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Abstract

Dykes often grow next to other dykes, evidenced by the widespread occur-

rence of dyke swarms that comprise many closely-spaced dykes. In giant dyke

swarms, dykes are observed to maintain a finite spacing from their neighbors

that is tens to hundreds of times smaller than their length. To date, mechan-

ical models have not been able to clarify whether there exists an optimum,

or natural spacing between the dykes. And yet, the existence of a natural

spacing is at the heart of why dykes grow in swarms in the first place. Here

we present and examine a mechanical model for the horizontal propagation

of multiple, closely-spaced blade-like dykes in order to find energetically op-

timal dyke spacings associated with both constant pressure and constant
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influx magma sources. We show that the constant pressure source leads to

an optimal spacing that is equal to the height of the blade-like dykes. We

also show that the constant influx source leads to two candidates for an op-

timal spacing, one which is expected to be around 0.3 times the dyke height

and the other which is expected to be around 2.5 times the dyke height.

Comparison with measurements from dyke swarms in Iceland and Canada

lend initial support to our predictions, and we conclude that dyke swarms

are indeed expected to have a natural spacing between first generation dykes

and that this spacing scales with, and is on the order of, the height of the

blade-like dykes that comprise the swarm.
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dyke swarms, dyke spacing, fluid-driven cracks, hydraulic fractures

1. Introduction1

Dykes represent the dominant mode of magma transport through the2

Earth’s lithosphere, and one striking feature is that they often occur as3

swarms made of several hundreds of individual, sub-parallel dykes originat-4

ing from apparently a single source region. At the smallest scale, volcanic5

dyke systems originate from individual magma chambers, such as the Koolau6

dyke complex, Oahu, in Hawaii (Walker, 1986), the Spanish Peaks, Colorado7

(Odé, 1957), and the dyke swarms of Iceland (Gudmundsson, 1983; Paquet8

et al., 2007). At a larger scale, sheeted dyke complexes form an integral part9

of the crustal structure at mid-ocean ridges. At the largest scale, one finds10

giant mafic dyke swarms (Figure 1) that extend over hundreds to several11

thousands of kilometers in length (Ernst and Baragar, 1992). These giant12
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structures are found not only on Earth, where they are often associated with13

continental breakup and flood basalts, but also on Mars and Venus (Halls14

and Fahrig, 1987; Ernst et al., 2001). The width of these swarms is assumed15

to reflect the lateral extend of their feeding source, usually thought to be16

mantle plumes (e.g. Ernst et al., 2001).17

Yet, in spite of their ubiquity, dyke swarms have been studied rather de-18

scriptively. As a result, field data that could inform about the mechanics and19

dynamics of dyke swarms remain scarce. The crustal dilation that is induced20

or accommodated by a swarm is sometimes recorded at different locations21

within that swarm (e.g. Walker, 1986; Hou et al., 2010), but most field studies22

record only the strike and dip of the dykes, along with their length and thick-23

ness distributions. Length distributions seem to be power-law (e.g. Paquet24

et al., 2007, and references therein), whereas thickness distributions have25

been variously described as power-law (e.g. Gudmundsson, 1995), negative-26

exponential or log-normal (e.g. Jolly and Sanderson, 1995; Jolly et al., 1998).27

Comparatively, data on dyke spacing are rarely reported. Jolly and28

Sanderson (1995) demonstrate log-normal distribution of the dyke spacing29

within the Mull Swarm, Scotland, and from this infer the existence of char-30

acteristic length scale that is best described by the median or geometric mean31

of the spacing. In a similar study, Jolly et al. (1998) examine the geometry of32

clastic dykes in the Sacramento Valley, California. In this case the authors33

interpret the dyke spacing to follow a power-law distribution, although it34

should be noted that their discrimination between power-law and log-normal35

behavior seems it was not carried out formally but rather relied on visual36

assessment and is therefore prone to misinterpretation (e.g. Clauset et al.,37
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2009). Hence, the limited available data provide sufficient motivation to pur-38

sue model-derived insight into whether or not a characteristic length scale39

is expected to exist related to dyke spacing, and if so, what are its physical40

origins and significance.41

The mechanics of dyke propagation and prediction of spacing between42

cracks in rocks have both received significant attention over the past few43

decades. On the one hand, the growth of a single dyke has been analyzed44

in a variety of combinations of geometry and boundary conditions (e.g. Lis-45

ter, 1990; Mériaux and Jaupart, 1998; Roper and Lister, 2005; Taisne and46

Jaupart, 2009; Taisne et al., 2011). On the other hand, both analytical (e.g.47

Hobbs, 1967) and numerical (e.g. Narr and Suppe, 1991; Bai and Pollard,48

2000; Olson, 2004) approaches have been applied for the purpose of predict-49

ing the spacing between opening mode cracks in layered rocks. But, while50

there has been a number of mainly industry-driven contributions aimed at51

understanding crack patterns and driving pressure associated with the growth52

of multiple hydraulic fractures (e.g. Germanovich et al., 1997; Zhang et al.,53

2007; Olson, 2008; Jin and Johnson, 2008; Olson and Dahi-Taleghani, 2009;54

Zhang et al., 2011; Roussel and Sharma, 2011; Bunger et al., 2012; Vermylen55

and Zoback, 2011; Weng et al., 2011), the issue of optimal spacing between56

fluid-driven cracks for geometries and boundary conditions that are relevant57

to dyke propagation has not been addressed.58

In this paper we ask whether there is evidence from mechanical analysis59

that dyke swarms should form with a particular inter-dyke spacing. This60

question is at the heart of the issue of why dykes should form swarms at61

all. If mechanical models predict a natural spacing that tends to zero or62
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infinity, then it remains fundamentally unclear why there is a widespread63

morphology wherein many distinct dykes maintain a finite separation over64

tens to thousands of kilometers of growth.65

Whether mechanical analysis can identify a finite characteristic spacing66

for dyke swarms is not apparent at the outset. There is a temptation to view67

the problem in terms of fracture mechanics alone. But if we do this, we im-68

mediately discover the well-known fact that closely-spaced pressurized cracks69

exert compressive stresses on each other that reduce the stress intensity that70

drives the fracturing process (e.g. Benthem and Koiter, 1973). Viewed this71

way, it is unclear how dykes in a swarm can grow to be a hundred times72

longer than the spacing between them.73

One potential resolution to this issue is to suggest that the dykes must74

form sequentially, with one dyke propagating after the next to eventually75

form the observed dyke swarm morphologies. It seems reasonable that this76

should be a part of the answer. However, crosscutting relationships observed77

in the field indicate that contemporaneous as well as successive dyke em-78

placement can be observed within the same swarm (Burchardt et al., 2011).79

Moreover, the analysis of Bunger (2013) shows that multiple, simultane-80

ously growing fluid-driven cracks can propagate to a length that is much81

greater than their separation provided that the fluid driving them is suffi-82

ciently viscous — which is to say that the energy dissipated in viscous flow83

greatly exceeds the energy dissipated through breakage of the rock — and84

provided that their growth in height is constrained so that they are much85

longer than they are high and hence grow in the well-known blade-like geom-86

etry (e.g Perkins and Kern, 1961; Nordgren, 1972; Rubin and Pollard, 1987;87
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Lister, 1990; Adachi and Peirce, 2008). Here we examine the mechanical evi-88

