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Abstract. We study the analytic structure of the space of germs of an analytic function
at the origin of Cm, namely the space C {z} where z = (z1, · · · , zm), equipped with a conve-
nient locally convex topology. We are particularly interested in studying the properties of
analytic sets of C {z} as defined by the vanishing loci of analytic maps. While we notice
that C {z} is not Baire we also prove it enjoys the analytic Baire property: the countable
union of proper analytic sets of C {z} has empty interior. This property underlies a quite
natural notion of a generic property of C {z}, for which we prove some dynamics-related
theorems. We also initiate a program to tackle the task of characterizing glocal objects in
some situations.

Infinite-dimensional holomorphy, complex dynamical systems, holomorphic solu-
tions of differential equations, Liouvillian integrability of foliations
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1. Introduction

This article purports to provide a context in which the following results make sense:

Corollary A. Fix m ∈N. The generic finitely generated subgroup G < Diff (Cm,0) of germs
of biholomorphisms fixing 0 ∈ Cm, identified with a tuple of generators (∆1, . . . ,∆n), is free.
Besides the set of non-solvable subgroups of Diff (C,0) generated by two elements is Zariski-
full, in the sense that it contains (and, as it turns out, is equal to) an open set defined as the
complement of a proper analytic subset of Diff (C,0)n. The latter result persists in the case of
n-generated subgroups of Diff (C,0) everyone of which is tangent to the identity.

Corollary B. The generic germ of a holomorphic function f ∈C {z} near the origin of C is not

solution of any ordinary differential equation f (k+1) (z) = P
(
z, f (z) , . . . , f (k) (z)

)
, where P is an

elementary function of all its variables, differentiable at
(
0, f (0) , . . . , f (k) (0)

)
, and k ∈N.

Corollary C. The set of coprime P, Q ∈ C {x,y}, with zero first-jet, such that

y′ =
P (x,y)
Q (x,y)

is not solvable in «closed form» constitutes a Zariski-full set.
1
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The main concern of the article is proposing a framework in which the analytic prop-
erties of C {z} can easily be manipulated. For that reason the above results should be
understood as showcase consequences of more general theorems stated below. Other
consequences in the realm of dynamics will also be detailed in due time, for there lies
the original motivation of this work. In the meantime the objects involved above must
be outlined, and we postpone more formal definitions to the body of the article.

1.1. Statement of the main results.
Roughly speaking a property P expressed on the set of germs of holomorphic func-

tions is generic1 if the subset where P does not hold is contained in countably many
(proper) analytic sets. This concept supports a genericity à la Baire embodied in a
metrizable, locally convex topology on C {z}, where z = (z1, · · · , zm). The topology is
induced by a convenient family of norms. Such spaces will be referred to as normally
convex spaces. Special norms will be of interest, those defined by
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an |fn| ,(⋆)

where a = (an)n∈Nm is amulti-sequence of positive real numbers satisfying the additional
growth condition

lim
|n|→∞

a
1/|n|
n = 0 ,

which ensures the convergence of the series (⋆). This particular choice of a topology
on C {z}, instead of the «usual» ones, is motivated by the theory of analyticity between
locally convex spaces, developed in its modern form during the 70’s by various math-
ematicians (S. Dineen, L. Nachbin and J. Sebastião e Silva among others) in the wake
of the works of J.-P. Ramis for Banach analytic spaces. A brief history of the theory of
infinite-dimensional holomorphy in locally convex space is conducted in [Din81, p101-
104]. In that setting a map Λ : E → F is analytic if it is the sum of a «convergent power
series» whose term of «homogeneous degree» p ∈N is some p-linear, continuous map-
ping2.

To keep matters brief we wish to manipulate relations like

f ◦ g = g ◦ f
or, for the sake of example,

(f ′′)2 = 1+ exp f ′ + f × f (3) ,
as analytic relations on the corresponding space of holomorphic germs. While this is
true for the inductive topology on C {z}, it is not too difficult to prove that the standard

differentiation f 7→ ∂f
∂z

or the composition mapping

(f ,g) 7−→ f ◦ g

1An element satisfying a generic property will also be called «generic» for convenience, as in the three
corollaries stated at the very beginning of the introduction.

