)

dH
2,ūǫ

[hǫ](t)

dt
≤ −2

∫

Ω

ū2ǫ(x)

(
∇

(
hǫ(t, x)

ūǫ(x)

))t
A(x)∇

(
hǫ

ūǫ

)
dx+2(Ψ0(ūǫ)−Ψ0(uǫ))H2,ūǫ

[hǫ](t)

+ 2ǫκ1H2,ūǫ
[hǫ](t) + 2ǫλǫ

∫

Ω

(Ψ1(x, ūǫ)−Ψ1(x, uǫ))hǫ(x)ūǫ(x) dx.

By (5.27) (5.29), using the definition of Ψǫ we also have

d

dt
H

1,ūǫ
[uǫ](t) = (Ψ0(ūǫ)−Ψ0(uǫ))H1,ūǫ

[uǫ](t) + ǫ

∫

Ω

(Ψ1(x, ūǫ)−Ψ1(x, uǫ))uǫ(x)ūǫ(x) dx.

≥ (Ψ0(ūǫ)− ǫκ1 −Ψ0(uǫ))H1,ūǫ
[uǫ](t).

Since H
1,ūǫ

[uǫ] > 0 for all t > 0, we have

d log(H
1,ūǫ

[uǫ])

dt
(t) ≥ (Ψ0(ūǫ)− ǫκ1 −Ψ0(uǫ)),

which combined with (5.35) implies that for t ≥ t̄

dH
2,ūǫ

[hǫ](t)

dt
≤ −2

∫

Ω

ū2ǫ(x)

(
∇

(
hǫ(t, x)

ūǫ(x)

))t
A(x)∇

(
hǫ

ūǫ

)
dx+

(
d log

(
H

1,ūǫ
[uǫ]
)2

dt
(t)

)
H

2,ūǫ
[hǫ](t)

+ 4ǫκ1H2,ūǫ
[hǫ](t) + 2ǫλǫ(t)

∫

Ω

Γ1(t, x)hǫ(x)ūǫ(x) dx.

where Γ1(t, x) := Ψ1(x, ūǫ)−Ψ1(x, uǫ).
Since ǫ ≤ ǫ1, by Lemma 5.6, and by rearranging the terms in the above inequality we get for

t ≥ t̄

(5.36)
dH

2,ūǫ
[hǫ](t)

dt
−H

2,ūǫ
[hǫ](t)

d log (H
1,ūǫ

[uǫ])
2

dt
(t) ≤ (−ρ̄+ 4ǫκ1)H2,ūǫ

[hǫ](t)

+ 2ǫλǫ(t)

∫

Ω

Γ1(t, x)hǫ(x)ūǫ(x) dx.

Now, we estimate the last term of the above inequality.

Case p = 1. In this situation, by using the definition of Γ1 and the Cauchy-Schwartz inequality
we have

|Γ1(t, x)| ≤ |1− λǫ|‖ūǫ‖2 sup
x∈Ω

√∫

Ω

k1(x, y)2 dy + ‖hǫ‖2 sup
x∈Ω

√∫

Ω

k1(x, y)2 dy.



24 JEROME COVILLE

Since ‖v‖2 =
√
H

2,ūǫ
[v], by the Cauchy-Schwartz inequality we achieve for t ≥ bart

∫

Ω

Γ1(t, x)hǫ(x)ūǫ(x) ≤ κ
√
H

2,ūǫ
[ūǫ](t)

√
H

2,ūǫ
[hǫ](t)

[
|1− λ(t)|

√
H

2,ūǫ
[ūǫ] +

√
H

2,ūǫ
[hǫ](t)

]
,

≤ κC̄2

√
H

2,ūǫ
[hǫ](t)

[
|1− λ(t)|C̄2 +

√
H

2,ūǫ
[hǫ](t)

]
,

where κ := supx∈Ω

√∫
Ω k1(x, y)

2 dy.

Case p = 2. In this situation, as above by using the definition of Γ1 and the Cauchy-Schwartz
inequality, we see that

|Γ1(t, x)| ≤ |1− λ2ǫ |‖k1‖∞|‖ūǫ‖
2
2 + 2λǫ‖k1‖∞‖ūǫ‖2‖hǫ‖2 + ‖k1‖∞‖hǫ(t)‖

2
2.