dence for a natural, or optimal spacing within dyke swarms by extending the89

method that has been previously developed by Bunger (2013) in order to ac-90

count for both the asymptotic limits of widely and closely spaced swarms of91

blade-shaped dykes under both constant pressure and constant influx source92

conditions.93

2. Dyke Propagation Model94

We consider a model for an array of equally-spaced blade-like dykes that95

are propagating horizontally through brittle host rock, as sketched in Figure96

2. This model is justified for large dyke swarms that grow to be many97

times greater in length than the thickness of the crust. Examples include98

the Mackenzie swarm, the Matachewan swarm, the Grenville swarm, and the99

Abitibi swarm, all in Canada, the Yakust swarm in Siberia, and the Central100

Atlantic reconstructed swarm (Ernst et al., 1995, and references therein).101

For the sake of simplicity, we assume the swarm is characterized by a102

single spacing h between adjacent dykes (Figure 2), and we investigate how103

this spacing h affects the propagation of the dykes. In this regard, we neglect104

the details of the source geometry and the radial propagation of dykes near105

the source and instead focus on the parallel propagation in a regime that is106

taken to persist after an early time, source geometry dominated period of107

growth. Subject to this geometric limitation, details of dyke initiation and108

early growth wherein the dyke length R is not substantially greater than the109

height H will not be considered. Practically, the model is valid when R is at110

least 3 to 5 times greater than H (Adachi and Peirce, 2008). When this is the111
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Figure 1: The 1270 Ma giant Mackenzie mafic dyke swarm in the northwestern Canadian

Shield (after LeCheminant and Heaman (1989)), whose dykes extend over more than 2,000

km with an average thickness of 30 m (Fahrig, 1987).
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case, it is valid to assume (Nordgren, 1972): 1) fluid flow to be unidirectional112

and along the x direction in Figure 2, that is, parallel to the direction of113

dyke propagation, and 2) pressure to be uniform within each vertical y − z114

planar cross section of the hydraulic fracture with the pressure and thickness115

related according to a local, plane strain condition. The elasticity relation116

between net pressure (p = pf − σo for minimum in situ stress σo and total117

magma pressure pf ) and thickness (w) along center line of the dyke (y = 0)118

is thus given by119

w(x, t) = α1H
p(x, t)− σI

E ′ , (1)

where E ′ = E/(1 − ν2) for Young’s modulus E and Poisson’s ratio ν, and120

σI is the compressive stress exerted on the dyke by its neighbors, which is121

approximated for the widely-spaced case H " h " R as (Benthem and122

Koiter, 1973; Bunger, 2013)123

σI = p
3H2

8h2

(
1 +O(h/H)−2

)
, (2)

where the classical “Big O” notation is used to indicate the limiting behavior124

of the series. Similarly for the closely spaced case h " H " R (Supplemen-125

tary Section 1) the interaction stress is approximated by126

σI = p

(
1− 4h

H
+O(h/H)3

)
. (3)

Also, α1(H/h) is a factor that accounts for interaction where127

α1(H/h) ∼





2, H/h " 1

0.35, H/h $ 1

with the large spacing limit (H/h " 1) readily available from the solution128

for a single, pressurized crack in plane strain (Sneddon, 1946), and the small129
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Figure 2: Sketch of the model geometry, showing two members of an infinite array of

blade-like dykes.

spacing (H/h $ 1) limit determined numerically, as detailed in Supplemen-130

tary Section 2.131

Assuming the magma is incompressible, fluid continuity, which comprises132

the second governing equation, is given by (Nordgren, 1972)133

α2H
∂w

∂t
+
∂q

∂x
= 0, (4)

where q(x, t) is the volume rate of flow through a cross section, once again134

w is the opening along y = 0, and α2(H/h) is a factor that behaves like135

α2(H/h) ∼






π
4 , H/h " 1

1, H/h $ 1

with the large spacing limit (H/h " 1) arising from the area of an elliptical136

cross section (πwH/4) and the small spacing (H/h $ 1) limit coinciding137

with a rectangular cross-section, which is taken as an approximation of the138
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cross section of the dyke in this case, as demonstrated in Supplementary139

Section 2.140

The third governing equation is the Poiseuille equation relating the fluid141

flux to the fluid pressure gradient. This equation results from solution of142

the Navier-Stokes equations for laminar flow of a Newtonian fluid subjected143

to no-slip boundary conditions at the boundaries of the channel and where144

the thickness of the flow channel is much less than its length. The result is145

(Nordgren, 1972)146

q = −α3
Hw3

µ′
∂p

∂x
, (5)

where µ′ = 12µ and µ is the dynamic viscosity of the magma, and147

α3(H/h) ∼






3π
16 , H/h " 1

1, H/h $ 1

where the large spacing limit (H/h " 1) arises from integrating the flux148

over an elliptical cross section and the small spacing (H/h $ 1) limit arises149

from integrating the flux over an approximately rectangular cross section. It150

should be noted, however, that in the present work we are concerned with151

orders of magnitude so that what is important is not the precise values of152

α1, α2, α3, but rather that we have confirmed these to be order one.153

The leading edge of the dyke requires a condition governing its propaga-154

tion. However, one of the well-known deficiencies of the approach of Perkins155

and Kern (1961) and Nordgren (1972) to modeling blade-like hydraulic frac-156

tures is that the stresses are not well-defined in the near-tip region, therefore157

precluding a well-defined propagation condition. A recent asymptotic analy-158

sis of the full elasticity equation by Adachi and Peirce (2008) provides a way159
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forward, however a fluid-driven blade-like crack model has yet to be devel-160

oped. But a lack of such a model is not important for our analysis provided161

that we assume that the energy dissipated by flow of the viscous fluid is much162

larger than the energy that is dissipated by rock fracture (after e.g. Lister,163