2We refer to the books by J.-A. Barroso [Bar85] and P. Mazet [Maz84] for a presentation of the different
(equivalent) types of analyticity and related analytic sets, of which we give a short summary in Section 3.
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are analytic if one endows C {z} with a convenient sub-family of norms (⋆). We would
like to point out that not only is the continuity of the linear left-composition operator
g∗ : f 7→ f ◦ g ascertained, provided g (0) = 0, but so is the analyticity of the right-
composition mapping f∗ : g 7→ f ◦ g , for given f . The Taylor expansion

f ◦ g =
∞∑

p=0

f (p) (g (0))
p!

(g − g (0))p

is indeed convergent on the open set

{g ∈C {z} : |g (0)| <R (f )}
(see Proposition 3.20) where R (f ) stands for the radius of convergence of the Taylor
series of f at 0. It should be noticed straight away that R is lower semi-continuous
but cannot be positively lower-bounded on any domain of C {z}, which constitutes of
course a source of trouble and, as a by-product, reveals that the composition mapping
(f ,g) 7→ f ◦ g cannot be defined on any domain of C {z} ×C {z} (for given g with g (0) , 0
there will always exist f not defined at g (0)).

Once we are granted the notion of analyticity we can speak of analytic sets, closed
subsets locally defined by the vanishing of a collection of analytic functions. As we
recall later the space C {z} is not Baire and at first glance the notion of Gδ-genericity
must arguably be discarded. Yet it is possible to salvage this concept by hardening the
rules Baire’s closed sets are required to play by:

Theorem A. The space C {z} enjoys the analytical Baire property: any analytically meager
set (at most countable unions of proper analytic sets) of C {z} have empty interior.

This theorem bolsters the well-foundedness of the concept of genericity in C {z} as
introduced above. It has been originally proved in a weaker form in [GT10] while en-
compassing issues of glocality, which is a subject we come back to afterward. In fact we
can prove a stronger refinement of the main result of the cited reference:

Theorem B. Let Λ : U ⊂ E → C {w} be a map analytic on a relative open set in a linear
subspace E < C {z} of at most countable dimension. Then the range ofΛ is analytically meager.

The analytically meager set Λ (U ) seems smaller than other analytically meager sets.
We call countably meager a set obtained in that way, that is an at-most-countable union of
images of at-most-countable-dimensional spaces by analytic mappings. For instance the
proper analytic set {f : f (0) = 0} is not countably meager. By definition, the image of a
countably meager set by an analytic mapping is again countably meager. It is not known
whether the image of an arbitrary analytically meager set by an analytic map remains
analytically meager.

Such a result is typically useful in conjunction with Theorem A to derive existential
properties by proving, say, that the image of the set of polynomials by a given analytic
map cannot cover a domain ofC {w} (in particular it cannot be locally onto). That was the
targeted objective of [GT10] through the use of a different concept of analyticity (the so-
called here quasi-strong analyticity) and analytic sets, which we also come back to later.
The topology on C {z} was there induced by the norm ||•||(1/n!)n . This topology, though, is
too coarse to be used in Corollaries A, B and C. Instead one can consider the metrizable
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topology induced by the collection
(
||•||(n!−1/k)n

)

k∈N>0

, which we name factorial topology.

Other choices, called useful topologies, are possible to carry out most proofs; roughly
speaking any collection of norms making multiplication, composition and differentia-
tion continuous can do. Notice that no finite collection can be useful: the presence of
normally convex spaces equipped with an infinite collection of norms (instead of e.g.
normed space) is a necessity when dealing with the composition or the differentiation.
The major drawback is that no differential geometry (e.g. Fixed-Point Theorem3) exists
in such a general framework, although this is precisely what one would like to use in
conjunction with the Fréchet calculus on first-order derivatives. In order to make a con-
structive use of the latter we need some rudiments of analytical geometry in C {z}, which
is unfortunately not available for now.

