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Structural morphology of tensegrity systems

R. Motro

Abstract The coupling between form and forces,

their structural morphology, is a key point for tenseg-

rity systems. In the first part of this paper we describe

the design process of the simplest tensegrity sys-

tem which was achieved by Kenneth Snelson. Some

other simple cells are presented and tensypolyhedra

are defined as tensegrity systems which meet poly-

hedra geometry in a stable equilibrium state. A nu-

merical model giving access to more complex sys-

tems, in terms of number of components and geomet-

rical properties, is then evoked. The third part is de-

voted to linear assemblies of annular cells which can

be folded. Some experimental models of the tenseg-

rity ring which is the basic component of this “hollow

rope” have been realized and are examined.

Keywords Tensegrity state · Structural morphology ·

Tensypolyhedra · Tensegrity rings · “Hollow rope”

1 Introduction

The coupling between forms and forces is one of the

main topics of Structural Morphology. This coupling

is very strong for systems in tensegrity state, cur-

rently called “tensegrity systems”. Since some years
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the number of publications on tensegrity systems is in-

creasing. The aim of this paper is to focus on the mor-

phogenesis of tensegrity systems since earlier cells to

present tensegrity rings studied in our research team.

If some of the results have been soon published [1],

new developments are presented. Among publications

devoted to mechanical behavior of tensegrity systems,

the work carried out by Mark Schenk [2], provides an

interesting literature review.

2 From simple to complex cells

2.1 Introduction

The problem of form finding is central in the study of

tensegrity systems. Since the very beginning of their

creation, by Snelson, and Emmerich, who realized the

concept that has been enounced by Fuller, the defini-

tion of cells catches the interest of the designers. The

following paragraphs illustrate the main steps between

the simplest system, the so-called “simplex” and the

last complex systems which are actually designed.

This is a way from simplicity to complexity with a

set of several models: physical models, form models

based on polyhedra, force models mainly based either

on force density or on dynamic relaxation.

2.2 The double X and the simplest cell

Among different explanations concerning the design

of the first tensegrity cell with nine cables and three
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Fig. 1 Strut effect along direction 1–2

struts, the most convincing one, according to my own

opinion, can be found in the patent delivered to Ken-

neth Snelson [3]. A key explanation is developed in

this patent (see Fig. 1). The basic idea is contained in

X-shape which is an assembly of two struts and four

cables the whole system being in self equilibrium. By

cutting one of the four cables of the X-shape, the re-

maining system acts like an hydraulic jack along the

direction of this cable (we called it the “strut effect”

since it is equivalent to a strut under compression).

This idea was used by Kenneth Snelson after a spe-

cific work on the assembly of components by mean

of a rhombus of cables [10]: “one to another” and

“one to the next” sculptures have opened the way to

the “Double-X”. In this third sculpture, we can see

that Snelson assembled two “X-shapes” with a rhom-

bus of cables in-between. Several other cables were

added in order to prevent a motion of the “X-shapes”

out of their own plane. The next step was to assem-

ble three “X-shapes” together using again three rhom-

buses of cables. This assembly theoretically ends up

with twelve cables, but three of them are common to

two rhombuses: nine cables only remained. Each of

the three “X-shape” played the role of a strut. This as-

sembly was finally composed of nine cables and three

struts and constituted the simplest tensegrity system

which could be realized in three dimensional space.

Some authors call it the “simplex” (Fig. 2).

2.3 Simple systems

The first attempts to create new elementary cells were

based on some simple characteristics:

• Use of single straight struts as compressed compo-

nents

• Use of polygonal compressed components (chains

of struts)

• Choice of only one set of cable length (“c”)

• Choice of only one set of strut length (“s”)

2.3.1 Prismatic cells

The simplex, evoked in the previous paragraph, can

also be seen as the result of the transformation of a

straight triangular prism. The equilibrated self stress

geometry is defined by the relative rotation of the two

triangular bases equal to 30◦ degrees (see Fig. 3).

