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Abstract

In the last decade, the Jensen inequality has been intensively used in the context of time-delay or sampled-data systems since
it is an appropriate tool to derive tractable stability conditions expressed in terms linear matrix inequalities (LMI). However,
it is also well-known that this inequality introduces an undesirable conservatism in the stability conditions and looking at the
literature, reducing this gap is a relevant issue and always an open problem. In this paper, we propose an alternative inequality
based on the Fourier Theory, more precisely on the Wirtinger inequalities. It is shown that this resulting inequality encompasses
the Jensen one and also leads to tractable LMI conditions. In order to illustrate the potential gain of employing this new
inequality with respect to the Jensen one, two applications on time-delay and sampled-data stability analysis are provided.

Key words: Jensen Inequality, stability analysis, time-delay systems, sampled-data systems

1 Introduction

The last decade has shown an increasing research activ-
ity on time-delay and/or sampled-data systems analysis
and control due to both emerging adapted theoretical
tools and also practical issues in the engineering field
and information technology (see [? ? ]) and references
therein). In the case of linear systems, many techniques
allow to derive efficient criteria proving the stability of
such systems. Among them, two frameworks, different in
their spirits have been recognized as a powerful method-
ologies. The first one relies on Robust Analysis. In this
framework, the time delay/sampled data system is trans-
formed into a closed loop between a stable nominal sys-
tem and a perturbation element depending either on the
delay or the sampling process (which is also modeled
by a time varying delay). The perturbation element is
then embedded into some norm-bounded uncertainties
and the use of scaled small gain theorem [? ? ], Integral
Quadratic Constraints (IQC) [? ], or quadratic separa-
tion approach [? ] allows then to derive efficient stabil-
ity criteria. The challenge is then to reduce the conser-
vatism either by constructing elaborated interconnec-
tions which generally include state augmentation [? ] or
by using finer L2 induced norm upperbound evaluation
[? ], often based on Cauchy-Schwartz inequality [? ]. An-

other popular approach is the use of a Lyapunov func-
tion to prove stability. For sampled-data systems, two
approaches have been successfully proposed lately. The
first one relies on impulsive systems and some piecewise
linear Lyapunov functions [? ? ]. This approach has been
then extended by considering discontinuous Lyapunov
functions which allow to consider aperiodic sampling [?
? ]. In the second approach, the sampled state is mod-
eled by a time varying delayed state. In that case, the
original system is recasted into a time varying delay sys-
tem where Lyapunov-Krasovskii functionals [? ] can be
used directly.
Hence, for sampled-data and time delay systems, the last
decade has seen a tremendous emergence of research de-
voted to the construction of Lyapunov-Krasovskii func-
tionals which aims at reducing the inherent conservatism
of this approach. Several attempts have been done con-
cerning the structure of the functional by extending state
based Lyapunov-Krasovskii functionals ([? ? ? ]), dis-
cretized Lyapunov functionals ([? ]) or discontinuous
Lyapunov functions [? ]. Apart the choice of the func-
tional, an important source of conservatism relies also on
the way to bound some cross terms arisen when manip-
ulating the derivative of the Lyapunov-Krasovskii func-
tional. According to the literature on this subject (see
[? ? ? ] for some recent papers), a common feature of all
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these techniques is the use of slack variables and more
or less refined Jensen inequality [? ? ? ]. At this point, it
is clear that for both frameworks - Robust Analysis and
Lyapunov functionals-, a part of the conservatism comes
from the use of Jensen inequality [? ], usually used to get
tractable criteria. Based on this observation, the objec-
tive of the present paper is then to show how to use an-
other class of inequalities called Wirtinger inequalities,
which are well known in Fourier Analysis. Notice that
this class of inequalities has been recently used to exhibit
new Lyapunov functionals to prove stability of sampled-
data systems [? ]. In the present paper, contrary to the
work of [? ], we do not construct some new Lyapunov
functionals. We aim rather at developing a new inequal-
ity used to reduce the conservatism when computing
the derivative of Lyapunov-Krasovskii functionals. The
Wirtinger inequality allows to consider a more accurate
integral inequality which encompasses the Jensen one.
The resulting inequality depends not only on the state
x(t) and the delayed or sampled state but also on the
integral of the state over the delay or sampling interval.
This new signal is then directly integrated into a suit-
able Lyapunov function, highlighting so the features of
Wirtinger inequality. Hence, it results new stability cri-
teria for time-delay systems and sampled-data systems
directly expressed in terms of LMIs.