1.2. Deduction of the Corollaries from the Theorems.

1.2.1. Corollary A.
Any algebraic relation between n generators (∆1, · · · ,∆n) of G writes

©k
ℓ=1∆

◦nℓ
jℓ
− Id = 0

for a given depth k ∈N>0 and a collection of couples (jℓ ,nℓ) ∈ N≤n ×Z,0. Each one of
these countably many choices defines an analytic set4 of Diff (Cm,0)n, which is proper if
the relation does not boil down to the trivial relation ∆ ◦∆◦−1 − Id = 0 (after recursive
simplification of said trivial relations). Abelian groups form the analytic set defined by
the (non-trivial) relations

[
∆j ,∆k

]
− Id = 0 , j , k ,

where as usual [f ,g] := f ◦−1 ◦ g◦−1 ◦ f ◦ g . In the unidimensional case D. Cerveau and
R. Moussu on the one hand, Y. Il’Yashenko and A. Sherbakov on the other hand, have
studied the structure of the finitely-generated subgroups of Diff (C,0), proving results
later refined by F. Loray [Lor94] which are as follows.

⊛ A finitely generated subgroup G of Diff (C,0) is solvable if, and only if, it is meta-
Abelian (i.e. its second derived group [[G,G] , [G,G]] is trivial).

⊛ G :=
〈
f ,g

〉
is solvable if, and only if,

[
f ,

[
f ,g◦2

]]
− Id = 0 .

This again is an analytic relation and the complement in Diff (C,0)2 of the cor-
responding analytic set is a Zariski-full open set.

⊛ If all the generators of G are tangent to the identity then G is solvable if, and
only if, it is Abelian.

All these points put together prove the corollary.

3We explain in the course of the article why Nash-Moser theorem cannot be applied in the generality of
the spaces under study.

4Since each diffeomorphism ∆j fixes 0 the composition mappings
(
∆j ,∆k

)
7→ ∆j ◦∆k are analytic on the

whole Diff (Cm ,0)2, as stated in Section 3.2. We also refer to this section for the definition of analytic mappings
from and into the non-linear space Diff (Cm ,0).
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1.2.2. Corollary B.
We actually prove a stronger result than Corollary B.

Proposition. Being given k ∈N and Ek a countably meager subset of C {z,δ0, . . . ,δk}, the set
S of germs f in C {z} that are solutions of some differential equation

P
(
z, f (z)− f (0) , . . . , f (k) (z)− f (k) (0)

)
= 0 ,

with

P ∈ E∗k := Ek\
{
Q :

∂Q

∂δk
(0) = 0

}
,

is countably meager.

We explain at the end of this paragraph what we mean by an elementary functions in
the variable z = (z1, . . . , zm), and why the trace of their set on C {z} is countably meager.
We thus obtain Corollary B from the proposition by setting z := (z,δ0, . . . ,δk ).

The proposition is a consequence of Theorem B above and Theorem C below. For the
sake of concision set

F
f
k (z) : =

(
z, f (z)− f (0) , . . . , f (k) (z)− f (k) (0)

)
.

The natural approach is to consider the vanishing locus Ω of the analytic map

C {z,δ0, . . . ,δk }∗ ×C {z} −→ C {z}

(P,f ) 7−→ P ◦Ffk
(this map is analytic if both source and range spaces are given a useful topology). The
set of those germs satisfying at least one differential equation of the requested type is
therefore the sub-analytic set given by the canonical projection ofΩ∩

(
E∗k ×C {z}

)
on the

second factor C {z}. To guarantee that this projection has empty interior we provide a
parameterized covering by the space of equations and initial conditions, using:

Theorem C. Fixm ∈N and consider the space VF of germs at 0 ∈Cm of a holomorphic vector
field, identified with C {z}m, endowed with the factorial topology. For X ∈ VF we name ΦX the
flow of X, that is the unique germ of a holomorphic mapping near (0,0)

ΦX : Cm ×C −→ Cm

(p, t) 7−→ Φt
X (p)

that is solution of the differential system

ż (p, t) = X (z (p, t))
z (p,0) = p .