Clockwise and anticlockwise solutions can be used.

It can be demonstrated (see [4]) that, for p-prism,

the relative rotation has to satisfy the following rela-

tion :

θ = ±
π · (p − 2)

2 · p
. (1)

2.3.2 From polyhedra to tensypolyhedra

The so-called “form controlled method” [5] was

mainly used by David Georges Emmerich. The prob-

lem is to know if there is a possibility to design a

tensegrity cell by keeping the node coordinates in the

geometry of a regular (or a semi regular) polyhedron.

It is possible for some cases, and not for others.

When it is possible to insert struts inside the poly-

hedron and to establish a self stress state of equi-

librium, we suggested to use the denomination “ten-

sypolyhedron”. Olivier Foucher [6] realized a com-

prehensive study from which I extract two examples

among polyhedra, which cannot be classified as ten-

sypolyhedra. These two examples correspond to sys-

tems comprising six struts with eighteen cables for the

truncated tetrahedron, and six struts with twenty four

cables for the expanded octahedron.

(a) Truncated tetrahedron

This semi regular polyhedron has four triangular faces

and four hexagonal faces. It is impossible to obtain a

tensegrity system in its initial geometry (see Fig. 4a).

The hexagonal faces are not planar, and it is visible on

the corresponding physical model at its top hexagon

(see Fig. 4b).

This result has been validated by calculations made

with a numerical model based on dynamic relaxation

by Belkacem [7]. It can also be checked on the spe-

cific software that we developed in our laboratory in

order to identify the states of self stress (“Tensegrite

2000”). But it also useful to make a very simple re-

mark: if we consider one of the nodes, let say A, it

can be seen that a necessary condition of equilibrium

is to have the corresponding strut in position as shown

on Fig. 5a (a simple symmetry consideration has to be
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Fig. 2 Double-X (a), Simplex (b), Triple-X (c)

Fig. 3 Equilibrium geometry (a—perspective, b—in plane

view)

done). But in this case the other end of the strut would

not be on an other node; Fig. 5b shows the situation

Fig. 4 Truncated tetrahedron wit six struts inside (a—initial

geometry and b—physical model)

and simultaneously the impossibility of equilibrium in

the original shape.
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Fig. 5 Truncated tetrahedron: research for an equilibrium

geometry. (a—node A equilibrium necessary configuration,

b—real configuration)

(b) Expanded octahedron (icosahedron)

The second example of a six struts system is related

to the geometry of the regular polyhedron known as

icosahedron. It is possible to compute the shape re-

sulting from the insertion of the struts. The number of

cables of this tensegrity system is equal to twenty four,

and it is less than the number of edges of the icosahe-

dron (thirty).

The two geometries can be compared on basis of

the ratio between the length of struts “s” and the dis-

tance between two parallel struts “d” (Fig. 6b–d). For

the icosahedron this ratio is equal to approximatly

1.618 (that is the “golden” ratio), for the associated

tensegrity system it is equal to exactly 2. This result-

ing tensegrity system can be seen as the expansion of

an octahedron, since there are at the end eight trian-

gles of cables (the same as the number of triangular

faces for an octahedron), and the three pairs of struts

can be understood as the splitting of the three internal

diagonals.

(c) The spinning icosahedron

Since it is not possible to design a regular icosahedron

with six equal struts, we tried to build one with six

struts, one of them being greater than the five others.

The basis of this design is a prismatic pentagonal sys-

tem; a central strut is placed on the vertical symmetry

Fig. 6 Comparison between icosahedron geometry (a) and ex-

panded octahedron geometry (a)

Fig. 7 Spinning icosahedron: perspective (a) and in plane

(b) views

axis. This axis becomes a rotation axis. The lengths of

the struts and of the cables are calculated in order to

reach an equilibrium state which is characterized by

the fact that the twelve nodes occupy the geometrical

position of the apices of an icosahedron. The name is

chosen by reference to this axis of rotation and to the

icosahedron (Fig. 7).