1990; Lister and Kerr, 1991). It follows that if we are in viscosity dominated164

conditions, the scaling and energy relations that are subsequently derived165

will not depend on this moving boundary condition at the dyke tip.166

Finally, assuming that the behavior for R $ H (long blade-like dykes)167

does not depend on the details of the initial conditions, these can be ne-168

glected for now. The system of equations is thus completed by homogeneous169

boundary conditions on the thickness and magma flux at the leading edge170

x = R : w = 0, q = 0. (6)

and the magma source condition, which is discussed in the following section.171

3. Magma Source Condition172

The source is idealized as a time varying volume of magma (V (t)) that is173

characterized by a compressibility Cm that describes the change in pressure174

associated with a given change in stored magma volume. The source is175

overpressurized relative to the minimum component of the in situ stress σo176

by a time dependent amount177

po(t) = po(0) +
Vr(t)− Vd(t)

V (0)Cm
. (7)

Hence, po(0) and V (0) are the source overpressure and volume at the start178

of dyke growth and Vd and Vr are the total volume injected into dykes and179
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added to the source region through recharge processes, respectively. Giant180

dyke swarms are usually thought to be fed by mantle plumes (Ernst et al.,181

2001), and so the recharge processes envisaged here would be the supply of182

magma from the tail to the head of these mantle plumes.183

The total volume is thus given by V (t) = V (0) + Vr(t) − Vd(t). Letting184

Q(t) = q(0, t) be the volumetric flow rate out of the source and into the185

dykes, and Qr(t) be the recharge rate of the source region, we have186

po(t) = po(0) +
1

V (0)Cm

∫ t

0

(Qr −Q) dt. (8)

This description of the source leads naturally to consideration of two187

limiting cases. The first is for an infinitely large and compressible source,188

where we are left with a constant pressure condition189

x = 0 : p = p0 = po(0), V (0)Cm → ∞. (9)

Obviously, for Qr '= Q, this boundary condition is associated with time being190

sufficiently small so that the second term on the right hand side of Eq. (8)191

vanishes relative to p0.192

On the other hand, the small, incompressible source limit is most clearly193

represented by differentiating Eq. (8) with respect to time to obtain194

Q = Qr − V (0)Cm
dpo(t)

dt
, (10)

where it is clear, then, that the source boundary condition is195

x = 0 : q = Qr, V (0)Cm → 0, (11)

which is a condition of constant influx if we further assume Qr(t) = Qo,196

a constant. Furthermore, it is apparent from Eq. (10) that the constant197
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influx condition is associated with large time if dpo/dt decays with time – for198

example if po ∼ tb for b < 1.199

We note, however, that dyke flow rates Q are usually several orders of200

magnitude greater than their source recharge rates Qr. For instance, studies201

of long-term magma supply rate at Kilauea, Hawaii (Swanson, 1972) and202

Krafla, Iceland (Johnsen et al., 1980) give Qr ∼ 1 − 5 m3 s−1. Estimates of203

dyke flow velocities are in the range 0.1 - 1 m/s (Brandsdóttir and Einarsson,204

1979; Peltier et al., 2007; Ayele et al., 2009; White et al., 2011), which would205

amount to average volumetric flow rates Q ∼ 102−104 m3 s−1 for horizontally206

propagating dykes that are 1 m wide and 1-10 km high. This range of values207

reflects the requirement that dykes need to propagate fast enough through the208

Earth’s crust to avoid death by solidification: continued magma flow in dykes209

requires a minimum dyke width hence magma flow rate for the advective210

supply of heat by flowing magma to be able to offset the heat conducted211

away by the colder host rocks (Bruce and Huppert, 1989; Petford et al.,212

1993). This range of values agrees with the volumetric flow rates estimated213

for the 1783-1785 Laki eruption in Iceland (100− 9000 m3 s−1, Thordarson214

and Self, 1993), the magmatic activity in Hawaii in the 1970s (1 − 700 m3
215

s−1, Wright and Tilling, 1980; Duffield et al., 1982), the September 1984216

eruption of Krafla, Iceland (10− 103 m3 s−1, Tryggvason, 1986), or the 2003217

magmatic activity at Piton de la Fournaise, Réunion Island (10 − 700 m3
218

s−1, Peltier et al., 2007). Some of these volumetric-flow-rate estimates are219

eruption rates and are observed to decline with time, whereas dyke intrusions220

might involve more constant rates (e.g. Peltier et al., 2007; Traversa et al.,221

2010). Moreover, one could argue that volumetric flow rates Q for giant222
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dyke swarms would be even greater than these reported values due to the223

larger average thickness of their dykes. This being the case, Q would have224

to be derived mainly from the stored volume, hence the infinitely large and225

compressible source, Eq. (9) is probably applicable to many, if not most,226

dyke swarms.227

4. Energy Considerations228

For a compressible magma source, the elastic strain energy (E) is increased229

by the work done on the magma source by the recharge (Wr) and work done230

on the source by the in situ stress (Wso), and it is decreased by the work231

done by the magma source on the array of dykes (Wdf ). Energy conservation232

thus requires233

Ė = Ẇr + Ẇso − Ẇdf , (12)

where the overdot indicates the time derivative and, following Lecampion234

and Detournay (2007), it is easy to show that Ẇr = Qrpf , Ẇdf = Qpf , and235

Ẇso = σo(Q−Qr). Hence236

Ė = (Qr −Q) p. (13)

For the infinitely compressible source, that is, when p = p0 at the inlet ac-237

cording to Eq. (9), maximizing the rate of decrease in stored elastic energy238

in the magma source corresponds to maximizing Q (when Qr is a constant).239

The first of two energy conjectures, then, is that dyke systems associated with240

infinitely compressible sources will energetically favor configurations that241

maximize −Ė , and therefore growth geometry that maximizes the magma242
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influx rate to the dykes Q will be considered advantageous. What’s more, if243

Qr " Q, as indicated by field data, we have −Ė ∼ Qp so that it makes sense244

to focus on quantifying what we will call the “net dyke propagation work245

rate”, Ẇd = Qp.246

On the other hand, for an incompressible source, fluid can neither be247

stored nor mobilized from storage, hence Q = Qr (Eq. 11). So it is obvious248

that Ė ≡ 0 and therefore we cannot consider the change in strain energy249

of the source as we did when it was compressible. In this case, we follow250

Bunger (2013) and consider the rate of work done on the dykes Ẇdf = Qpf .251

The second energy conjecture is that dyke swarms associated with incom-252

pressible sources will energetically favor configurations that minimize Ẇdf ,253

and therefore growth geometry that minimizes the pressure required to drive254

growth at a fixed rate of influx (Q(t) = Qo) will be considered advantageous.255

Furthermore, when the in situ stress σo is a constant, the minimum of Ẇdf256

coincides with the minimum of Ẇd = Qp, so that once again it is sensible to257

focus on quantifying the dyke propagation work rate, Ẇd.258

Ongoing studies are required to better understand the conditions under259

which these conjectures are valid. When the overall geometry of a dyke swarm260

is relatively simple, they seem reasonable. However, when the dyke patterns261

become more complicated, the energy conjectures may not always hold. For262

example, mine-through mapping of hydraulic fracture growth through rock263

masses that contain natural fractures has shown the hydraulic fracture path264

can offset as it grows through some of the discontinuities so that the final265

fracture is not planar, but rather follows a stair-like morphology (Jeffrey266

et al., 2009). The available 2D modeling (Jeffrey et al., 2009) shows that267
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these offsets lead to an increase in the wellbore pressure relative to the case268