Then the «flow mapping»

VF −→ C {z, t}m

X 7−→ ΦX ,

where the target space is also given the factorial topology, is analytic.
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Take now f ∈ C {z} and P ∈ C {z,δ0, . . . ,δk }∗. Using the usual trick of differentiating

once more the equation we obtain
dP◦Ffk
dz (z) = 0, which we rewrite P̂ ◦Ffk+1 = 0 with:

P̂ (z,δ0, . . . ,δk+1) :=
∂P

∂z
(z,δ0, . . . ,δk ) +

k∑

j=0

∂P

∂δj
(z,δ0, . . . ,δk )δj+1 .

From this we deduce an explicit non-trivial (k +1)th-order differential equation, whose
solutions are obtained through the flow of the companion vector field

X (P) =
∂

∂z
+
k−1∑

j=0

δj+1
∂

∂δj
−
∂P
∂z

+
∑k−1
j=0

∂P
∂δj
δj+1

∂P
∂δk

∂

∂δk
,

which is holomorphic for ∂P
∂δk

(0) , 0. Obviously P ∈ C {z,δ0, . . . ,δk}∗ 7→ X (P) is analytic
for any useful topology. Consider the map

Φk : C [z]≤k ×C {z,δ0, . . . ,δk}∗ −→C {z}
(J ,P) 7−→

(
z 7→ J (z) +Π ◦Φz

X(P) (0)
)

whereΠ denotes the natural projection (z,δ0, . . . ,δk) 7→ δ0 and C [z]≤k the vector space of
complex polynomials of degree at most k. Theorem C asserts the analyticity of the map
if the space C {z} is equipped with the factorial topology. By construction, if f is given
satisfying an equation P ∈ C {z,δ0, . . . ,δk }∗ then f =Φk (J ,P) where J is the kth-jet of f at 0
(the canonical projection of f ∈C {z} on C [z]≤k). The set S must therefore be included in
the countable union of sets

(
Φk

(
C [z]≤k ×E∗k

))
k∈N, each one of which is countably meager

accounting for Theorem B. This completes the proof of the proposition.

Let us conclude this paragraph by proving our claim regarding elementary functions.
Denote by DiffAlgK (x) the abstract set of all solutions of at least one autonomous,
polynomial differential equations of finite order in the variable x with coefficients in
a subfield K ≤ C. By DiffAlgK (x)∩C {x} we mean the concrete representation of those
elements of DiffAlgK (x) defining actual germs of analytic functions at 0.

Define the increasing union of fields

E (z) :=
⋃

n∈N
En (z)

where

E0 (z) := C (z)

En+1 (z) := C (z, DiffAlgC (x) ◦En (z)) .(1.1)

Hence En+1 (z) is the field generated by all variables zj and all compositions of an el-
ement of DiffAlg (x) with an element of En (z). Notice that E (z) contains also most
special functions, with the notable exception of the Gamma function (Hölder’s the-
orem, see also [Moo96]). The field Elem (z) obtained by replacing DiffAlgC (x) with
{expx, logx,arcsinx} in (1.1), is the field of elementary functions in z, which is naturally a
subfield of E (z).

We wish to establish the following fact by induction on m.
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Fact. E (z)∩C {z} is countably meager

Let us first deal with the case m = 1, that is z = (z). E. H. Moore proved the following
result :

Lemma [Moo96, p54-55]. E (z) = DiffAlgC (z). Moreover this field is stable by differentia-
tion and compositional inversion.

Pick P ∈ C [δ0, . . . ,δk ] and f ∈ E (x) such that P
(
f , f ′ , . . . , f (k)

)
= 0 (for short, let us

say that f is solution of P = 0). We may write δ = (δ0, . . . ,δk), δ
f :=

(
f , f ′ , . . . , f (k)

)
and

P (δ) =
∑
|α|≤d λαδ

α with λα ∈ C and α ∈Nk+1. By isolating a single variable λβ appearing
in P , that is

λβ = −
∑
α,β , |α|≤d λα

(
δf

)α

(
δf

)β ,

and differentiating with respect to x we obtain that f is solution of another polynomial,
autonomous differential equation of order k + 1 which does not depend on λβ and in
which the coefficients (λα)α,β continue to appear linearly. By induction we actually

prove that there exists P̃ ∈Q [δ0, . . . ,δk′ ] for some k′ ≥ k such that f is solution of P̃ = 0,
so that

DiffAlgQ (x) = DiffAlgC (x) .