It can be noticed also that this system can be clas-

sified as a “Z” like tensegrity system according to the

classification submitted by Anthony Pugh [11]. There

are only two cables and one strut at each node, except

for the central strut.
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Fig. 8 Cuboctahedron tensegrity system

2.3.3 Complex compressed components: circuit like

systems

Among all tensegrity systems, some are characterized

by the specific topology of their compressed compo-

nents. These components are no more single struts, but

chains of struts. Two examples are presented.

(a) Cuboctahedron

For this example the continuum of cables is exactly

mapped on the edges of a cuboctahedron, which

is one of the semi regular polyhedra (also called

Archimedean polyhedra). There are four triangular

compressed components. Each of them constitutes a

circuit of struts (a circuit is a particular case of chain).

These triangles are intertwined and their equilibrium

is ensured simultaneously by a hexagon of cables and

the effect of the three other triangles for three of the

apices of each hexagon. This is a case of tensypolyhe-

dron (Fig. 8).

(b) Mono circuit tensypolyhedron

This second case is a very interesting one; the chain of

fifteen struts is closed and creates a circuit which is the

only compressed component (Fig. 9). The continuum

of tensioned components is a polyhedron with two

pentagonal parallel faces, five quadrangular and ten

triangular faces. We will develop a study on “tenseg-

rity rings” in the following paragraphs, based on this

specific cell.

3 Toward complexity

3.1 Introduction

If the elementary cells were based on polyhedra, it be-

came obvious that it could be interesting to design

Fig. 9 Mono circuit tensypolyhedron

more complex systems, with many different lengths

for cables and struts. Specifically, we had this need

not for architectural structures, but for a specific prob-

lem in biology: the cytoskeleton of human cells can

be analogically compared to tensegrity systems as far

as their common mechanical behaviour is concerned.

The first attempts were developed with force density

method by Nicolas Vassart [4] and allowed to work on

multi parameter systems. But this method is not very

well adapted for very complex systems since it is dif-

ficult to control the final shape. Therefore we began

to work on physical models before developing a nu-

merical method which gives some first interesting re-

sults.

3.2 Preliminary physical models

It is useful to begin with physical models, because it

is the best way to understand the complexity of the

design with all implied parameters. Conversely a vir-

tual model is certainly easier to use in terms of the

number of resulting solutions, but before modelling a

process it is necessary to understand the different dif-

ficulties which can occur and to develop an adapted

virtual model for taking these particularities into ac-

count. The first complex system was achieved some

years ago and was called “cloud n◦1” (Fig. 10).

We developed then a more systematic process at the

school architecture in Montpellier. Figure 11 is an il-
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Fig. 10 Cloud n◦1

Fig. 11 Cloud n◦2

lustration of the models which have been built during

a workshop.

4 Numerical models toward complex systems

4.1 Introduction

It was necessary to model and to generalize the

process through numerical methods. This work has

been achieved by Zhang et al. [8].

The form-finding process that we use started from

an initial specification of the geometry. At the same

time, self stresses in some or all the components are

also arbitrarily specified. Hence, excepted particular

cases or lucky situations, the system cannot be in equi-

librium. A motion of the structure is then caused by

the unbalanced internal forces. The displacements are

Fig. 12 Stella Octangula

computed by using the dynamic relaxation method

that is based upon the calculation of a sequence of de-

creasing energy peaks and leads the system to reach

the steady equilibrium state.

4.2 Contact check

During form-finding process, the minimum distance

between two spatial line segments should be checked

for avoiding contact. It is necessary especially when

system geometry is complex and several algorithms

for checking can be used [9]. If in final equilibrium

state some elements touch each other (which means

improper topology or geometry chosen by designer),

then the topology or the geometry has to be modified

until no contact is ensured. It can be done in a “slight

way” by modifying stiffness values or more roughly

by changing the topology.