of planar growth for a given injection rate. This implies that the pattern of269

hydraulic fracture growth does not always result in a final configuration that270

would be predicted from global, equilibrium energy considerations. Instead,271

the morphology, or pattern of hydraulic fractures, appears to be determined272

by local interaction laws that determine the evolution of the system to at-273

tain a final configuration that cannot in general be predicted from simply274

considering global, equilibrium energy minimization.275

These caveats aside, it is prudent to investigate a relatively simple dyke276

swarm geometry as a starting point from which we can understand if, in fact,277

the mathematical model implies the existence of an energetically optimal278

spacing between the dykes and to determine how this spacing depends on279

the nature of the source.280

5. Approximating the Energy Rate281

We consider a uniform array of blade-like dykes originating from the same282

source and maintaining a constant spacing and equal lengths as they grow.283

In the absence of a fully coupled model that accounts for all of the mechanical284

interactions among the dykes, a straightforward method for estimating the285

“input power” Ẇd based on scaling relationships can be used. Following286

Bunger (2013), the input power required to propagate a swarm of N growing287

dykes can be expressed as288

Ẇd =
N∑

i=1

Ẇ (i), Ẇ (i) = U̇ (i) − Ẇ (i)
I +D(i)

c +D(i)
f . (14)
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Which is to say that the input power to each dyke increases the strain energy289

in the host rock U̇ (i), overcomes the work that is done on that dyke by the290

stresses induced by the others Ẇ (i)
I , or is dissipated either through rock frac-291

ture D(i)
c or viscous flow of the magma D(i)

f . Recalling that our consideration292

is limited here to viscosity dominated hydraulic fractures, we only consider293

cases wherein D(i)
c " D(i)

f . Hence the contribution of D(i)
c to Eq. (14) can294

be neglected for the present study (see Bunger (2013) for a more thorough295

discussion).296

For the case of a uniform array of dykes that are at the onset of interaction297

such that h $ H, Bunger (2013) shows that298

U̇ (i) ≈ LPXH

t
, Ẇ (i)

I ≈ −LPXH

t

(
H2

h2
+O(H/h)4

)
,

D(i)
f ≈ X3P 2H

Lµ′

(
1 +

H2

h2
+O(H/h)4

)
. (15)

Here L, P , and X are characteristic quantities that estimate the dyke length,299

the magma over pressure, and the dyke thickness, respectively. The form of300

Eq. (15), then, clearly shows that Ẇ (i)
I is negligible as h/H → ∞, that is,301

for very widely spaced dykes, and its importance is greater for smaller dyke302

spacing. Before moving on to obtain {L, P,X} from the governing equations,303

let us also present the approximations for the terms in Eq. (14) for the case304

of closely spaced dykes (h " H),305

U̇ (i) ≈ LPXH

t
, Ẇ (i)

I ≈ −LPXH

t

(
1 +

h

H
+O(h/H)2

)
,

D(i)
f ≈ X3P 2H

Lµ′

(
1 +

h

H
+O(h/H)2

)
. (16)

The governing equations (Eqs. 1-11) directly lead to appropriate expres-306

sions for L, P , and X. A useful technique (after Detournay (2004)) is to307
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substitute308

w = XΩ, p = PΠ, R = Lγ, (17)

whereupon the objective becomes to define {X,P, L} such that the dimen-309

sionless quantities {Ω,Π, γ} are all of order one (O(1)). For example, in310

the case of an infinitely compressible source with widely-spaced dykes, the311

inlet boundary condition (Eq. 9) tells us that Π = O(1) if we take P = p0.312

Then, substituting into the elasticity equation (Eq. 1), we can ensure that313

O(Ω) = O(Π) (and hence Ω = O(1)) by taking X = HP/E ′. Finally, the314

characteristic dyke length is obtained by first substituting the Poiseuille equa-315

tion (Eq. 5) into the continuity equation (Eq. 4) along with aforementioned316

values of P and X. The characteristic length L is then chosen so that the317

two terms of the continuity equation are guaranteed to be of the same order,318

which is to set the group of parameters that appears after the substitution319

to one. The result is L = Hp3/20 t1/2/(E ′µ′1/2).320

The procedure can be repeated for each of the four limiting regimes that321

come from the widely and closely spaced limits for infinitely compressible and322

incompressible sources, respectively. This scaling procedure is both straight-323

forward and it has been discussed at length in a number of prior contributions324

(see Detournay (2004) for a review), hence the details are omitted. The re-325

sulting characteristic quantities are summarized in Table 1. Substituting326

these quantities into the appropriate choice of Eq. (15) or (16) and summing327

according to Eq. (14) provides a rapid way of estimating the total input328

power required to sustain the growth of a swarm of dykes.329
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Source Condition Spacing X P L

p = p0 h $ H Hp0
E′ p0

Hp3/20 t1/2

E′µ′1/2

p = p0 h " H hp0
E′ p0

hp3/20 t1/2

E′µ′1/2

q = Qo h $ H
(

Q2
iµ

′t
E′H

)1/5 (
E′4Q2

iµ
′t

H6

)1/5 (
E′Q3

i t
4

H4µ′

)1/5

q = Qo h " H
(

hQ2
iµ

′t
E′H2

)1/5 (
E′4Q2

iµ
′t

h4H2

)1/5 (
E′Q3

i t
4

hH3µ′

)1/5

Table 1: Scaling factors that estimate the dyke thickness X, magma net pressure P , and

dyke length L for the four limiting regimes, where the q = Qo, h $ H case comes from

Nordgren (1972).