Notations: Throughout the paper Rn denotes the n-
dimensional Euclidean space, Rn×m is the set of all n×m
real matrices. The notation P � 0, for P ∈ Rn×n, means
that P is symmetric and positive definite. The notation[
A B

∗ C

]
stands for

[
A B

BT C

]
. For any square matrices A

and B, define diag(A,B) =

[
A 0

∗ B

]
. Moreover, for any

square matrix A ∈ Rn×n, we define He(A) = A + AT .
The notation I stands for the identity matrix.

2 Preliminaries

2.1 Necessity of integral inequalities

Diverse methodss are provided in the literature to
assess stability of time-delay systems using Lyapunov-
Krasovskii functionals. Among them, one of the most
relevant term introduced for the first time in [? ] is

V (xt) =

∫ t

t−h

∫ t

s

ẋT (θ)Rẋ(θ)dθds, (1)

where x represents the state of a time-delay system,R �
0 and h > 0. Differentiating this term with respect to
the time variable t, we get

V̇ (xt) = hẋT (t)Rẋ(t)−
∫ t

t−h
ẋT (s)Rẋ(s)ds. (2)

The main issue related to (2) is that the integral is not
appropriate to the “LMIzation” process. It consists in
transforming the previous expression into an appropri-
ate form to derive an LMI formulation of the stability
conditions. In the following, the problem under consid-
eration is to providing a new lower bound of integral
quadratic terms of the form

IR(ω) =

∫ b

a

ωT (u)Rω(u)du,

where −∞ < a < b < +∞ are scalars, ω is a continuous
function from [a, b]→ Rn and, consequently integrable.

The first method to treat this problem is based on the
Jensen inequality formulated in the next lemma

Lemma 1 For a given n × n-matrix R � 0 and for all
continuous functions ω in [a, b] → Rn, the following
inequality holds:

IR(ω) ≥ 1
b−a

(∫ b
a
ωT (u)du

)
R
(∫ b

a
ω(u)du

)
. (3)

The proof is omitted and can be found in [? ]. Naturally,
the Jensen inequality is likely to entail some inherent
conservatism and several works have been devoted to
the reduction of such a gap [? ? ]. In the present paper,
we propose to use a different class of inequalities called
Wirtinger inequalities to obtain a more accurate lower
bound of this integral.

2.2 Wirtinger inequality

In the literature [? ], Wirtinger inequalities refer to in-
equalities which estimate the integral of the derivative
function with the help of the integral of the function.
Often proved using Fourier theory, it exists several ver-
sions which depend on the characteristics or constraints
we impose on the function. Let us focus on the following
inequality adapted to our purpose.

Lemma 2 Consider a given n×n-matrix R � 0. Then,
for all function z in C1([a, b] → Rn) which satisfies
z(a) = z(b) = 0, the following inequality holds

∫ b

a

żT (u)Rż(u)du ≥ π2

(b− a)2

∫ b

a

zT (u)Rz(u)du, (4)

Proof : The proof is omitted but can be found in [? ]. ♦
It is worth noting that (4) is not related to the Jensen in-
equality in its essence. Indeed, the function z has to meet
several constraints whereas the function ω is assumed to
be a continuous function in the Jensen inequality.
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2.3 Reciprocally convex combination inequality

Recall a useful lemma inspired from the reciprocally con-
vex combination lemma provided in [? ].