4.3 Applications

4.3.1 “Stella Octangula”

The used topology for this application corresponds

with one of David Georges Emmerich’s proposals and

is represented in Fig. 12 (see references [1] and [7]).

The system is designed on the basis of a triangular

anti-prism: struts lie on the triangular bracing faces

along the bisecting direction, one of their ends is an

apex of a layer triangular face and the other end is in

the second parallel plane. There are 6 struts, 18 cables

connected to 12 nodes and, for each strut one node is

only connected to two cables: the corresponding equi-

librium is thus realized into a plane. The length of all

struts is roughly 19 and roughly 11 for all cables (all

values are a dimensional).
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We investigated the equilibrium geometry by dy-

namic relaxation method by prescribing initial stresses

in struts and cable elements (−10 and 20 respectively).

For struts the stiffness is EA = 1000 and for cables

EA = 10; parameters �t = 1 and λ = 1 (λ is a con-

vergence parameter; the maximum outbalanced force

of the system is 10−4.

An equilibrium state is then obtained: the compres-

sions in struts are roughly −33 and the tensions in

cables roughly 19. Even though the process is started

from an arbitrary initial self stress specification, in fi-

nal equilibrium state the absolute values of the ratio

between the normal force and the reference length (i.e.

the force density coefficient, [10] in all elements are

almost the same (the absolute value is approximately

1.79).

4.3.2 “Free form tensegrity”

No topology of the whole system is specified in ad-

vance for that example. The process is started from

a simple system and, next, more and more struts and

cables are added step by step. The computational se-

quence is summarized as follows: the process starts

from a quadruplex (Fig. 13a, simple regular shape),

and another vertical strut 9–10 is added (Fig. 13b). To

keep nodes 9 and 10 in equilibrium state, it is neces-

sary to add six cables (three connected to node 9 and

another three to node 10). Note that other possibilities

exist for adding these new elements but we have cho-

sen the simplest way. Following the same procedure,

three other struts (11–12; 13–14; 15–16) and eighteen

cables are added to the system step by step; the topolo-

gies are respectively shown in Fig. 14a, b and c.

In the system represented in Fig. 14b, there are

8 struts and 36 cables connected to 16 nodes. Cal-

culation parameters are EA = 1000 and for cables

EA = 10; parameters �t = 1 and λ = 1; the maxi-

mum outbalanced force of the system is still 10–4; ini-

tial tension and compression in all cables and struts are

respectively 2 and −1.

An equilibrium state is obtained by the dynamic

relaxation method based on this given topology. The

minimum distance between any two spatial elements

is 0.481; the compression in struts is between −2.854

and −4.328, the tensions in cables between 0.346 and

3.453. The result shows that the tensions in element

4–6, 9–1, and 11–5 are respectively 0.640, 0.391 and

0.346. They are lower when compared with the val-

ues in other cables and by topology analysis it can

be found that there are more than three cables con-

nected to nodes 1, 4, 5, 6, 9, and 11. Since some of

these cables can be regarded as redundant elements,

they are removed from the system. This is the case

for cables 4–6, 9–1 and 11–5. Keeping all other pa-

rameters the same as previously, form-finding process

Fig. 13 From four struts to six struts
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Fig. 14 From seven struts to eight struts

is restarted. Finally, a new geometry and equilibrated

self stress state are obtained (Fig. 14c). The compres-

sions in struts range from −2.680 to −4.342; the ten-

sions in cables are between 0.758 and 3.049 and the

minimum distance between any two spatial elements

is 0.611. There are 33 cables and 8 struts connected

respectively to 16 nodes in the whole system.

In this example only two different lengths (19.9 and

32.9) for the eight struts are necessary at the starting

configuration. During the form-finding process, one

strut following another one is added to the system ran-

domly. To keep this strut in stability, a certain number

of cables are added to its ends. Many possibilities exist

for such topology modifications and the designer can

choose the more suitable solution.