Let us fix an enumeration {Qn : n ∈N} of the countable set E :=Q
[
(δk)k∈N

]
and fix kn ∈

N in such a way that Qn ∈ Q
[
(δk)k≤kn

]
. According to Moore’s lemma and the previous

proposition, the set E (z)∩C {z} is included in
⋃
n∈NΦkn

(
C [z]≤kn × {Qn}

)
. Hence E (z)∩

C {z} is countably meager, settling the case m = 1.

Assume now that the claim is true at any rank less thanm ≥ 1. For f ∈ E (z)∩C {z} and
for given z̃ = (z2, . . . , zm) small enough consider the partial function defined by f̃z̃ (z) :=
f (z,z2, . . . , zm), which belongs to E (z). According to the lemma there exists k = k (z̃) ∈N
and a polynomial Pz̃ ∈ Q [δ0, . . . ,δk] such that f̃z̃ is solution of Pz̃ = 0. We can split a
small domain Ω ⊂ Cm−1 containing 0 into countably many sets Ωn, consisting precisely
of those points z̃ for which Pz̃ equals the n

th element Qn of E . According to the principle
of analytic continuation wemay assume without loss of generality that eachΩn is closed
inΩ. From Baire’s theorem we deduce that at least one Ωn has non-empty interior, thus
(again by analytic continuation) f̃z̃ is solution of Qn = 0 for any z̃ ∈ Ω. Therefore f is
solution of

Qn


f ,

∂f

∂z1
,
∂2f

∂z21
, . . . ,

∂kn f

∂z
kn
1


 = 0

and f belongs to An := Φkn

(
(E (z̃)∩C {z̃})kn+1 × {Qn}

)
, being uniquely defined by the

boundary value

(
f (0, z̃) , ∂f

∂z1
(0, z̃) , . . . , ∂

kn f

∂z
kn
1

(0, z̃)

)
. The induction hypothesis and the propo-

sition guarantee that An is countably meager, hence E (z)∩C {z} also is.
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1.2.3. Corollary C.
A (germ of a) meromorphic, order one differential equation in C2

y′ =
P (x,y)
Q (x,y)

(^)

induces a (germ of a) foliation at the origin of the complex plane. Roughly speaking, the
leaves of such a foliation are the connected Riemann surfaces corresponding to «maxi-
mal» solutions. By Cauchy-Lipschitz’s theorem if P or Q does not vanish at some point5

then the foliation is locally conjugate to a product of two discs. On the contrary at a
singularity of the foliation, which we locate at (0,0) for convenience, a whole range of
complex behaviors can turn up. An obvious fact is that the generic germ of a foliation6

is regular, since singular ones correspond to the analytic set of C {x,y}2 defined by

Sing :=
{
(P,Q) ∈ C {x,y}2 : P (0,0) =Q (0,0) = 0

}
.

From now on we solely work in Sing, which is given the analytic structure of C {x,y}2
through the continuous, affine and onto mapping

(P,Q) 7→ (P −P (0,0) ,Q −Q (0,0)) .

An important question regarding foliations is that of finding solutions of (^) in «closed
form», which was originally formulated by J. Liouville in terms of consecutive quadra-
tures and exponentiation of quadratures of meromorphic functions. In the modern
framework of differential Galois theory this notion translates as the request that every
germ of a solution near every regular points admit an analytic continuation coincid-
ing with a determination of an abstract solution lying in a finite tower of consecutive
extensions of differential fields K0 < · · · <Kn of the following kind:

⊛ we start from the field K0 of germs of meromorphic functions near (0,0),
⊛ Kn+1 =Kn

〈
f
〉
where f is algebraic over Kn,

⊛ Kn+1 =Kn
〈
f
〉
where f ′ = a ∈Kn (a quadrature),

⊛ Kn+1 =Kn
〈
f
〉
where f ′ = af with a ∈Kn (an exponentiation of a quadrature).