So we get for t ≥ t̄
∫

Ω

Γ1(x)hǫ(x)ūǫ(x) ≤ κ
√
H

2,ūǫ
[ūǫ](t)

√
H

2,ūǫ
[hǫ](t)

[
|1− λ2ǫ ||‖ūǫ‖

2
2 + 2λǫ‖ūǫ‖2‖hǫ‖2 + ‖hǫ(t)‖

2
2

]
,

≤ κC̄2

√
H

2,ūǫ
[hǫ](t)

[
|1− λ2(t)|C̄2

2 + (C̃2 + Ĉ)
√

H
2,ūǫ

[hǫ](t)
]
,

where κ = ‖k1‖∞.

In both case, we can see that there exists κ2 and κ3 independent of ǫ, ūǫ and uǫ so that we have
for t ≥ t̄.

(5.37)

∫

Ω

Γ1(x)hǫ(x)ūǫ(x) dx ≤ κ2

√
H

2,ūǫ
[hǫ](t)

[
|1− λp(t)|+ κ3

√
H

2,ūǫ
[hǫ](t)

]
.

By combining (5.37) and (5.36), we achieve for t ≥ t̄

(5.38)
dH

2,ūǫ
[hǫ](t)

dt
−H

2,ūǫ
[hǫ](t)

d log (H
1,ūǫ

[uǫ])
2

dt
(t) ≤ (−ρ̄+ ǫκ5)H2,ūǫ

[hǫ](t)

+ ǫκ4|1− λp(t)|
√
H

2,ūǫ
[hǫ](t),

where κ4 := 2Ĉκ2 and κ5 := 2Ĉκ2κ3 + 4κ1 are positive constants independent of ǫ, uǫ and ūǫ.
The proof now will follow several steps:

Step One: Since ǫ ≤ ǫ1 by (5.30) we have |1−λp(t)| ≤ κ6 for all t > t̄, with κ6 a universal constant
independent of ǫ. We claim that

Claim 5.8. Let ǫ ≤ ǫ3 := min(ǫ1, ǫ2 := ρ̄
2κ5

), then for all uǫ positive solution to (5.1)–(5.2) there exists

t̄′ ≥ t̄ so that for all t ≥ t̄′ we have

√
H

2,ūǫ
[hǫ](t) ≤ 2ǫ

(
Ĉ

ĉ

)
2κ4κ6
ρ̄

.

Proof:

Indeed for ǫ ≤ ǫ3 by (5.38) for t ≥ t̄ we have

(5.39)
dH

2,ūǫ
[hǫ](t)

dt
−H

2,ūǫ
[hǫ](t)

d

dt
log (H

1,ūǫ
[uǫ](t))

2 ≤ −
ρ̄

2
H

2,ūǫ
[hǫ](t) + ǫκ4κ6

√
H

2,ūǫ
[hǫ](t).

From the above differential inequality we can check that there exists t′0 > t̄ so that
√
H

2,ūǫ
[hǫ](t0) ≤

ǫ4κ4κ6
ρ̄

.

If not, then
√
H

2,ūǫ
[hǫ](t) >

ǫ4κ4κ6

ρ̄
for all t > t̄ and by dividing (5.39) by

√
H

2,ūǫ
[hǫ](t) and by

rearranging the terms, we get the inequality

(5.40)
√
H

2,ūǫ
[hǫ](t)

d

dt
log

(
H

2,ūǫ
[hǫ](t)

H
1,ūǫ

[uǫ](t)2

)
≤ −

ρ̄

2

√
H

2,ūǫ
[hǫ](t) + ǫκ4κ6 < −ǫκ4κ6 ∀t ≥ t̄.
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Thus F (t) := log
(

H
2,ūǫ

[hǫ](t)

H
1,ūǫ

[uǫ](t)2

)
is a decreasing function which is bounded from below since

λǫ ≤ Ĉ. Moreover
√
H

2,ūǫ
[hǫ](t) >

ǫ4κ4κ6

ρ̄
for all t > t̄. Therefore F converges as t tends to +∞

and dF
dt

→ 0. Thus for t large enough, we get the contradiction

−
ǫκ4κ6

2ρ̄
≤
√
H

2,ūǫ
[hǫ](t)

d

dt
log

(
H

2,ūǫ
[hǫ](t)

H
1,ūǫ

[uǫ](t)2

)
≤ −

ǫκ4κ6

ρ̄
.