6. Constant Pressure Limit330

For the constant inlet pressure limiting case the applicable energy con-331

jecture is that the dyke configuration that maximizes the rate of work done332

by the magma source on the dyke swarm will be energetically advantageous333

(Section 4). By this statement, searching for an optimum spacing between334

the dykes is synonymous with searching for a spacing that maximizes Ẇd335

(Eq. 14).336

Because we are limiting consideration to a uniform array of dykes, the337

summation in Eq. (14) can be expressed simply as Ẇd = NẆ (i), where338

Ẇ (i) is the input power required to propagate one dyke in the array. Fur-339

thermore, it is not physically reasonable to let the width of the swarm grow340

unconstrained as would be the case if h and N were both unconstrained.341

Rather, natural dyke swarms are usually observed to cover a zone of some342

finite width (Halls and Fahrig, 1987; Ernst et al., 2001; Paquet et al., 2007).343

For example, this finite width, Z, can be considered to be on the order of344

the lateral extent of the magmatic source feeding the swarm. This being the345
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case, the swarm width Z, the number of dykes N , and their spacing h are re-346

lated as h = Z/(N − 1), which for N $ 1 can be approximated as h ≈ Z/N ,347

so that Ẇd ≈ (Z/h)Ẇ (i). Taking the approximations from Eq. (15) and348

characteristic quantities from Table 1, the input power for the widely-spaced349

(h $ H) regime is350

Ẇd ≈
H3p7/20 Z

hE ′2µ′1/2t1/2
(
1 +O(H/h)2

)
. (18)

On the other hand, for the closely-spaced (h " H) regime, the approxima-351

tions from Eq. (16) lead to352

Ẇd ≈
hHp7/20 Z

E ′2µ′1/2t1/2
(1 +O(h/H)) . (19)

These two expressions hold a number of important insights regarding353

the behavior of the problem under consideration. Firstly we can see that354

Ẇd decreases with time for a fixed initial number of dykes N0. This is an355

intriguing result because it means that at some time it will be advantageous,356

that is, in the sense of causing an increase in Ẇd, to initiate new dykes in357

the spaces between the initial dykes. And after some time with these two358

generations of dykes growing, it could become advantageous again to initiate359

a third generation of dykes growing in the spaces between the existing dykes.360

It is important to realize, then, that field observations, especially in the361

vicinity of the source, can be expected to show a dyke spacing that is less362

than the predictions from our analysis. Also, calculations of median or mean363

dyke spacings across an entire swarm will be smaller than what is predicted364

here. So to summarize: 1) the subsequent analysis in this paper provides365

an estimate of the spacing between dykes in the first generation, and 2)366
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the dependence of Ẇd on t as shown in Eqs. (18) and (19) suggests that367

subsequent generations can be expected to form leading to hierarchical sets368

of dykes within the swarm. Clearly a simulator of dyke swarm growth that369

is able to capture this complex behavior, and especially the point at which370

the system prefers to initiate new, infilling dykes rather than to continue371

growing the original array of dykes, would be a highly valuable tool for further372

investigation of this anticipated phenomenon.373

It is also useful to identify a characteristic work rate (Ẇ ∗
d ) that emerges374

when h ≈ H given by375

Ẇ ∗
d =

H2p7/20 Z

E ′2µ′1/2t1/2
. (20)

Recalling that Ẇd ≈ p0Q, we can therefore estimate the total rate of influx376

to the swarm from the magma source when h ≈ H as377

Q ≈ H2p5/20 Z

E ′2µ′1/2t1/2
, h ≈ H. (21)

By integrating Q with respect to time we can obtain an estimate of the378

volume of the swarm, V , given by379

V ≈ H2p5/20 Zt1/2

E ′2µ′1/2 , h ≈ H. (22)

Note that the factor of 2 that arises from the integration of Q has been380

dropped because it is spurious in light of the fact that these quantities are381

intended to estimate order of magnitude, not to provide precise predictions.382

Most importantly, though, Eqs. (18) and (19) provide insight into the383

dependence of Ẇd on the spacing h. As a visual approach, we have normalized384

both expressions by Ẇ ∗
d (Eq. 20) and plotted the resulting normalized input385
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Figure 3: Normalized input power Ẇd to the dyke swarm for the case of constant pressure

at the source, where the numerical label indicates the number of terms retained in the

asymptotic series.

power as a function of h/H in Figure 3. This result, and indeed direct386

inspection of Eqs. (18) and (19), shows that Ẇd increases with decreasing387

h for h $ H and decreases for decreasing h for h " H, with suggestion of388

a sharp peak at h ≈ H. Therefore, we conclude that a dyke swarm that is389

driven by a constant pressure source will have an optimum (first generation)390

dyke spacing of h ≈ H.391

7. Constant Influx Limit392

For the constant influx limiting case the applicable energy conjecture393

is that the dyke configuration that minimizes the rate of work done by the394

magma source on the dyke swarm will be energetically advantageous (Section395
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4). By this statement, searching for an optimum spacing between the dykes396

is synonymous with searching for a spacing that minimizes Ẇd (Eq. 14). Also397

we recall that the constant influx limit is probably not as widely applicable398

to dyke swarms as the constant pressure limit (Section 3).399

Nonetheless, for the limiting case of constant total influx Qo that is par-400

titioned equally among all of the dykes, the approximations from Eq. (15)401

and characteristic quantities from Table 1 lead to an estimate for the input402

power for the widely-spaced (h $ H) regime as403

Ẇd ≈
(
h2E ′4µ′Q7

ot

H6Z2

)1/5 (
1 +O(H/h)2

)
. (23)

On the other hand, for the closely-spaced (h " H) regime, the approxima-404

tions from Eq. (16) lead to405

Ẇd ≈
(
E ′4µ′Q7

ot

h2H2Z2

)1/5

(1 +O(h/H)) . (24)

To leading order Ẇd ≈ QoP in both cases, with P from Table 1. And406

so we see that P , and hence Ẇd, increases with time. Recalling that the407

energy conjecture for the constant influx case is that the system will favor408

configurations that minimize Ẇd, this increasing behavior with time once409

again opens the possibility that subsequent generations of dykes could be410

initiated in the spaces between the primary dykes.411

As in the case of the constant pressure source, the most interesting im-412

plication of Eqs. (23) and (24) has to do with the spacing that optimizes413

(in this case minimizes) Ẇd. And here we have a somewhat more compli-414

cated situation than for the constant pressure source. By introducing and415
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normalizing by a characteristic power416

Ẇ ∗
d =

(
E ′4µ′Q7

ot

H4Z2

)1/5

, (25)

it is apparent that for the constant pressure source, the leading order term417

of the widely-spaced approximation (Eq. 18) goes like H/h with subsequent418

terms going like (h/H)1−2n for n = 1, 2, . . .. Which is to say that the lead-419

ing order term and all subsequent correction terms show Ẇd increases with420

decreasing h/H. The converse is true for the closely-spaced approximation421

(Eq. 19), with the important point being that the leading order term and422

all subsequent correction terms in the series indicate that Ẇd decreases with423

decreasing h. This shows that both expansions can be pushed all the way to424

h = H without a change in the sign of the derivative of Ẇd with respect to425

h/H.426

The behavior of both series is fundamentally different for the constant427

influx limiting case. Starting with the widely-spaced approximation (Eq.428

23), we see that the leading order term of the series goes like (h/H)2/5. But429

the next term in the series goes like (h/H)−8/5 with subsequent terms going430

like (h/H)(−10n+2)/5 for n = 2, 3, . . .. So the leading order term indicates that431