For the sake of example let us wander a little away from the path we are currently tread-
ing, and consider the case of a linear differential system, where Q is the n × n identity
matrix and P (x,y) = P (x)y is obtained from a n × n matrix P (x) with entries rational in
x, and y is a vector in Cn. To simplify further imagine that

P (x) =
k∑

ℓ=1

Dℓ
x − xℓ

for some finite collection of constant, diagonal matrices (Dℓ)ℓ≤k and distinct points xℓ of
C, so that the system is Fuchsian. Then the solutions are multi-valued mappings

x 7→ y (x) =
k∏

ℓ=1

(x − xℓ)Dℓ ×C

5Such a point is called regular.
6For the sake of clarity we identify the set of germs of foliations with C {x,y}2 = {(P,Q)}, voluntarily for-

getting that proportional couples induce the same foliation; in particular the singular locus of a holomorphic
foliation in C2 is always isolated. This technicality will be dealt with in due time.
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where C ∈ Cn is the vector of «initial conditions». The multi-valuedness of solutions
is directly related to (Dℓ)ℓ and is measured by the monodromy group, obtained by
performing successive local analytic continuations, starting from some transverse line
{x = cst} outside the singular locus

⋃
ℓ {x = xℓ}, and returning to it after winding around

the singularities (a kind of first-return mapping acting on C). The monodromy group is
a representation of the fundamental group of the punctured sphere C\{xℓ : ℓ ≤ k} into
a linear algebraic subgroup in GLn (C). E. Kolchin (see for instance [PS03]) related the
Liouvillian integrability of the system to the solvability of the (connected component
of identity of the Zariski-closure of the) monodromy group. It is well known that the
generic linear algebraic group is non-solvable.

Back to the non-linear setting we would like to generalize this non-solvability result.
The candidate replacement differential Galois theory has been introduced in a recent
past by B. Malgrange [Mal01] and subsequently developed by G. Casale (we refer to
[Cas06] for matters regarding our present study). The monodromy group is replaced by
the groupoid of holonomy, but its geometric construction is the same up to replacement
of the fundamental group of the base space by the fundamental groupoid. Although
the tools introduced here are not powerful enough to deal with such a generality we can
nonetheless say something in the generic case.

In this paper when we speak of a reduced singularity we mean that the linearized
differential equation at the singularity, identified with the 2-dimensional square matrix

L (P,Q) :=




∂P
∂x

(0,0) ∂P
∂y

(0,0)
∂Q
∂x

(0,0) ∂Q
∂y

(0,0)


 ,

possesses at least one non-zero eigenvalue. It is obvious again that the generic element of
Sing is reduced, since non-reduced foliations can be discriminated by the characteristic
polynomial of their linear part, and therefore form the analytic set

Sing∩ {(P,Q) : detL (P,Q) = trL (P,Q) = 0} .
Liouvillian integrability of foliations with L (A,B) , 0 is now a well-studied topic [BT99,
Cas06] so we dismiss this case and consider only germs of singular foliations belonging
to the proper analytic set

ZLP := {(P,Q) : L (P,Q) = 0}
(ZLP standing for zero linear part).

An old result, formalized by A. Seidenberg [Sei68], states that every germ F ∈ Sing
of a holomorphic foliation with a singularity at 0 ∈ C2 can be reduced, that is: there
exists a complex surfaceM and a proper rational morphism π : M→