Let Σ be the set Σ :=
{
t > t′0|

√
H

2,ūǫ
[hǫ](t) >

ǫ4κ4κ6

ρ̄

}
. Assume that Σ is non empty otherwise

the claim is proved since Ĉ
ĉ
> 1. Let us denote t∗ := inf Σ. By construction, since hǫ is continuous

we have
√
H

2,ūǫ
[hǫ](t∗) =

ǫ4κ4κ6

ρ̄
.

Again, by dividing(5.39) by
√
H

2,ūǫ
[hǫ](t) and rearranging the terms, we get for all t ∈ Σ

(5.41)
√
H

2,ūǫ
[hǫ](t)

d

dt
log

(
H

2,ūǫ
[hǫ](t)

H
1,ūǫ

[uǫ](t)2

)
≤ −

ρ̄

4

√
H

2,ūǫ
[hǫ](t) + ǫκ4κ6 ≤ 0.

Thus log
(

H
2,ūǫ

[hǫ](t)

H
1,ūǫ

[uǫ](t)2

)
is a decreasing function of t for all t ∈ Σ. By arguing on each connected

component of Σ and by using Lemma 5.2 we can check that for t ≥ t∗ we have

√
H

2,ūǫ
[hǫ](t) ≤

Ĉ

ĉ

ǫ4κ4κ6
ρ̄

.

Hence, since Ĉ
ĉ
> 1 we get for all t ≥ t0,

√
H

2,ūǫ
[hǫ](t) ≤

Ĉ

ĉ

ǫ4κ4κ6
ρ̄

.

�

Step Two: Recall that λǫ(t) satisfies

(5.42) λ′ǫ(t) =
Ψ̃ǫ(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

(1− λpǫ (t)) +R1(t) +R2(t)

where Ri are the following quantity:

R1(t) :=
1

‖ūǫ‖2L2(Ω)

∫

Ω

[Ψǫ(x, ūǫ)−Ψǫ(x, uǫ)]ūǫ(x)h(t, x) dx(5.43)

R2(t) :=
λǫ(t)

‖ūǫ‖2L2(Ω)

∫

Ω

(
p∑

k=1

(
k

p

)
λp−kǫ (t)

∫

Ω

kǫ(x, y)ū
p−k
ǫ (y)hk(t, y) dy

)
ūǫ(x)

2 dx(5.44)

Since p = 1 or p = 2 then by Lemma 5.2 and Hölder’s inequality, we can see that there exists κ7
independent of ǫ, ūǫ, uǫ so that for all t ≥ t̄

(5.45) |R1(t) +R2(t)| ≤ κ7
Ψ̃(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

√
H

2,ūǫ
[hǫ](t).

Next, we define some constant quantities:

δ0 :=
Ĉ

ĉ

4κ4κ6
ρ̄

,(5.46)

ǫ∗ := min

{
ǫ3,

ρ̄ĉ

16κ4κ7Ĉ
,

1

4κ7δ0

}
,(5.47)

By the previous step, we see that for ǫ ≤ ǫ∗ we have for any positive solution uǫ to (5.1)–(5.2)
there exists t̄′ so that for all t ≥ t̄′ √

H
2,ūǫ

[hǫ](t) ≤ ǫδ0.

We claim that
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Claim 5.9. For ǫ ≤ ǫ∗, there exists tǫδ0 ≥ t̄′ such that for all t ≥ tǫδ0
√
H

2,ūǫ
[hǫ](t) ≤

ǫδ0

2
.

Proof:

First, we can check that for ǫ ≤ ǫ∗ there exists t∗ so that for all t ≥ t∗

|1− λpǫ (t)| ≤ 2ǫδ0κ7.

Let λ
±ǫδ0κ7

∈ C1((t̄′,∞),R+) be the solution of the ODE

(5.48) λ′
±ǫδ0κ7

(t) =
Ψ̃ǫ(ūǫ)λ±ǫδ0κ7

‖ūǫ‖2L2(Ω)

(1± ǫδ0κ7 − λp
±ǫδ0κ7

(t)), λ
±ǫδ0κ7

(t̄′) = λǫ(t̄
′).