Lemma 3 [? ] For given positive integers n,m, a scalar
α in the interval (0, 1), a given n×n-matrix R � 0, two
matrices W1 and W2 in Rn×m. Define, for all vector ξ in
Rm, the function Θ(α,R) given by:

Θ(α,R) =
1

α
ξTWT

1 RW1ξ +
1

1− α
ξTWT

2 RW2ξ.

Then, if there exists a matrix X in Rn×n such that[
R X

∗ R

]
� 0, then the following inequality holds

minα∈(0, 1) Θ(α,R) ≥

[
W1ξ

W2ξ

]T [
R X

∗ R

][
W1ξ

W2ξ

]
.

Proof : The proof is omitted but can be found in [? ]. ♦
This lemma will be useful to derive stability conditions
for linear systems with time-varying delays.

3 Application of the Wirtinger inequality

The objective of this section is to provide an inequal-
ity based on Lemma 2, which, on the first hand, is im-
plementable into a convex optimization scheme and, on
the other hand, which reduces the conservatism of the
Jensen inequality. To do so, the function z has to be con-
structed such that IR(ω) appears naturally in the fu-
ture developments. Thus a necessary condition is that
z(u) =

∫ u
a
ω(s)ds − y(u),where y is a continuous func-

tion in [a, b]→ Rn to be defined.

Corollary 4 Consider a given matrix R � 0. Then, for
all continuous function ω in [a, b] → Rn the following
inequality holds:

IR(ω) ≥ 1
b−a

(∫ b
a
ω(u)du

)T
R
(∫ b

a
ω(u)du

)
+ 3
b−aΩTRΩ,

(5)

where Ω =
∫ b
a
ω(s)ds− 2

b−a
∫ b
a

∫ s
a
ω(r)drds.

Proof : For any continuous function ω and which admits
a continuous derivative, define the function z given, for
all u ∈ [a, b], by

z(u) =

∫ u

a

ω(s)ds−u− a
b− a

∫ b

a

ω(s)ds− (b− u)(u− a)

(b− a)2
Θ,

where Θ is a constant vector of Rn to be defined. The
difference between this function z and the one proposed
in [? ] remains in the addition of the third term. By
construction, the function z satisfies the conditions of the
Wirtinger inequality given in Lemma 2, that is z(a) =
z(b) = 0. The computation of the left-hand-side of the
inequality stated in Lemma 2 leads to:

∫ b
a
żT (u)Rż(u)du =

∫ b
a
ωT (u)Rω(u)du

− 1
b−a

(∫ b
a
ω(u)du

)T
R
(∫ b

a
ω(u)du

)
+
∫ b
a

(
(b+a−2u)
(b−a)2

)2
duΘTRΘ

−2ΘTR
∫ b
a

(
b+a−2u
(b−a)2

)
ω(u)du

+2
∫ b
a

(
(b+a−2u)
(b−a)2

)
duΘTR

(∫ b
a
ω(u)du

)
.

(6)

By noting that
∫ b
a

(b + a − 2u)du = 0 and by use of an
integration by parts, it yields

∫ b
a
żT (u)Rż(u)du =

∫ b
a
ωT (u)Rω(u)du

− 1
b−a

(∫ b
a
ω(u)du

)T
R
(∫ b

a
ω(u)du

)
+ 1

3(b−a)Θ
TRΘ + 2

(b−a)Θ
TRΩ.

(7)

Rewriting the two last terms as a sum of squares leads to

∫ b
a
żT (u)Rż(u)du =

∫ b
a
ωT (u)Rω(u)du

− 1
b−a

(∫ b
a
ω(u)du

)T
R
(∫ b

a
ω(u)du

)
− 3

(b−a)Ω
TRΩ + 1

3(b−a) (Θ + 3Ω)TR(Θ + 3Ω)

(8)
Consider now the right-hand side of the inequality
(4). Applying the Jensen inequality and noting that∫ b
a
z(u)du = − (b−a)

6 (Θ + 3Ω), Lemma 2 ensures that

IR(ω) ≥ 1
b−a

(∫ b
a
ω(u)du

)T
R
(∫ b

a
ω(u)du

)
+ 3

(b−a)Ω
TRΩ +

(
π2−12
36(b−a)

)
(Θ + 3Ω)TR(Θ + 3Ω).