Ẇd decreases (which is considered advantageous in this case) with decreasing432

h/H for h $ H. However, as h → H the subsequent terms in the series433

become important and will at some point change the sign of dẆd/d(h/H).434

The situation is similar for the closely-spaced approximation (Eq. 24), so that435

we also expect the sign of dẆd/d(h/H) to change in the range 0 < h/H < 1.436

Figure 4 shows the behavior of both the widely and closely spaced ap-437

proximations of Ẇd (Eqs. 23 and 24), normalized by the characteristic power438

Ẇ ∗
d . Four curves are graphed for each approximation. These are labeled with439
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/Ẇ

∗ d

1

2

3

6

Figure 4: Normalized input power Ẇd to the dyke swarm for the case of constant influx

from the source, where the numerical label indicates the number of terms retained in the

asymptotic series.
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a number that indicates the number of terms (M + 1) retained in the series440

Ẇd/Ẇ ∗
d ≈

∑M
n=0(h/H)(−10n+2)/5 corresponding to Eq. (23), or the series441

Ẇd/Ẇ ∗
d ≈

∑M
n=0(h/H)(5n−2)/5 corresponding to Eq. (24). Per the relevant442

energy conjecture (Section 4), in this case we are looking for minima rather443

than maxima in these curves and, as expected we observe two local minima,444

one in the range 0 < h/H < 1 and one for h/H > 1.445

It is important to be clear that Figure 4 represents an approximation446

to the behavior of Ẇd. From it we can see clearly that the model predicts447

two local minima and we can be confident that they will be O(1) and in448

the ranges 0 < h/H < 1 and h/H > 1. However, we cannot precisely pre-449

dict the values of h/H that minimize Ẇd nor can we be sure which of the450

local minima will be the global minimum. This is because the actual large451

and small h/H expansions embodied in Eqs. (23) and (24) have the form452

Ẇd/Ẇ ∗
d ≈

∑M
n=0 an(h/H)(−10n+2)/5 and Ẇd/Ẇ ∗

d ≈
∑M

n=0 bn(h/H)(5n−2)/5, re-453

spectively, where an and bn are O(1) quantities that must be determined from454

a solution to the governing equations (Eqs. 1-11) that enables computation455

of the energy integrals defined by Bunger (2013) (for example see Supplemen-456

tary Section 3). Here we have simply taken an = 1 and bn = 1. In this coarse457

approximation, the widely-spaced local minimum appears as the global min-458

imum, and its location is h/H = 2 for the 2 term series and it moves towards459

h/H ≈ 2.5 when many terms are included in the series. On the other hand,460

the location of the closely spaced local minimum is h/H = 2/3 for the 2 term461

series and it moves towards h/H ≈ 0.3 when many terms are included in the462

series.463

The striking conclusion is that there exist two local minima in the input464
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power Ẇd, both of which could represent optimal spacings for dyke growth465

under conditions of constant influx (if indeed the constant influx condition466

is relevant to some field cases). Further analysis is required to pinpoint the467

locations of the minima, but we roughly expect them to be around h/H ≈ 2.5468

and h/H ≈ 0.3. Further analysis is also required to determine which of these469

is the global minimum.470

8. Field Comparisons471

Our model predicts the optimal first-generation dyke-spacing that dyke472

swarms will tend to develop. By “first-generation” we mean the spacing of473

the first set of dykes that grow into the host rock. These will naturally arrest474

at some point and additional dykes will fill in between them. However, we475

expect from this model, based on the constant pressure inlet conditions (as476

argued in Section 3), that the first-generation will be the thickest dykes and477

these will have a spacing that is commensurate with the dyke height H. The478

model provides also an estimate of how the volume of the swarm will increase479

with time (Eq. 22). Both predictions can be tested against field observations.480

8.1. Iceland481

We first devote our attention to the magmatic activity that took place482

at Krafla in the late 1970s, and to the Tertiary Alftafjördur dyke swarm in483

eastern Iceland.484

According to Sigurdsson (1987), the Krafla rifting episode involved the485

repeated horizontal injection of fairly similar dykes, whose height ranged486

between 2 km and 5 km (with an average of 2.8 km) and which propagated487

at an average velocity of 0.5 m/s over distances of 10 km to 30 km from a488
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magmatic source with an estimated overpressure of about 10 MPa. The total489

volume of magma that was evacuated from the magma chamber during the490

whole event has been estimated to be 1–2 km3 (Sigurdsson, 1987).491

Eq. (22) provides an estimate of a dyke-swarm volume as a function of492

time. Conversely, we can use this equation to estimate the time required to493

emplace a swarm of a particular volume. Taking the average values provided494

by Sigurdsson (1987) along with a dyke swarm width of 10 km, values for the495

Young’s modulus E = 10 GPa and the Poisson’s ratio ν = 0.25, and assuming496

a magma viscosity of 100 Pa s, Eq. (22) predicts an injection duration for a497

1-km3 dyke swarm of about 7 h. This is in the same order of magnitude as498

the duration of dyke injections at Krafla, which was estimated to last about499

25 h based on the monitoring of their seismic activity (Sigurdsson, 1987).500

Paquet et al. (2007) studied the Tertiary Alftafjördur dyke swarm in East-501

ern Iceland where they measured the dyke-thickness distribution within the502

swarm at two different locations. They observed a clustering of dykes with a503

characteristic spacing of 1.5 km to 2.5 km, which seems to have been deter-504

mined visually. Additionally, a Fast Fourier Transform analysis gives a mode505

of 2.5 km. Importantly, these spacing values are reported to correspond to506

the distribution of the thickest dykes, which would reflect the first generation507

of dykes and hence those we expect to be consistent with our model. If one508

takes the average dike height given by Sigurdsson (1987) at Krafla of 2.8509

km as representative of horizontally-propagating dykes throughout Iceland,510

then the study of Paquet et al. (2007) suggests that the Tertiary Alftafjördur511

dyke swarm developed a characteristic dyke-spacing comparable to the aver-512

age height of its dykes, as suggested by our model.513
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8.2. Canada514