It is a matter of fact that after many years of work

on structural morphology of tensegrity systems, it is

now possible to design free form systems. These cells

can be used alone or in assemblies for architectural

or other purposes. It will then be possible to use the

structural principle of tensegrity systems with its ad-

vantages and disadvantages.

5 Linear assemblies

5.1 Introduction

In his book devoted to a first approach of tensegrity,

Anthony Pugh [11] showed three models which at-
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Fig. 15 Three “Circuits systems”

tracted my attention. A first one comprised four tri-

angular compressed components inside a net of tensile

ones. The overall geometry was organized according

to a cuboctahedron, one of the semi regular polyhe-

dra. The second model was very surprising since the

struts constituted a single circuit with 15 nodes and

15 compressed components. For this model, the ca-

bles are the edges of a polyhedron with two pentagonal

bases. The third one is a twenty-strut four-layer circuit

pattern system. There are represented on Fig. 15. This

presentation concerns only the second cell.

5.2 Structural composition principle

5.2.1 Basic idea and developments

When I decided to build a physical model of the

fifteen-strut circuit pattern (Fig. 16), I needed to use

five vertical plastic “mounting” struts that I removed

at the end of the process, but it became obvious that

a general method, valid for many other cells could be

developed, starting on a geometrical basis. It is nec-

essary to have a geometrical description of the nodes

position, and then a topological process can lead to

different structural compositions according to a pre-

scribed objective: single-circuit system, or mp-circuit

system (m circuits of p struts). In Fig. 15, the sec-

ond system is a mono-component system all the struts

constitute a single circuit. The left hand side system

comprises four 3-strut circuits, and the right hand side

system comprises five 4-struts circuits.

5.2.2 Fifteen-strut tensegrity ring

This idea is illustrated for the fifteen-strut circuit pat-

tern system. The geometrical basis is a straight prism

with pentagonal basis (Fig. 17a).

Fig. 16 Module assembly (a—geometrical model, b—physical

model)

The vertical edges will be removed at the end of

the process. In each of the lateral quadrangular faces

one strut is implemented along a diagonal, respecting a

five-order symmetry of rotation (Fig. 17b). Additional

nodes and struts are created according to the follow-

ing rules: each new node lays on a bisector line of the

pentagon, which is a cross section of the initial straight

prism, at mid height (Fig. 17c). Their position on this

straight line can be variable, but these new nodes have

to be outside of the prism. It could be chosen other

geometrical positions for these nodes, but it is neces-

sary to respect some regularity for these first cells. The

resulting cell will be a regular one, with only length for

the struts and one length for the cables. It is then nec-

essary to link this new node with two others, by adding

two struts.

These struts have a common node (“e” on Fig. 18),

one of them is linked to a bottom node “b”, the other

to a top node of the pentagonal prism “t”.

The addition of eight other struts is realized accord-

ing to the same process to end up with a tensegrity cell

with fifteen struts and thirty cables: five for each basis

and four per external node (these cables are linked to

the four angles of each lateral quadrangular face of the

initial prism).
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Fig. 17 First step: five first struts implementation on lateral faces (b) of a pentagonal prism (a), mid high pentagon (c)

Fig. 18 Addition of two supplementary struts

5.2.3 “Tensegrity rings”

Since the whole components, cables and struts are in-

side a hollow tube shape, these tensegrity cells are

grouped under the denomination “tensegrity rings”

(Fig. 20).

It is simple to act on the geometrical parameters,

namely the height “h” of the cell, the interior radius

“r” and the exterior radius “R” in order to meet some

criteria of architectural type. The overall geometry can

also be described with the height, one of the radii and

the thickness of the tube. At this stage only regular

systems have been studied, but there is no doubt that

other possibilities are opened in the field of irregular

shapes.