Since 12 ≥ π2, the right-hand side of the previous in-
equality is definite negative independently of the choice
of Θ. Hence, its maximum is reached and is 0 when
Θ = −3Ω. This concludes the proof. ♦

Remark 1 The previous corollary refines the inequality
proposed in [? ], in which the last term of the right-hand-

side of (9) is multiplied by π2

4 which is less than 3. This
proves that the proposed inequality delivers a more accu-
rate lower bound of IR(ω) than the one proposed in [? ].
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Remark 2 Since R � 0, the second term of (9) is defi-
nite positive. It thus implies that the Jensen inequality is
included in the inequality proposed (5). It is also worth
noting that this improvement is allowed by using an extra

signal
∫ b
a

∫ u
a
ω(s)dsdu and not only

∫ b
a
ω(u)du.

As it was mentioned previous section, the differentiation
of the Lyapunov-Krasovskii functional proposed in (2)
requires to find a lower bound of IR(ω̇).In such situation,
the previous lemma is rewritten as follows.

Corollary 5 For a given matrix R � 0, the following
inequality holds for all continuously differentiable func-
tion ω in [a, b]→ Rn:

IR(ω̇) ≥ 1
b−a (ω(b)− ω(a))TR(ω(b)− ω(a))

+ 3
(b−a) Ω̃

TRΩ̃,
(9)

where Ω̃ = ω(b) + ω(a)− 2
b−a

∫ b
a
ω(u)du.

The previous inequality will be employed for the stability
analysis of time-delay and sampled-data systems.

4 Application to the stability analysis of time-
delay systems

4.1 Systems with constant and known delay

Consider a linear time-delay system:{
ẋ(t) = Ax(t) +Adx(t− h) +AD

∫ t
t−h x(s)ds, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],

(10)
where x(t) ∈ Rn is the state vector, φ is the initial con-
dition and A, Ad, AD ∈ Rn×n are constant matrices.
The delay is assumed to be known and constant. The
following stability theorem is provided.

Theorem 6 Assume that, for a given h > 0, there exist
2n×2n-matrix P � 0, and n×n-matrices S � 0, R � 0
such that the following LMI is satisfied

Ψ(h) = Ψ0(h)− 1
hF

T
2 R̃F2 ≺ 0, (11)

where

Ψ0(h) = He(FT1 (h)PF0(h)) + S̄ + hFT0 (h)R̄F0(h),

F0(h) =

[
A Ad hAD

I −I 0

]
, F1(h) =

[
I 0 0

0 0 hI

]
,

F2 =

[
I −I 0

I I −2I

]
, S̄ = diag(S,−S, 0n),

R̄ = diag(R, 02n), R̃ = diag(R, 3R),

Then the system (10) is asymptotically stable for the con-
stant and known delay h > 0.

Proof : Consider the functional given by

V (h, xt, ẋt) = x̄T (t)Px̄(t) +
∫ t
t−h x

T (s)Qx(s)ds

+
∫ t
t−h

∫ t
θ
ẋT (θ)Rẋ(θ)dθds.

(12)

where x̄(t) =

[
x(t)∫ t

t−h x(s)ds

]
. This functional is positive

definite since P � 0, S � 0 and R � 0. Differentiating
(17) along the trajectories of (10) leads to:

V̇ (h, xt, ẋt) = ζT0 (t)Ψ0(h)ζ0(t)−
∫ t

t−h
ẋT (s)Rẋ(s)ds,

where ζ0(t) =
[
xT (t) xT (t− h) 1

h

∫ t
t−h x

T (s)ds
]T
.

