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1 Université Lille 1, LIFL, UMR CNRS 8022, Inria Lille-Nord Europe, France
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Abstract. This paper investigates the correlation between the charac-
teristics extracted from the problem instance and the performance of a
simple evolutionary multiobjective optimization algorithm. First, a num-
ber of features are identified and measured on a large set of enumerable
multiobjective NK-landscapes with objective correlation. A correlation
analysis is conducted between those attributes, including low-level fea-
tures extracted from the problem input data as well as high-level features
extracted from the Pareto set, the Pareto graph and the fitness landscape.
Second, we experimentally analyze the (estimated) running time of the
global SEMO algorithm to identify a (1+ε)-approximation of the Pareto
set. By putting this performance measure in relation with problem in-
stance features, we are able to explain the difficulties encountered by the
algorithm with respect to the main instance characteristics.

1 Introduction

In single-objective black-box combinatorial optimization, fitness landscape anal-
ysis aims at apprehending the relation between the geometry of a problem in-
stance and the dynamics of randomized search algorithms. Understanding the
main problem-related features allows to explain the behavior and the perfor-
mance of such algorithms, the ultimate goal being to predict this performance
and adapt the algorithm setting to the instance being solved. Recently, the per-
formance of single-objective randomized search algorithms has been correlated
to fitness landscape features [2]. In this paper, we propose a general methodology
to analyze the correlation between problem features and algorithm performance
in black-box 0–1 evolutionary multiobjective optimization. To the best of our
knowledge, this is the first time that such an analysis is conducted in multiob-
jective optimization.

We first identify a number of existing and original multiobjective problem
features. They include low-level features extracted from the problem input data
like variable correlation, objective correlation, and objective space dimension,
as well as high-level features from the Pareto set, the Pareto graph and the
ruggedness and multimodality of the fitness landscape. Some of them are here



proposed for the first time. They consist of a simple autocorrelation function,
based on a local hypervolume measure, and allowing to estimate the ruggedness
of the fitness landscape. We report all these measures on a large number of
enumerable multiobjective NK-landscapes with objective correlation (ρMNK-
landscapes), together with a correlation analysis between them.

Next, we conduct an experimental analysis on the correlation between in-
stance features and algorithm performance. To do so, we investigate the esti-
mated running time of a simple evolutionary multiobjective optimization al-
gorithm, namely global SEMO [8], to identify a (1 + ε)-approximation of the
Pareto set. In particular, the original hypervolume-based autocorrelation func-
tions appear to be the features with the highest correlation with the algorithm
performance. Overall, the running time of the algorithm is impacted by each
of the identified multiobjective problem feature. Our analysis shows their rel-
ative importance on the algorithm efficiency. Moreover, taking the features all
together allows to better explain the dynamics of randomized search algorithms.

The paper is organized as follows. Section 2 details the background infor-
mation related to fitness landscape analysis, multiobjective optimization and
ρMNK-landscapes. In Section 3, low-level and high-level instance features are
identified, and quantitative results, together with a correlation analysis, are re-
ported for ρMNK-landscapes. Section 4 presents the experimental setup of global
SEMO and discusses the correlation between the problem features and the esti-
mated running time of global SEMO. Section 5 concludes the paper and discusses
further research.

2 Preliminaries

2.1 Fitness Landscape Analysis

In single-objective optimization, fitness landscape analysis allows to study the
topology of a combinatorial optimization problem [15], by gathering important
information such as ruggedness or multimodality. A fitness landscape is defined
by a triplet (X,N , φ), where X is a set of admissible solutions (the search space),
N : X → 2X is a neighborhood relation, and φ : X → IR is a (scalar) fitness
function, here assumed to be maximized. A walk over the fitness landscape is
an ordered sequence 〈x0, x1, . . . , x`〉 of solutions from the search space such that
x0 ∈ X, and xt ∈ N (xt−1) for all t ∈ {1, . . . , `}.

An adaptive walk is a walk such that for all t ∈ {1, . . . , `}, φ(xt) > φ(xt−1), as
performed by a conventional hill-climbing algorithm. The number of iterations,
or steps, of the hill-climbing algorithm is the length of the adaptive walk. This
length is a good estimator of the average diameter of the local optima basins
of attraction, characterizing a problem instance multimodality. The larger the
length, the larger the basin diameter. This allows to estimate the number of local
optima when the whole search space cannot be enumerated exhaustively.