In crustal-scale giant radiating dyke swarms (Halls and Fahrig, 1987) it is515

reasonable to assume that individual dykes traverse the entire thickness of the516

crust (H ≈30-40 km) or a significant portion of the crust. Here we focus on517

constraining the spacing of first-generation dykes in the 1270 Ma Mackenzie518

(Figure 1) and the 2470-2450 Ma Matachewan dyke swarms, Canada.519

Dykes in the Mackenzie swarm converge towards a common origin, at-520

tributed to the head of the mantle plume that supplied magma to the dykes,521

north of Coppermine in the Canadian Arctic archipelago (Figure 1). The522

swarm radiates across the northern half of the Canadian Shield with a fan523

angle close to the origin of 100 degrees, covering an area of 2.1×106 km2 and524

extending up to 2,400 km along strike (Ernst and Buchan, 2001). In more525

distal southeastern parts of the swarm, >1000 km from the origin, the dyke526

pattern is more linear and attributed to a transition from propagation within527

a radial plume-related stress regime to a regional stress regime (Ernst and528

Buchan, 2001; Hou et al., 2010). Magnetic fabric analysis indicates a second529

transition from vertical to horizontal magma flow regimes occurring 500-600530

km from the swarm center, probably associated with the outer boundary of531

the plume head (Ernst and Baragar, 1992). Mackenzie dykes range in thick-532

ness from 1 m to 150 m, with a mean of 30 m (Fahrig, 1987). The mean533

thickness increases from ∼18 m, 400 km from the swarm center to ∼33 m534

more than 600 km out (Baragar et al., 1996). Likewise, the mean spacing535

between dykes increases from ∼6.7 km about 500 km from the swarm center536

to ∼25 km approximately 2100 km to the southeast in northwestern On-537

tario (Hou et al., 2010). A recent compilation of Proterozoic intrusions in538
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northwest Ontario confirms the mean spacing of distal Mackenzie dykes to539

be 27 km with a range from 7.8 to 93 km (Stott and Josey, 2009). However,540

spacing between the most continuous dykes is typically between 35 and 65541

km.542

The systematic outward increase in both mean dyke thickness and spac-543

ing from the swarm center can be explained by a corresponding decrease in544

the number of second- and higher-generation dykes. We therefore suggest545

that the thickness and spacing of Mackenzie dykes at the distal fringes of546

the swarm in northwestern Ontario are characteristic of the first-generation547

dykes. Assuming the dykes propagated horizontally over a height approxi-548

mately equal to the thickness of the crust then h ≈ H, in agreement with549

the model prediction under the constant pressure inlet condition.550

The 2490-2450 Ma Matachawan dyke swarm of central Ontario is well551

characterized by aeromagnetic mapping, and paleomagnetic, geochemical,552

geochronological and petrologic studies (West and Ernst, 1991; Bates and553

Halls, 1991; Halls et al., 1994; Percival et al., 1994; Phinney and Halls, 2001).554

The Matachewan swarm fans northwards from a center located in Lake Huron555

and covers an area of 250,000 km2 (Halls et al., 1994). Dykes can be traced556

for more than 1000 km northwards from the center across a fan angle of557

∼45 degrees and they occur in three sub-swarms now offset and uplifted558

differentially by the ca. 2000 Ma Kapuskasing structure (West and Ernst,559

1991). Geothermobarometric analysis indicates that the dykes exposed at the560

surface today were emplaced at paleodepths of 10 to 21 km (Percival et al.,561

1994). A study of dyke geochemistry concluded that their petrogenesis was562

a two stage process involving lower-crustal fractionation and assimilation of563
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plume head-derived melts, followed by later compositional modification in564

mid-crustal, 15-20 km deep magma chambers (Phinney and Halls, 2001).565

This contrasts with the Mackenzie dyke swarm, which appears to have been566

extracted directly from a plume head, and suggests that propagation of the567

Matachewan dykes may have been confined to the top 20 to 25 km of crust.568

The average width of Matachewan dykes outside of the Kapuskasing zone569

is 10 to 20 m, but there is a strong tendency for dykes to become fewer in570

number and thicker moving away from the swarm center (Bates and Halls,571

1991; Halls et al., 1994). For example, towards the northern end of the M2572

sub-swarm, >40% of dykes have widths in the range 25 to 55 m, whereas in573

the southern part of the same sub-swarm only ∼20% of dykes are wider than574

25 m (Halls et al., 1994). Based on aeromagnetic interpretation by West575

and Ernst (1991), the mean spacing between Matachewan dykes ∼500 km576

north of the swarm center in all three sub swarms is 4.2±2.4 km. However,577

this is likely sampling second- and high-order dykes. Moving out to the578

distal fringes of the swarm, the spacing between continuous dykes with the579

strongest magnetic anomalies is 19 to 32 km in the northern part of the M2580

sub-swarm and between 12.4 and 16.5 km in the northwest part of the M3581

sub-swarm. As noted by Halls et al. (1994), there is a correlation between the582

widest dykes and the strongest magnetic anomalies, hence we consider this to583

be a reasonable estimate of the spacing between first-generation dykes in the584

Matachewan swarm. If the interpretation above that these dykes propagated585

within the mid- to upper crust is correct, then this observation is consistent586

with the predicted h ≈ H relationship. The lower spacing in the western M3587

swarm may indicate a slightly shallower source magma chamber than the588
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M2 swarm and a correspondingly lower height of dyke propagation within589

the upper crust.590

9. Conclusions591

Analysis of the work rates associated with driving dyke swarms, coupled592

with scaling analysis that gives rise to estimates of the dyke pressure, thick-593

ness, and length, allows us to search for an optimal dyke spacing. To this594

point it has been a mystery, from a mechanical perspective, as to why multiple595

dykes would grow in close, but apparently not too close, proximity to one an-596

other, thus forming the morphology described as a dyke swarm. Now we can597

see that, in fact, the mechanical model for a uniform array of horizontally-598

propagating blade-like dykes implies that an intermediate spacing, on the599

order of the height of the dykes themselves, is energetically optimal. What’s600

more, we have found that the optimal spacing depends on the nature of the601

magma source condition, with the constant pressure source condition giving602

rise to an optimal spacing of h ≈ H, while the constant magma influx source603

condition gives rise to two candidates, one near h ≈ 2.5H and one near604

h ≈ 0.3H, the former of which tentatively appears as the global minimum605

based on a coarse analysis.606

We have also shown that in the case of the constant pressure source, the607

total flow rate of magma into the dyke swarm decreases with time. Similarly,608

for the case of constant influx from the source, the pressure required to609

propagate the dyke swarm increases with time. Both of these behaviors610

suggest that at some point the system will prefer to initiate new generations611

of dykes rather than continuing to propagate only the primary generation.612

32



Hence we anticipate that the dyke spacing will actually be more dense than613

what is predicted by the optimal spacing, especially in the vicinity of the614

source.615

Dyke swarms in both Iceland and Canada demonstrate spacing between616

the thickest dykes, which we interpret to be the first generation of growth617

and which is the set of dykes to which our model is applicable, that scales618

with and is of the same order as the dyke height. Hence these comparisons619

with field data lend preliminary support to our analysis.620
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Odé, H., 1957. Mechanical analysis of the dike pattern of the Spanish Peaks732