This equation has been obtained by noting that

x̄(t) = F1(h)ζ0(t), ˙̄x(t) = F0(h)ζ0(t).

Then the application of Corollary 5 to the integral de-
fined over the interval [t− h, t] leads to∫ t

t−h ẋ
T (s)Rẋ(s)ds ≥ − 1

hζ
T
0 (t)FT2 R̃F2ζ0(t).

It yields V̇ (h, xt, ẋt) ≤ ζT0 (t)Ψ(h)ζ0(t). Then if (11)
is satisfied for a given h > 0, then the system (10) is
asymptotically stable for this delay h. ♦

Remark 3 It is worth noting that the previous theorem
only deals with the case of constant and known delays. It
does not mean that the considered system is asymptoti-
cally stable for any delay belonging to the interval [0, h].

Remark 4 This case is very special and the case of
of different value for the discrete and distributed delays
would be more relevant to study. However, the goal of the
present article is to show that the two different problems
of distributed and discrete delays can be tackled by using
a unique class of Lyapunov-Krasovskii functionals.

4.2 Systems with a time-varying delay

Consider the following class of systems{
ẋ(t) = Ax(t) +Adx(t− h(t)), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(13)

where the delay function h is unknown or time-varying
and satisfies the following constraints

h(t) ∈ [hm, hM ], ḣ(t) ∈ [dm, dM ] , ∀t ≥ 0, (14)
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where 0 ≤ hm ≤ hM and dm ≤ dM ≤ 1. In such a
situation, the following stability theorem is provided.

Theorem 7 Assume that there exist 3n×3n-matrixP �
0, n × n-matrices S � 0, Q � 0, R � 0 and a 2n × 2n-
matrix X such that the following LMIs are satisfied for
h = {hm, hM} and for ḣ = {dm, dM}

Φ1(h, ḣ) = Φ0(h, ḣ)− 1
hM

ΓTΦ2Γ ≺ 0,

Φ2 =

[
R̃ X

∗ R̃

]
� 0,

(15)

where

Φ0(h, ḣ) = He(GT1 (h)PG0(ḣ)) + Ŝ + Q̂(ḣ)

+hMG
T
0 (ḣ)R̂G0(ḣ),

Γ =
[
GT2 GT3 GT4 GT5

]T
,

G2 =
[
I −I 0 0 0

]
, G3 =

[
I I 0 −2I 0

]
,

G4 =
[

0 I −I 0 0
]
, G5 =

[
0 I I 0 −2I

]
,

Q̂(ḣ) = diag(Q,−(1− ḣ)Q, 03n),

Ŝ = diag(S, 0,−S, 02n),

R̂ = diag(R, 03n), R̃ = diag(R, 3R),

and

G0(ḣ) =


A Ad 0 0 0

I −(1− ḣ)I 0 0 0

0 (1− ḣ)I −I 0 0

 ,

G1(h) =


I 0 0 0 0

0 0 0 hI 0

0 0 0 0 (hM − h)I

 .
(16)

Then the system (13) is asymptotically stable for all delay
function h satisfying (14).

Proof : Consider the functional given by

V (h, xt, ẋt) = x̃T (t)Px̃(t) +
∫ t
t−h(t) x

T (s)Qx(s)ds

+
∫ t
t−hM

xT (s)Sx(s)ds

+
∫ t
t−hM

∫ t
θ
ẋT (s)Rẋ(s)dsdθ,

(17)

where x̃(t) =
[
xT (t),

∫ t
t−h(t) x

T (s)ds,
∫ t−h(t)
t−hM

xT (s)ds
]T

.