(
C2,0

)
, obtained

as successive blow-ups of singular points, such that
⊛ E := π−1 (0), called the exceptional divisor, is a finite, connected union of normally-

crossing copies of P1 (C),
⊛ the restriction of π toM\E is a biholomorphism,
⊛ the pulled-back foliation π∗F has only reduced singularities, located on the ex-

ceptional divisor.
Either a component D of the exceptional divisor is transverse to all but finitely many
leaves of π∗F , in which case we are confronted to a dicritic component, or D is a leaf
of π∗F . To a non-dicritic component D and any (small enough) transversal disk Σ, not
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meeting the (finite) singular locus Sing(F ) of the foliation, we associate the «projec-
tive» holonomy group Hol(D,Σ) of germs of invertible holomorphic first-return maps
obtained by following (lifting) cycles of D\Sing(π∗F ), with base-point D ∩Σ, in a leaf
of π∗F . By endowing Σ with an analytic chart, so that D∩Σ correspond to 0, the group
Hol(D,Σ) is naturally identified with a finitely-generated sub-group of Diff (C,0). As the
domain of definition of an element ∆ may not equal the whole Σ this is not a sub-group
of the biholomorphisms of Σ. For this reason such objects are usually referred to as
pseudo-groups in the literature, although we consider them as groups of germs (that is,
without considering a geometric realization). If one chooses another transverse Σ̃ then
Hol(D,Σ) and Hol

(
D, Σ̃

)
are biholomorphically conjugate.

In the case where F is reduced after a single blow-up the (conjugacy class of the) ho-
lonomy group embodies all the information about Liouvillian integrability. In particular
it is solvable if the equation (^) is integrable. Corollary C then follows from combining
Corollary A with the facts that such foliations F are Zariski-full and that we can build
an analytic, open mapping

F 7−→Hol(D,Σ) .

A formal proof will be given in the body of the article.

1.3. Strong analyticity.
To the extent of my knowledge the notion presented now has never been thoroughly

studied so far, which is a pity since it is fairly common in actual problems. It runs
as follows : a continuous map Λ : U ⊂ C {z} → C {w} is strongly analytic if for any
finite-dimensional family of functions (fx)x∈Dn such that (x,z) 7→ fx (z) is analytic near
0 ∈ Cn × Cm, the corresponding family (Λ (fx))x is also an analytic function of (x,w)
near 0. This property can be easily checked7 and ensures that the composition of two
source/range compatible strongly analytic maps is again strongly analytic. For instance
the composition and differentiation mappings trivially satisfy this property. The next
result enables all the previous theorems to apply in the case of strongly analytic rela-
tions:

Theorem D. Let Λ : U ⊂ C {z} → C {w} be a strongly analytic map. Then Λ is analytic.

We will provide a criterion characterizing strongly analytic maps among analytic
ones. Notice also that in Theorem C the flow mapping is actually strongly analytic.

The continuity condition on Λ can be notably relaxed and only ample boundedness
(analogous to local boundedness as in the characterization of continuous linear map-
pings) is actually required. This is a very natural condition to impose when dealing with
analyticity in locally convex space, as the whole theory relies on making sense of the
Cauchy’s formula in an infinite dimensional space (which is the argument the proof of
this theorem also is based upon).

7When I say that the property is easily checked I mean informally that in actual problems it should not be
more difficult to prove strong analyticity than plain analyticity.
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1.4. Applications to dynamics.
Having a «nice» composition and differentiation comes in handy in dynamics, as we

already illustrated with the introductory corollaries. We introduce also the glocal prob-
lem: how can one recognize that a local dynamical system is the local trace of a global
one. We establish a tentative program to deal with this problem, which will demand the
making of a differential geometry in C {z}.

1.4.1. Infinitely-renormalizable parabolic diffeomorphisms.
The usual framework of unidimensional (discrete) dynamics is the iteration of ratio-

nal maps ∆ : C → C. However to understand the local structure of, say, the Julia set
of ∆ one is often led to study its local analytic conjugacy class, which can be quite rich
indeed. For instance near a parabolic fixed-point the space of equivalence classes under
local changes of coordinates is huge8. It is, roughly speaking, isomorphic to a product
of finitely many copies of Diff (C,0) through a one-to-one map

ÉV : ∆ 7−→ ÉV(∆) ,

known as the «Écalle-Voronin invariants» mapping. Germs of biholomorphisms have
same Écalle-Voronin invariants if, and only if, they are locally conjugate by a germ of a
biholomorphism.