Let 〈x0, x1, . . .〉 be an infinite random walk over the search space. The au-
tocorrelation function and the correlation length of such a random walk allow



to measure the ruggedness of a fitness landscape [15]. The random walk auto-
correlation function r : N → IR of a (scalar) fitness function φ is defined as
follows.

r(k) =
E[φ(xt) · φ(xt+k)]− E[φ(xt)] · E[φ(xt+k)]

Var(φ(xt))
(1)

where E[φ(xt)] and Var(φ(xt)) are the expected value and the variance of φ(xt),
respectively. The autocorrelation coefficients r(k) can be estimated within a
finite random walk 〈x0, x1, . . . , x`〉 of length `.

r̂(k) =

∑`−k
t=1 (φ(xt)− φ̄) · (φ(xt+k)− φ̄)∑`

t=1(φ(xt)− φ̄)2
(2)

where φ̄ = 1
`

∑`
t=1 φ(xt), and ` � 0. The estimation error diminishes with the

walk length `. The correlation length τ measures how the autocorrelation func-
tion decreases. This characterizes the ruggedness of the landscape: the larger the
correlation length, the smoother the landscape. Following [15], we define the cor-
relation length by τ = − 1

ln(r(1)) , making the assumption that the autocorrelation

function decreases exponentially.

2.2 Multiobjective Optimization

A multiobjective optimization problem can be defined by an objective vector
function f = (f1, . . . , fM ) with M > 2 objective functions, and a set X of
feasible solutions in the decision space. In the combinatorial case, X is a discrete
set. Let Z = f(X) ⊆ IRM be the set of feasible outcome vectors in the objective
space. To each solution x ∈ X is assigned an objective vector z ∈ Z on the
basis of the vector function f : X → Z with z = f(x). The conventional Pareto
dominance relation is defined as follows. In a maximization context, an objective
vector z ∈ Z is dominated by an objective vector z′ ∈ Z, denoted by z ≺ z′, if
and only if ∀m ∈ {1, . . . ,M}, zm 6 z′m and ∃m ∈ {1, . . . ,M} such that zm < z′m.
By extension, a solution x ∈ X is dominated by a solution x′ ∈ X, denoted by
x ≺ x′, if and only if f(x) ≺ f(x′). A solution x? ∈ X is said to be Pareto
optimal (or efficient, non-dominated), if and only if there does not exist any
other solution x ∈ X such that x? ≺ x. The set of all Pareto optimal solutions
is called the Pareto set X? ⊆ X. Its mapping in the objective space is called
the Pareto front Z? ⊆ Z. One of the most challenging task in multiobjective
optimization is to identify a minimal complete Pareto set [3], i.e. a Pareto set of
minimal size, that is one Pareto optimal solution for each point from the Pareto
front.

However, in the combinatorial case, generating a complete Pareto set is often
infeasible for two main reasons [3]: (i) the number of Pareto optimal solutions is
typically exponential in the size of the problem instance, and (ii) deciding if a
feasible solution belongs to the Pareto set may be NP-complete. Therefore, the
overall goal is often to identify a good Pareto set approximation. To this end,
heuristics in general, and evolutionary algorithms in particular, have received a
growing interest since the late eighties.



2.3 ρMNK-Landscapes

The family of ρMNK-landscapes constitutes a problem-independent model used
for constructing multiobjective multimodal landscapes with objective correla-
tion [13]. It extends single-objective NK-landscapes [7] and multiobjective NK-
landscapes with independent objective functions [1]. Feasible solutions are binary
strings of size N , i.e. the decision space is X = {0, 1}N . The parameter N refers
to the problem size (the bit-string length), and the parameter K to the number
of variables that influence a particular position from the bit-string (the epistatic
interactions). The objective vector function f = (f1, . . . , fm, . . . , fM ) is defined
as f : {0, 1}N → [0, 1)M . Each objective function fm is to be maximized and
can be formalized as follows.

fm(x) =
1

N

N∑
i=1

cmi (xi, xi1 , . . . , xiK ) , m ∈ {1, . . . ,M} (3)

where cmi : {0, 1}K+1 → [0, 1) defines the multidimensional component function
associated with each variable xi, i ∈ {1, . . . , N}, and where K < N . By increas-
ing the number of variable interactions K from 0 to (N − 1), ρMNK-landscapes
can be gradually tuned from smooth to rugged. In this work, we set the po-
sition of these epistatic interactions uniformly at random. The same epistatic
degree Km = K and the same epistatic interactions are used for all objectives
m ∈ {1, . . . ,M}. Component values are uniformly distributed in the range [0, 1),
and follow a multivariate uniform distribution of dimension M , defined by a cor-
relation coefficient ρ > −1

M−1 , i.e. the same correlation ρ is defined between all
pairs of objective functions. As a consequence, it is very unlikely that the same
objective vector is assigned to two different solutions. The positive (respectively
negative) data correlation allows to decrease (respectively increases) the degree
of conflict between the objective function values very precisely [13]. An instance
generator and the problem instances under study in this paper can be found at
the following URL: http://mocobench.sf.net/.