This functional is positive definite since P � 0, Q � 0,
S � 0 and R � 0. Differentiating the functional (17)
along the trajectories of (13) leads to:

V̇ (h, xt, ẋt) = ζT1 (t)Φ0(h)ζ1(t)−
∫ t

t−hM

ẋT (s)Rẋ(s)ds,

(18)

where ζ1(t) =



x(t)

x(t− h(t))

x(t− hM )

1
h(t)

∫ t
t−h(t) x(s)ds

1
hM−h(t)

∫ t−h(t)
t−hM

x(s)ds



T

.

This equation has been obtained by noting that x̃(t) =

G1(h)ζ1(t) and ˙̃x(t) = G0(ḣ)ζ1(t). The next step con-
sists in splitting the integral into two integrals, taken
over the two intervals [t− hM , t− h(t)] and [t− h(t), t]
and in applying Corollary 5 to each of them. It yields

−
∫ t
t−hM

ẋT (s)Rẋ(s)ds ≤ −ζT1 (t)
(

1
h(t)G

T
23R̃G23

+ 1
hM−h(t)G

T
45R̃G45

)
ζ1(t),

where G23 =

[
G2

G3

]
and G45 =

[
G4

G5

]
. Providing that

there exists a matrix X such that Φ2 � 0, Lemma 3
ensures that

−
∫ t
t−hM

ẋT (s)Rẋ(s)ds ≤ − 1
hM

ζT1 (t)ΓTΦ2Γζ1(t),

which leads to V̇ (xt, ẋt) ≤ ζT1 (t)Φ(h, ḣ)ζ1(t). Fi-

nally, V̇ is negative definite if there exists a matrix
X such that Φ2 � 0 and if Φ(h, ḣ) ≺ 0, for all

(h, ḣ) ∈ [0, hM ] × [dm, dM ]. Since the matrix Φ(h, ḣ)
is affine, and consequently convex, with respect to
h(t) and ḣ(t), it is necessary and sufficient to en-

sure that Φ(h, ḣ) ≺ 0 at the vertices of the intervals
[0, hM ]× [dm, dM ], which concludes the proof. ♦

4.3 Examples

4.3.1 Constant distributed delay case

Consider the linear time-delay systems (10) with the
matrices taken from [? ]:

A =

[
0.2 0

0.2 0.1

]
, Ad =

[
0 0

0 0

]
, AD =

[
−1 0

−1 −1

]
(19)

An eigenvalue analysis provides that the system remains
stable for all constant delays in the interval [0.200, 2.04].
In [? ] and [? ], stability is guaranteed for delays over
the interval [0.2090, 1.1942] and [0.2001, 1.6339], re-
spectively. Using our new inequality, Theorem 6 ensures
stability for all constant delays which belong to the in-
terval [0.200, 1.877] which encompasses these previous
results and shows the potential of Corollary 5.

5



dM (= −dm) 0 0.1 0.2 0.5 0.8 1 Nv

[? ] 4.472 3.604 3.033 2.008 1.364 0.999 5.5n2 + 1.5n

[? ] 1.632 1.632 1.632 1.632 1.632 1.632 7n2 + n

[? ? ] 4.472 3.605 3.039 2.043 1.492 1.345 3n2 + 3n

[? ] 4.472 3.611 3.047 2.072 1.590 1.529 7n2 + n

[? ] (N=1) 6.059 −1- −1 −1 −1 −1 5.5n2 + 2.5n

[? ] 6.117 4.714 3.807 2.280 1.608 1.360 1.5n2 + 9n+ 9

[? ] 6.117 4.794 3.995 2.682 1.957 1.602 22n2 + 8n

Th.6 6.059 −1 −1 −1 −1 −1 3n2 + 2n

Th.7 6.059 4.703 3.834 2.420 2.137 2.128 10n2 + 3n

Table 1
The maximal allowable delays hM for system described in Example (20).

4.3.2 Unknown time-varying delay case

We consider the linear time-delay systems (13) with

A =

[
−2 0

0 −0.9

]
, Ad =

[
−1 0

−1 −1

]
, AD =

[
0 0

0 0

]
.