area, Colorado. Bulletin of the Geological Society of America 68, 567–576.733

Olson, J.E., 2004. Predicting fracture swarms – the influence of subcritical734

crack growth and the crack-tip process zone on joint spacing in rock, in:735

Cosgrove, J.W., Engelder, T. (Eds.), The initiation, propagation, and ar-736

rest of joints and other fractures. Geological Society, London. volume 231,737

pp. 73–87.738

Olson, J.E., 2008. Multi-fracture propagation modeling: Applications to739

hydraulic fracturing in shales and tight gas sands, in: Proceedings 42nd740

US Rock Mechanics Symposium, San Francisco, CA, USA. ARMA 08-327.741

Olson, J.E., Dahi-Taleghani, A., 2009. Modeling simultaneous growth of742

multiple hydraulic fractures and their interaction with natural fractures,743

in: Proceedings SPE Hydraulic Fracturing Technology Conference and744

Exhibition, The Woodlands, Texas, USA. SPE 119739.745

38



Paquet, F., Dauteuil, O., Hallot, E., Moreau, F., 2007. Tectonics and magma746

dynamics coupling in a dyke swarm of Iceland. Journal of Structural Ge-747

ology 29, 1477–1493.748
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1. Near-Field Interaction Stress1

Here we present the asymptotic form of the interaction stress for the2

closely-spaced limit h ! H ! R. Proceeding in the same way as Bunger3

(2012), we begin with the expression for the normal traction σz (compression4

positive) induced on a plane z = ±h due to a crack located at z = 0,5

−H/2 < y < H/2 and subjected to an internal pressure po is given by6

(Sneddon, 1946)7

−σz

po
= ReY + ζImY ′, (1)
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where Re and Im indicate the real and imaginary parts, respectively, Y is8

the Westergaard stress function9

Y =
z√

z2 − 1
− 1, (2)

and the ′ denotes the derivative with respect to the complex coordinate10

z = η + iζ, (3)

with i =
√
−1 and where η = 2y/H and ζ = 2h/H. Taking the Taylor Series11

of Eq. (2) for ζ ! 1 and substituting into Eq. (1) gives12

σI = p

(
1− 2ζ

(1− η2)3/2
+O(h/H)3

)
. (4)

Considering the stress along η = 0 leads directly to Eq. (3, Main Text).13

Note that the influence of the η (y) dependence of the interaction stress in14

the near-field case on the opening at the center w is compensated using the15

variable coefficient α1 (Eq. 1, Main Text), which is determined numerically16

in 2.17

2. Calculations for Interacting Cracks18

Calculation of the cross sections of multiple interacting cracks was carried19

out using the MineHF implementation (Zhang et al., 2007) of the displace-20

ment discontinuity method (Crouch and Starfield, 1983). Because we con-21

sider cross sections of blade-like cracks, the pressure is taken to be uniform22

(e.g. Nordgren, 1972). We also take the pressure to be equal in each crack23

in the array. For these calculations, pf = 7 MPa, σo = 6 MPa, E ′ = 52.524

GPa, H = 2 m, and the spacing h is varied between 20 m and 0.1 m. Each25

2



crack was discretized with 80 elements, and numerical experiments with 5026

elements confirm mesh insensitivity at this discretization. The crack tip is27

captured using a square root element and the other elements are linear dis-28

placement discontinuities. We use the central crack in an array of N = 1329

cracks in each case we present.30

Figure S1 shows that the cracks transition from an elliptical shape when31

widely-spaced to the closely-spaced case wherein it takes a shape that in-32

creases from the central portion to the vicinity of the tip where it rapidly33

decreases to zero. For the modified Poiseuille equation (Eq. 5, Main Text34

with α3 = 1) we assume a rectangular cross section in the closely-spaced35

limit.36

Figure S2 shows the transition from the elasticity relationship w = 2Hp/E ′
37

when interaction can be neglected to w ≈ 0.35H(p − σI)/E ′ with σI given38

by Eq. (3, Main Text) when the cracks are closely spaced. This calculation39

is the basis for the value of α1 in Eq. (1, Main Text).40

Figure S3 shows the transition from the area given by an ellipse when41

widely-spaced to a scenario where the area exceeds by 10% that which would42

be obtained from a rectangular crack opening when H/h = 20. Because the43

present work is aimed at approximation, we take the area to be equal to wH44

for the purpose of the continuity equation (Eq. 4, Main Text).45

3. Closely-Spaced Power Factors46

Following Bunger (2012), the rate of work of the interaction stress (shown47

here for a single blade-like wing in contrast to the reference which considers48

3








 


 


 

 






 


 

 


     



Figure S1: Opening profile for widely-spaced and closely-spaced cracks, where the y > 0

half of the crack is presented by symmetry and here we have used the central crack in an

array of N = 13. Here uz(y) is the displacement of each crack face and w = 2uz(0).

a hydraulic fracture with two wings) is given by49

ẆI = −π

4
H

∫ R

0

σI
∂w

∂t
dx. (5)

Substituting Eq. (3, Main Text) for the near-field stress (h ! H) and the50

scaling from Eq. (17, Main Text) leads to51

ẆI = −HLPX

t

π

4
γ

∫ 1

0

t

X

∂Ω

∂t
Π

(
1− 4h

H
+O(h/H)2

)
dρ. (6)

Hence it is clear that ẆI is approximated according to Eq. (16, Main Text)52

provided that the characteristic quantities {L,X, P} are chosen such that53

{γ,Ω,Π} are all O(1).54

Similarly, following Bunger (2012), the expression for the fluid dissipation55

4




 

       

  









 






     



Figure S2: Relationship between w and w∗ determined from elasticity as a function of

H/h, where for “no interaction” w∗ = Hp/E′ and w∗ = H(p− σI)/E′ otherwise, with σI

from Eq. (2, Main Text) for the “far field interaction” (h/H % 1) case and from Eq. (3,

Main Text) for the “near field interaction” (h/H ! 1) case.
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Figure S3: Dependence of the crack opening area normalized by wH on H/h showing

tendency to π/4 for the elliptical profile for widely-spaced cracks and to tend to a value

that is a bit greater than 1 for closely-spaced cracks.

is given by56

Df =
3π

32

H

µ′

∫ R

0

w3

(
∂p

∂x
+

∂σI

∂x

)2

dx. (7)

Again, substituting Eq. (3, Main Text) for the near-field stress (h ! H) and57

the scaling from Eq. (17, Main Text) leads to58

Df =
HX3P 2

Lµ′
3π

8γ

∫ 1

0

Ω3

(
∂Π

∂ρ

)2(
1− 2h

H
+O(h/H)2

)2

dρ. (8)

And so it is again clear that Df is approximated according to Eq. (16, Main59

Text) provided that the characteristic quantities {L,X, P} are chosen such60

that {γ,Ω,Π} are all O(1).61
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