In the following, we investigate ρMNK-landscapes with an epistatic degree
K ∈ {2, 4, 6, 8, 10}, an objective space dimension M ∈ {2, 3, 5}, and an objective
correlation ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ > −1

M−1 .
The problem size is set to N = 18 in order to enumerate the search space ex-
haustively. The search space size is then |X| = 218. 30 different landscapes,
independently generated at random, are considered for each parameter combi-
nation: ρ, M , and K. This leads to a total of 3300 problem instances.

3 Problem Features and Correlation Analysis

In this section, we identify a number of general-purpose features, either directly
extracted from the problem instance itself (low-level features), or computed from
the enumerated Pareto set and from the fitness landscape (high-level features).
Then, a correlation analysis is conducted on those features in order to highlight
the main similarities in characterizing the difficulties of a problem instance.



3.1 Low-level Features from Problem Input Data

First, we consider the following low-level features related to the definition of
ρMNK-landscapes.

Number of epistatic interactions (K): This gives the number of variable
correlations in the construction of ρMNK-landscapes. As will be detailed
later, despite the K-value can generally not be retrieved directly from an un-
known instance, it can be precisely estimated within some high-level fitness
landscape metrics described below.

Number of objective functions (M): This parameter represents the dimen-
sion of the objective space in the construction of ρMNK-landscapes.

Objective correlation (ρ): This parameter allows to tune the correlation be-
tween the objective function values in ρMNK-landscapes. In our analysis,
the objective correlation is the same between all pairs of objectives.

3.2 High-level Features from the Pareto Set

The high-level fitness landscape metrics considered in our analysis are described
below. We start with some general features related to the Pareto set.

Number of Pareto optimal solutions (npo): The number of Pareto opti-
mal solutions enumerated in the instance under consideration simply cor-
responds to the cardinality of the (exact) Pareto set, i.e. npo = |X?|. The
approximation set manipulated by any EMO algorithm is directly related to
the cardinality of the Pareto optimal set. For ρMNK-landscapes, the number
of Pareto optimal solutions typically grows exponentially with the problem
size, the number of objectives and with the degree of conflict between the
objectives [13].

Hypervolume (hv): The hypervolume value of a the Pareto set X? gives the
portion of the objective space that is dominated by X? [16]. We take the
origin as a reference point z? = (0.0, . . . , 0.0).

Average distance between Pareto optimal solutions (avgd): This metric
corresponds to the average distance, in terms of Hamming distance, between
any pair of Pareto optimal solutions.

Maximum distance between Pareto optimal solutions (maxd): This met-
ric is the maximum distance between two Pareto optimal solutions in terms
of Hamming distance.

3.3 High-level Features from the Pareto Graph

In the following, we describe some high-level features related to the connectedness
of the Pareto set [4, 5]. If all Pareto optimal solutions are connected with respect
to a given neighborhood structure, the Pareto set is said to be connected, and
local search algorithms would be able to identify many non-dominated solutions
by starting with at least one Pareto optimal solution; see e.g. [10, 11]. We follow
the definition of k-Pareto graph from [10]. The k-Pareto graph is defined as a



graph PGk = (V,E), where the set of vertices V contains all Pareto optimal
solutions, and there is an edge eij ∈ E between two nodes i and j if and only
if the shortest distance between solutions xi and xj ∈ X is below a bound k,
i.e. d(xi, xj) 6 k. The distance d(xi, xj) is taken as the Hamming distance for
ρMNK-landscapes. This corresponds to the bit-flip neighborhood operator. Some
connectedness-related high-level features under investigation are given below.

Number of connected components (nconnec): This metric gives the num-
ber of connected components in the 1-Pareto graph, i.e. in PGk with k = 1.

Size of the largest connected component (lconnec): This corresponds to
the size of the largest connected component in the 1-Pareto graph PG1.