(20)
This system is a well-known delay dependent stable sys-
tem where the maximum allowable delay hmax = 6.1721
can be easily computed by delay sweeping techniques.
To demonstrate the effectiveness of our approach, results
are compared to the literature and are reported in Table
1. Table 1 shows that our result is competitive with the
most accurate stability conditions from the literature.
For the case of constant and known delay, Theorem 6
delivers the same result as the one provided by the dis-
cretization method 1 of [? ] with N = 1 and with a lower
number of variables. For the time-varying case, only the
conditions provided in [? ] and in [? ] are less conserva-
tive than the ones of Theorem 7 for slow varying delays.
However for fast varying delays, Theorem 7 becomes less
conservative than the conditions from these articles.

5 Application to sampled-data systems

Let {tk}k∈N be an increasing sequence of positive scalars
such that

⋃
k∈N[tk, tk+1) = [0, +∞), for which there

exist two positive scalars Tmin ≤ Tmax such that

∀k ∈ N, Tk = tk+1 − tk ∈ [Tmin, Tmax]. (21)

The sequence {tk}k∈N represents the sampling instants.
Consider the sampled-data system given by

∀t ∈ [tk, tk+1), ẋ(t) = Acx(t) +Asx(tk), (22)

where x ∈ Rn represents the state. The matrices Ac and
As are constant, known and of appropriate dimensions.

1 The stability conditions providedby this method only con-
cerns the case of constant and known delays

Adopting the method based on looped-functionals pro-
posed in [? ? ? ], the following result is proposed

Theorem 8 Let 0 < Tmin ≤ Tmax be two positive
scalars. Assume that there exist n × n-matrices P � 0,
R � 0, S = ST , Q = QT and X = XT and 3n× n-
matrices Y1 Y2 and Y3 that satisfy

Θ1(T ) = Π1 + T (Π2 + Π3) ≺ 0,

Θ2(T ) =


Π1 − T (Π3 + Π4) TY1 3TY2

∗ −TR 0

∗ ∗ −3TR

 ≺ 0,

(23)
for T ∈ {Tmin, Tmax} and where

Π1 = Π0
1 −He{(Y1 + Y3)W1 + 3Y2W2}

Π0
1 = He{MT

1 PM0 −WT
1 QM2} −WT

1 SW1,

Π2 = MT
0 RM0 + He{MT

0 SW1 +MT
0 QM2},

Π3 = MT
2 XM2, Π4 = Y3M4,

(24)

with M0 = [Ac As 0], M1 = [I 0 0], M2 = [0 I 0],
M3 = [0 0 I], M4 = [0 As Ac], W1 = [I − I 0] and
W2 = [I I − 2]. Then the system (22) is asymptotically
stable for all sequence {tk}k≥0 satisfying (21).

Proof : Consider a given integer k ≥ 0 and the asso-
ciated Tk ∈ [Tmin Tmax]. The stability analysis can be
performed using the quadratic function V (x) = xTPx
where P � 0 and a functional V0 of the form

V0(t− tk, x) = (tk+1 − t)x̃T (t)(Sx̃(t) + 2Qx(tk))

+ (tk+1 − t)
∫ t
tk
ẋT (s)Rẋ(s)ds

+ (tk+1 − t)(t− tk)xT (tk)Xx(tk),

where x̃(t) = x(t) − x(tk). This functional is called
a looped functionals because it satisfies the boundary
conditions V0(0, x) = V0(Tk, x) = 0. Define the func-
tional W = V + V0 (see [? ? ? ] for more details). In
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the following, the notation τ = t − tk is adopted. In-

troduce the vectors νk(τ) = 1
τ

∫ t
tk
x(s)ds and ξk(τ) =[

xT (t) xT (tk) νTk (τ)
]
. Since the vector x(tk) is con-

stant over [tk t] ⊂ [tk tk+1], the following equation is
derived, for all matrix Y3 ∈ R3n×n