Since the above equation is of logistic type and λ
±ǫδ0κ7

(t̄′) > 0, λ
±ǫδ0κ7

(t) → λ̄± as t → ∞ where

λ̄± is the solution of the algebraic equation 1± ǫδ0κ7 − λ̄
p
± = 0.

By (5.42) and (5.45), we can check that λǫ satisfies for t ≥ t̄′

λ′ǫ(t) ≥
Ψ̃ǫ(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

(1− ǫδ0κ7 − λpǫ (t)),(5.49)

λ′ǫ(t) ≤
Ψ̃ǫ(ūǫ)λǫ(t)

‖ūǫ‖2L2(Ω)

(1 + ǫδ0κ7 − λpǫ (t)).(5.50)

By the comparison principle, from (5.48) (5.49) and (5.50) we get λ−ǫδ0κ7
(t) ≤ λǫ(t) ≤ λ+ǫδ0κ7

(t)
for all t ≥ t̄′. Thanks to the convergence of λ±ǫδ0κ7

(t) to λ̄±ǫδ0κ7
and the monotone behaviour of

λ̄±ǫδ0κ7
with respect to ǫ we get

λ̄−2ǫδ0κ7
≤ λǫ(t) ≤ λ̄+2ǫδ0κ7

for t ≥ t∗,

for some t∗ ≥ t̄′. Therefore, for t ≥ t∗ we have

|1− λpǫ (t)| ≤ 2ǫδ0κ7.

From the latter estimate, since ǫ ≤ ǫ3 we deduce from (5.38) that for t ≥ t∗

dH
2,ūǫ

[hǫ](t)

dt
−H

2,ūǫ
[hǫ](t)

d

dt
log (H

1,ūǫ
[uǫ](t))

2 ≤ −
ρ̄

2
H

2,ūǫ
[hǫ](t) + 2ǫ2κ4κ7δ0

√
H

2,ūǫ
[hǫ](t).

By following the argumentation of Step one, we can show that there exists tǫδ0 ≥ t∗ such that for
t ≥ tǫδ0 we have

√
H

2,ūǫ
[hǫ](t) ≤

8ǫĈκ4κ7
ĉρ̄

ǫδ0,

which thanks to ǫ ≤ ρ̄ĉ

16κ4κ7Ĉ
leads to

√
H

2,ūǫ
[hǫ](t) ≤

ǫδ0

2
.

�

Step Three: Since for all t ≥ tǫδ0 , √
H

2,ūǫ
[hǫ](t) ≤

ǫδ0

2
,

by arguing as in the proof of Claim 5.9, we see that there exists t
ǫ
δ0
2

so that for all t ≥ t
ǫ
δ0
2

√
H

2,ūǫ
[hǫ](t) ≤

ǫδ0

4
.

By reproducing inductively the above argumentation, we can construct a sequence (tn)n∈N so
that for all t ≥ tn we have √

H
2,ūǫ

[hǫ](t) ≤
ǫδ0

2n
.
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Hence, when ǫ ≤ ǫ∗ we deduce that

lim
t→∞

H
2,ūǫ

[hǫ](t) → 0.

�
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APPENDIX A. EXISTENCE OF A POSITIVE SOLUTION

In this appendix, we present a construction of a smooth positive solution of (1.1) The construc-
tion is rather simple and follows some of the ideas used in [13]. First, let p ≥ 1 be fixed and
let us regularised u0 by a smooth mollifier ρǫ and consider the solution of (1.1)–(1.3) with initial
condition uǫ,0 := ρǫ ⋆ u0 instead of u0.

Now we introduce the following sequence of function (un(x, t))n∈N where un is defined recur-
sively by u0(x, t) = u0(x) and for n ≥ 0, un+1 is the solution of

∂un+1

∂t
= ∇ · (A(x)∇un+1) + un+1

(
r(x) −

∫

Ω

K(x, y)|un|
p(t, y) dy

)
in R

+ × Ω(A.1)

∂un+1

∂n
(t, x) = 0 in R

+ × ∂Ω(A.2)

un+1(x, 0) = uǫ,0(x) in Ω.(A.3)

Since by assumption uǫ,0 ∈ C∞(Ω), (un)n∈N is well defined from the standard parabolic theory
see [8, 23]. Moreover since uǫ,0 ≥ 0 and 0 is a sub-solution of the problem (A.1)– (A.3) for each n,
by the parabolic strong maximum principle we deduce that un(x, t) > 0 for all n, x and t > 0.