Minimum distance to be connected (kconnec): This measure corresponds
to the smallest distance k such that the k-Pareto graph is connected, i.e. for
all pairs of vertices xi, xj ∈ V in PGk, there exists and edge eij ∈ E.

3.4 High-level Features from the Fitness Landscape

At last, we give some high-level metrics related to the number of local optima,
the length of adaptive walks, and the autocorrelation functions.

Number of Pareto local optima (nplo): A solution x ∈ X is a Pareto lo-
cal optimum with respect to a neighborhood structure N if there does not
exist any neighboring solution x′ ∈ N (x) such that x ≺ x′; see e.g. [12].
For ρMNK-landscapes, the neighborhood structure is taken as the 1-bit-flip,
which is directly related to a Hamming distance 1. This metric reports the
number of Pareto local optima enumerated on the ρMNK-landscape under
consideration.

Length of a Pareto-based adaptive walk (ladapt): We here compute the
length of adaptive walks by means of a very basic single solution-based
Pareto-based Hill-Climbing (PHC) algorithm. The PHC algorithm is ini-
tialized with a random solution. At each iteration, the current solution is
replaced by a random dominating neighboring solution. As a consequence,
PHC stops on a Pareto local optimum. The number of iterations, or steps,
of the PHC algorithm is the length of the Pareto-based adaptive walk. As
in the single-objective case, the number of Pareto local optima is expected
to increase exponentially when the adaptive length decreases for ρMNK-
landscapes [13].

Correlation length of solution hypervolume (corhv): The ruggedness is
here measured in terms of the autocorrelation of the hypervolume along a
random walk. As explained in Section 2.1, the correlation length τ measures
how the autocorrelation function, estimated with a random walk, decreases.
The autocorrelation coefficients are here computed with the following scalar
fitness function φ : X → IR: φ(x) = hv({x}), where hv({x}) is the hyper-
volume of solution x ∈ X, the reference point being set to the origin. The
random walk length is set to ` = 104, and the neighborhood operator is the
1-bit-flip.



Correlation length of local hypervolume (corlhv): This metric is similar
to the previous one, except that the fitness function is here based on a local
hypervolume measure. The local hypervolume is the portion of the objective
space covered by non-dominated neighboring solutions, i.e. for all x ∈ X,
φ(x) = hv(N (x) ∪ {x}). Similarly to corhv, the random walk length is set
to ` = 104, and the neighborhood operator N is the 1-bit-flip.

3.5 Correlation Analysis

The correlation matrix between each pair of features is reported in Fig. 1.
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Fig. 1. Correlation matrix between all pairs of features. The feature names are re-
ported on the diagonal. For each pair of features, scatter plots and smoothing splines
are displayed below the diagonal, and the corresponding correlation coefficients are
reported above the diagonal.
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Fig. 2. Scatter plot of
the linear regression model
log(npo) = β1M+β2ρ+e, with
β1 = 1.30567, β2 = −2.87688,
and e = 0.27735. Residual
standard error: 1.037 on 3297
degrees of freedom, multiple
R-squared: 0.7629, adjusted
R-squared: 0.7627, F-statistic:
5303 on 2 and 3297 DF,
p-value: < 2.2e− 16.

First of all, when taken independently, the num-
ber of objective functions M and the objective
correlation ρ are both moderately correlated to
the cardinality of the Pareto set npo (the abso-
lute correlation coefficient is around 0.5 in both
cases). Surprisingly, the objective space dimension
does not explain by itself the large amount of non-
dominated solutions found in many-objective op-
timization [14]. As pointed out in [13], this should
be put in relation with the degree of conflicts be-
tween the objective function values. Indeed, as
shown in Fig. 2, it is easy to build a simple multi-
linear regression model based on M and ρ to pre-
dict the value of npo with a very high precision
(resulting in a correlation coefficient of 0.87, and
explaining 76% of the variance). This highlights
that the impact of many-objective fitness land-
scapes on the search process cannot be analyzed
properly without taking the objective correlation
into account.