5.3 Physical models

5.3.1 Context

It is always useful to build some physical models so

as to check some parameters and procedures. Apart

the initial plastic models, we built two sets of tenseg-

rity rings during a first workshop at Istituto Universi-

tario de Archittetura de Venetia (February 2006). Two

geometries were experimented: hexagonal and pentag-

onal shapes. The size of the models is characterized by

struts of one meter length.

5.3.2 Hexagonal tensegrity ring

The model presented on Fig. 21 was satisfying accord-

ing to the building process that we adopted with a first

stage taking a straight prism as basis.

5.3.3 Foldability tensegrity ring

These models allowed us to verify a hypothesis on the

possibility of folding procedures. Generally the intro-

duction of finite mechanisms which lead to more com-

pact systems can be realized either by struts shorten-

ing or cables lengthening. Mixed solutions may also

be used.

Our hypothesis concerned the folding policy. We

chose to act only on the polygonal circuits lying on

the two bases. We begin (Fig. 22a) by removing the

upper polygon of cables. When the top polygon is

completely removed (Fig. 22c), the lower half part of

the ring is still rigid at first order. When the lower

polygonal circuit of cables is removed (Fig. 22d), the

tensegrity ring is completely flat. It will, of course, be

necessary to validate this experiment with a numeri-

cal model. Unfolding is represented on Fig. 23. But

it appears that two possibilities can be investigated:

the first one corresponds strictly to the above descrip-

tion. A second one could be to act simultaneously on

the two bases: in this case the whole cell would be

folded on its median plane, which could be of interest

for some applications.
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Fig. 22 Folding of an hexagonal tensegrity ring (a—initial, b and c relaxing upper cables, d—final flat state)

Fig. 23 Unfolding a tensegrity ring

5.4 The “hollow rope”

This study could have been done a long time before,

if we look to the book of Pugh. Perhaps some peo-

ple took interest in it, but it seems a comprehensive

study could be very promising since many applications

can take benefice of the properties of these tensegrity

rings. Several ideas are now investigated. “The hollow

rope” is one of them, architectural applications seem

also to interest people.

The simplest application is to add several tensegrity

units by their basis creating so a kind of “hollow rope”.

The units can be identical or not in terms of height. If

the two bases are not parallel, new curved mean fibber

are created. A spatial curve could be designed, pro-

vided some overall stability cables are added to the

whole tube. Many solutions are available.

The idea of “hollow rope” (Fig. 24) was soon de-

scribed with other structural compositions, which did

not rely on tensegrity principle. Robert Le Ricolais,

and also Maraldi developed their own solutions. I gave

some descriptions of their projects in my PhD [1].
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Fig. 24 The hollow rope (elevation and section)

Fig. 25 Physical model for a tensegrity ring (unfolded and folded states)

Several parameters can be adjusted. According to

the size of the global system, and to an appropriate

size of tubes and cables, a pedestrian bridge could be

designed on this structural composition, since the in-

ner free space could receive the walking floor. An opti-

mization of the involved parameters (height, inner ra-

dius, outer radius) has to be achieved, with possible

addition of longitudinal stiffening cables. A pertinent

utilization of irregular cells would allow to designing

curve shapes.

At another scale, our studies on cytoskeleton of hu-

man cells lead us to model several components like

actine filaments and microtubules, which are chains

of polymers. The hollow rope would certainly model

correctly these microtubules, taking into account flu-

ids interaction.

5.5 Actuality of tensegrity rings

These first studies on rings provided the roots for more

intensive research, which is carried on in our labora-

tory. The foldability of these rings is tested on more

sophisticated models (Fig. 25).

6 Conclusion

In this paper the structural morphology of tensegrity

systems is presented from the simplest cell, the so

called “simplex”, to more complex ones like pentag-

onal and hexagonal tensegrity rings. The assembly of

tensegrity rings provides interesting structural solu-

tions like the “hollow rope”, but one of their main fea-

tures is their foldability which could be the key for per-

tinent applications. Other assemblies like woven dou-

ble layer tensegrity grids can be derived from simple

cells, constituting a way from simplicity to complex-

ity.
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