Now since unand K are non-negative functions, for all n ≥ 0, un+1 is a subsolution of the
linear problem:

∂v

∂t
= ∇ · (A(x)∇v) + r(x)v in R

+ × Ω(A.4)

∂v

∂n
(t, x) = 0 in R

+ × ∂Ω(A.5)

v(x, 0) = uǫ0(x) in Ω.(A.6)

and by the parabolic maximum principle, we have un ≤ v ≤ ‖uǫ0‖∞e
‖r‖∞t in R

+ × Ω for all n.
Therefore from the standard Schauder parabolic a priori estimates, we deduce that (un)n∈N is
uniformly bounded in C1,α((0, T ), C2,β(Ω)) for each T > 0. Thus by diagonal extraction, there
exists a subsequence (unk

)k∈N which converges to a solution u(x, t) ≥ 0 of (1.1)–(1.3) with initial
condition uǫ,0.

Let us now take the limit ǫ→ 0. By multiplying (1.1) by φ1 and integrate it over Ω we have

d

dt

(∫

Ω

uǫ(t, x)φ1(x) dx

)
= −λ1

∫

Ω

uǫφ1 −

∫

Ω×Ω

K(x, y)φ1(x)uǫ(t, x)u
p
ǫ (t, y) dydx.

Since uǫ, φ1 and K(x, y) are positives in Ω̄ it follows that

d

dt

(∫

Ω

uǫ(t, x)φ1(x) dx

)
≤

∫

Ω

uǫφ1

(
−λ1 − C0

∫

Ω

uǫφ1

)
,

for some positive constant C0 which depends only on φ1 and K . Thanks to the logistic character
of the above inequality, we deduce that ‖uǫ‖L1(Ω) is bounded uniformly in time independently
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of ǫ. By using Theorem 2.1 and Remark 2.2 with H(s) : s 7→ sp and φ1, it follows that

dH
p,φ1

[uǫ](t)

dt
≤ −p(p− 1)

∫

Ω

(
uǫ(t, x)

φ1(x)

)p−2

φ21

(
∇

(
uǫ(t, x)

φ1(x)

))t
A(x)∇

(
uǫ(t, x)

φ1(x)

)
dx

+ p

∫

Ω

φ21(x)

(
uǫ

φ1
(t, x)

)p [
−λ1 −

∫

Ω

K(x, y)upǫ (t, y) dy

]
dx.

As above since uǫ, φ1 and K(x, y) are positives in Ω̄ it follows that

dH
p,φ1

[uǫ](t)

dt
≤ C1Hp,φ1

[uǫ](t)
[
−λ1 − C2Hp,φ1

[uǫ](t)
]
,

for some positive constants C1 and C2 which depends only on φ1 and K . Thus ‖uǫ‖Lp(Ω) is
bounded uniformly with respect to ǫ. Since the coefficient of the parabolic PDE are bounded in
L∞ independently of ǫ, by standard parabolic Lp estimates [37], it follows that for all T > 0, uǫ is

bounded independently of ǫ in W 1,2,1((0, T )×Ω)∩W 1,1,1
0 (0, T )×Ω), where for p ≥ 1W 1,2,p and

W
1,1,p
0 denote the Sobolev space

W 1,2,p := {u ∈ Lp((0, T )× Ω) | ∂tu,∇u, ∂iju ∈ Lp((0, T )× Ω)},

W
1,1,p
0 := {u ∈ Lp((0, T )× Ω), ∂nu = 0 on ∂Ω | ∂tu,∇u ∈ Lp((0, T )× Ω)}.

By a standard bootstrap argument using the Parabolic regularity, we see that for each T > 0,
(uǫ) is bounded in C1,α((0, T ), C2,β(Ω)) independently of ǫ. Thus by diagonal extraction, there
exists a subsequence (uǫnk

)k∈N which converges to a smooth solution u(x, t) ≥ 0 of (1.1)–(1.3)
with initial condition u0.
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