Interestingly, other important remarks can be extracted from the figure. With
respect to the Pareto set, the hypervolume value increases with the objective
space dimension. Moreover, and unsurprisingly, the Pareto set size and the size
of the largest connected component from the Pareto graph are highly correlated.
So are the maximum distance between Pareto optimal solutions and the mini-
mum distance for the Pareto set to be connected. As also reported in [13], there
is a high correlation between the number of Pareto optimal solutions npo and
of Pareto local optima nplo. More importantly, the number of Pareto local op-
tima nplo can be precisely estimated with the length of a Pareto-based adaptive
walk ladapt (the absolute correlation coefficient between log(nplo) and ladapt

is 1). As a consequence, this allows to estimate the size of the Pareto set as
well. At last, the number of epistatic interactions (decision variable correlations)
K can be estimated with hypervolume-based autocorrelation functions along a
random walk corhv and corlhv. Since there is not much difference between the
correlations coefficients of both functions, the first one corhv should preferably
be considered due to its simplicity.

4 Problem Features vs. Algorithm Performance

4.1 Experimental Setup

Global SEMO. Global SEMO (G-SEMO for short) [8] is a simple elitist steady-
state EMO algorithm for black-box 0–1 optimization problems dealing with
an arbitrary objective vector function defined as f : {0, 1}N → Z such that
Z ⊆ IRM , like ρMNK-landscapes. A pseudo-code is given in Algorithm 1. It
maintains an unbounded archive A of non-dominated solutions found so far.



Algorithm 1 Pseudo-code of G-SEMO

Input: x0 ∈ X
Output: Archive A

1: A←
{
x0

}
2: loop
3: select x from A at random
4: create x′ by flipping each bit of x with a probability 1/N
5: A← non-dominated solutions from A ∪ {x′}
6: end loop

The archive is initialized with one random solution from the search space. At
each iteration, one solution is chosen at random from the archive. Each bit of
this solution is independently flipped with a rate r = 1/N , and the obtained
solution is checked for insertion in the archive. Within such an independent bit-
flip mutation, any solution from the search space can potentially be reached by
applying the mutation operator to any arbitrary solution. In its general form, the
G-SEMO algorithm does not have any explicit stopping rule [8]. In this paper,
we are interested in its running time, in terms of a number of function evalua-
tions, until an (1 + ε)-approximation of the Pareto set has been identified and
is contained in the internal memory A of the algorithm, subject to a maximum
number of function evaluations.

Performance Evaluation. For any constant value ε > 0, the (multiplicative)
ε-dominance relation �ε can be defined as follows. For all z, z′ ∈ Z, z �ε z

′ if
and only if zm · (1 + ε) 6 z′m, ∀m ∈ {1, . . . ,M}. Similarly, for all x, x′ ∈ X,
x �ε x

′ if and only if f(x) �ε f(x′). Let ε > 0. A set Xε ⊆ X is an (1 + ε)-
approximation of the Pareto set if and only if, for any solution x ∈ X, there is
one solution x′ ∈ Xε such that x �ε x

′. This is equivalent of finding a Pareto set
approximation whose multiplicative epsilon quality indicator value with respect
to the exact Pareto set is (1 + ε), see e.g. [16]. Interestingly, under some general
assumptions, there always exists an (1 + ε)-approximation, for any given ε > 0,
whose cardinality is both polynomial in the problem size and in 1/ε [9].

Following a conventional methodology from single-objective continuous black-
box optimization benchmarking [6], the expected number of function evaluations
to identify an (1 + ε)-approximation is chosen as a performance measure. How-
ever, as any EMO algorithm, G-SEMO can either succeed or fail to reach an
accuracy of ε in a single simulation run. In case of a success, the runtime is
the number of function evaluations until an (1 + ε)-approximation was found.
In case of a failure, we simply restart the algorithm at random. We then obtain
a “simulated runtime” [6] from a set of given trials of G-SEMO on a given in-
stance. Such a performance measure allows to take into account both the success
rate ps ∈ (0, 1] and the convergence speed of the G-SEMO algorithm. Indeed,
after (n− 1) failures, each one requiring Tf evaluations, and the final successful

run with Ts evaluations, the total runtime is T =
∑n−1

i=1 Tf + Ts. By taking the



expectation value and by considering that the probability of success after (n−1)
failures follows a Bernoulli distribution of parameter ps, we have:

E[T ] =

(
1− ps
ps

)
E[Tf ] + E[Ts] (4)

In our case, the success rate ps is estimated with the ratio of successful runs over
the total number of executions (p̂s), the expected runtime for unsuccessful runs
E[Tf ] is set to a constant function evaluation limit Tmax, and the expected run-
time for successful runs E[Ts] is estimated with the average number of function
evaluations performed by successful runs.

ert =

(
1− p̂s
p̂s

)
Tmax +

1

Ns

Ns∑
i=1

Ti (5)

where Ns is the number of successful runs, and Ti is the number of evaluations
required for successful run i. For more details, we refer to [6].