2ξTk (τ)Y3
∫ t
tk
ẋ(s)ds = 2ξTk (τ)Y3(x(t)− x(tk))

= 2τξTk (τ)Y3M4ξk(τ).
(25)

This expression shows that there exists a relation be-
tween the vectors x(t), x(tk) and νk(τ). Hence, following
the proof of Theorem 2 in [? ], the computation of the
derivative of W together with the linking relation (25)

Ẇ(τ, x) = ξTk (τ)
[
Π0

1 + (Tk − τ)Π2 + (Tk − 2τ)Π3

+τΠ4] ξk(τ)−
∫ t
tk
ẋT (s)Rẋ(s)ds.

Applying Corollary 5 yields

−
∫ t
tk
ẋT (s)Rẋ(s)ds ≤
− 1
τ ξ
T
k (τ)

[
WT

1 RW1 + 3WT
2 RW2

]
ξk(τ)

Noting that, for all matrices Yi, i ∈ {1, 2} in Rn×3n,
it holds 1

τ (RWi − τYi)
TR−1(RWi − τYi) � 0 for all

i ∈ {1, 2}, the inequality

−1

τ
WT
i RWi ≤ −Y Ti Wi −WT

i Yi + τY Ti R
−1Yi

holds for i = 1, 2. This ensures

Ẇ(τ, x) = ξTk (τ)Π(τ, Tk)ξk(τ),

where Π(τ, Tk) = Π1 + (Tk − τ)Π2 + (Tk − 2τ)Π3 + τ Π̄4

and Π̄4 = Π4 + Y1R
−1Y T1 + 3Y2R

−1Y T2 . Since Π(τ, Tk)
is affine, and consequently convex, with respect to
τ ∈ [0, Tk], it is sufficient to ensures that Π(0, Tk) ≺ 0
and Π(Tk, Tk) ≺ 0, or equivalently Θ1(Tk) ≺ 0 and
Θ2(Tk) ≺ 0. The same argument on the parameter

Tk ∈ [Tmin Tmax] ensures that Ẇ ≤ 0. According to [?
], the system (22) is asymptotically stable. ♦

5.1 Examples

Consider again the system (22) provided in the example
(20) with Ac = A and As = Ad. Additionally, we will
also consider the following example taken from [? ? ].

ẋ(t) =

[
0 1

0 −0.1

]
x(t) +

[
0

−0.1

][
3.75

11.5

]T
x(tk) (26)

Theorems Ex. (20) Ex. (26) Nb of variables

Th. bounds (0, 3.269] (0, 1.729] -

[? ] (0, 2.53] (0, 1.695] 8n2 + n

[? ] (0, 2.53] (0, 1.695] 11.5n2 + 2.5n

[? ] (0, 2.62] (0, 1.721] 5n2 + 2n

Th. 8 (0, 2.87] (0, 1.729] 12n2 + 3n

Table 2
Interval of allowable asynchronous samplings. The theoret-
ical bounds have been computed by an eigenvalue analysis
for the case of synchronous samplings.

For this example, when the sampling period is chosen
constant (i.e. Tk = Tmin = Tmax, for all k ≥ 0), an
eigenvalue analysis of the transition matrix ensures that
the system is stable for all constant sampling period in
(0, 1.729]. Applying Theorem 8, we prove that system
(26) is asymptotically stable for all asynchronous sam-
pling over the interval [0, 1.724], encompassing many re-
sults of the literature as it can be seen in the Table 2 but
at a increasing numerical burden.

6 Conclusions

In this paper, we have provided a new inequality which
encompasses the Jensen inequality. In combination with
a simple choice of Lyapunov-Krasovskii functionals, this
inequality leads to new stability criteria for linear time-
delay and sampled-data systems. These new results have
been expressed in terms of LMIs and has shown on nu-
merical examples large improvements of existing results
using only a limited number of matrix variables.
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