Parameter Setting. In our analysis, we set ε = 0.1. The time limit is set
to Tmax = 2N/10 < 26215 function evaluations without identifying an (1 + ε)-
approximation. The G-SEMO algorithm is executed 100 times per instance. For
a given instance, the success rate and the expected number of evaluations for
successful runs are estimated from those 100 executions. However, let us note
that G-SEMO was not able to identify a (1 + ε)-approximation set for any of
the runs on one instance with M = 3, ρ = 0.2 and K = 10, one instance with
M = 3, ρ = 0.4 and K = 10, ten instances with M = 5, ρ = 0.2 and K = 10,
six instances with M = 5, ρ = 0.4 and K = 10, as well as two instances with
M = 5, ρ = 0.7 and K = 10. Moreover, G-SEMO was not able to solve the
following instances due to an overload CPU resources available: M = 5 and
ρ ∈ {−0.2, 0.0}. Overall, this represents a total amount of 2980 instances times
100 executions, that is 298000 simulation runs.

4.2 Computational Results

The correlation between each feature and the running time of G-SEMO is re-
ported in Fig. 3. First, with respect to low-level features, there exists a high
correlation between log(ert) and K, which is the highest absolute correlation
observed on our data. However, surprisingly, the correlation of the performance
measure with M and ρ is not significant. Second, with respect to high-level fea-
tures from the Pareto set, the size of the Pareto set and its hypervolume does not
explain the variance of log(ert). Nevertheless, the larger the distance between
Pareto optimal solutions in the decision space, the larger the running time of
G-SEMO. Similarly, when the Pareto graph is close to a fully connected graph,
G-SEMO is likely to take less time to identify a (1 + ε)-approximation (the ab-
solute correlation value is around 0.3). As a consequence, the number of Pareto
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Fig. 3. Correlation between log(ert) and each feature. The feature names are reported
on the first line, correlation coefficients are reported on the second line, and scatter
plots as well as smoothing splines are displayed on the third line.

optimal solutions has a smaller impact on the performance of G-SEMO than the
structure existing between those solutions in the decision space.

With respect to high-level fitness landscape features, the number of Pareto
local optima nplo and its estimator ladapt both present a significant correlation
with the estimated running time of G-SEMO. Indeed, the more Pareto local
optima, the longer the running time (the absolute correlation value is close to
0.5). At last, the hypervolume-based autocorrelation functions highly explain
the variance of the G-SEMO performance. For both corhv and corlhv, the
absolute correlation value is around 0.8. Overall, this correlation analysis gives
a “big picture” of a well-suited multiobjective fitness landscape for G-SEMO.
This corroborates the impact of the problem instance properties identified in the
previous section on the performance of multiobjective evolutionary algorithms.

5 Discussion

In this paper, we attempted to give a first step towards a better understanding of
the evolutionary multiobjective optimization algorithm performance according
to the main characteristics of the problem instance. We first presented a number
of general problem features, together with a correlation analysis between those
features on a large set of enumerable multiobjective NK-landscapes. Then, we
put in relation the running time of a simple evolutionary multiobjective optimiza-
tion algorithm with those features. Our analysis clearly shows the high impact
of theses problem-related properties on the performance of the algorithm. In
particular, two relevant hypervolume-based autocorrelation functions have been
proposed for the first time, allowing to precisely estimate the ruggedness of the
instance under consideration, as well as the algorithm running time.

Using the general methodology introduced in the paper applied to larger
problem instances would allow to appreciate the impact of the multiobjective
features on the performance of evolutionary multiobjective optimizations when
tackling large-size instances. This should be possible with features that do not re-
quire the complete enumeration of the decision space, including the problem size,
the number of objectives, the objective correlation, the length of a Pareto-based
adaptive walk, and the hypervolume-based autocorrelation functions proposed
in this paper. As well, the impact of the stopping condition, and in particu-
lar the approximation quality (the ε-value) should be carefully investigated. At



last, a similar study would allow to better understand the structure of the land-
scape for real-world multiobjective combinatorial optimization problems. This
work pushes towards the design of a meta-algorithm able to select the most ef-
ficient evolutionary multiobjective algorithm or parameter setting according to
a prediction model based on the main problem instance features.
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