Understanding how the local dynamics (i.e. the local invariants) varies as ∆ does is
usually a hard but rewarding task, undertaken for example by M. Shishikura [Shi00]
to prove that the boundary of the quadratic Mandelbrot set has Hausdorff-dimension
2. This citation is particularly interesting since one ingredient of the proof consists
in exploiting the strong analyticity of ÉV. The result also relies on the existence of
infinitely-renormalizable maps, in the following way. Suppose for the sake of simplicity
that ∆ is tangent to the identity and

∆ (z) = z +αz2 + . . . , α , 0

so that ÉV(∆) ∈Diff (C,0)2. The invariant ÉV(∆) is well-defined up to a choice of a linear
chart on C, and therefore we can always arrange that a component ∆̃ of ÉV(∆) itself is
tangent to the identity. With corresponding notations, if α̃ , 0 then ÉV

(
∆̃
)
∈Diff (C,0)2

is again well-defined and ∆ is renormalizable once. The set of germs of diffeomorphisms
which are renormalizable n times is consequently a Zariski-full open set. We particu-
larly derive the

Corollary D. The generic tangent-to-the-identity germ of a diffeomorphism of the complex
line is infinitely-renormalizable.

I’m grateful to M. Yampolsky for suggesting this application to me.

1.4.2. Application of Corollary A to the topology of foliations.
Non-solvability of finitely-generated subgroups of Diff (C,0) is a key point in studying

rigidity properties of holomorphic foliations on compact complex surfaces. In the case
of e.g. a foliation on P2 (C) it measures (through the holonomy representation of the
line at infinity Hol(Σ,L∞)) how the leaves are mutually entangled: if the dynamics is
sufficiently «mixing» then topological conjugations between such foliations turn out to
be holomorphic (i.e. homographies). In that respect we should cite a consequence of

8Although it has the same cardinality as R, its algebraic dimension is infinite.
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the Nakai theorem exploited by A. Lins Neto, P. Sad and B. Scárdua in [LSS98]. They
show that the set of topologically rigid foliations of given degree in P2 (C) contains an
open and dense set, by proving that holonomy groups Hol(Σ,L∞) corresponding to those
foliations are non-solvable9. The «generic» freeness of Hol(Σ,L∞), for a fixed foliation
degree, is proved by Y. Il’Yashenko and A. Pyartli [IP94]. We point out that the context
of both results is of a different nature from ours: for a fixed degree the space of foliations
is a finite-dimensional complex projective space.

In the context of germs of singular foliations J.-F.Mattei, J. Rebelo andH. Reis [MRR13]
devise a result comparable to Corollary A. It is stronger in the sense that any subgroup
G = 〈∆ℓ〉1≤ℓ≤n can be perturbed by the action of Diff (C,0)n

ϕ = (ϕℓ)1≤ℓ≤n 7−→ ϕ∗G :=
〈
ϕ∗ℓ∆ℓ

〉
1≤ℓ≤n ,

in such a way that for a «generic» choice of ϕ the corresponding subgroup ϕ∗G is free.
They deduce from this result a statement about the corresponding pseudo-group (ob-
tained by realizing the group on a common domain of definition of the generators) that
the generic foliation has at most countably many non-simply-connected leaves. Here
«generic» refers to Gδ-genericity in Diff (C,0) for the analytic topology, introduced by
F. Takens [Tak84], which we present in Section 2. This topology is Baire but otherwise
severely flawed: it does not turn Diff (C,0) into a topological vector space (and does not
enjoy a continuous composition) which, ironically enough, forbids any reasonably in-
teresting analytic structure on Diff (C,0). I believe that an effective analytic geometry
in C {z} would allow to obtain much the same kind of result, and perhaps more con-
structively. Indeed the Fréchet calculus allows to identify directions transverse with the
tangent space of an analytic set (e.g. the set of generators satisfying a given non-trivial
algebraic relation), therefore pointing directions along which the algebraic relation be-
tween generators of G will be broken by perturbation. One should now check that these
transverse directions can be realized as tangent spaces of curves embedded in the ana-
lytic set describing locally the property of being in the same conjugacy class, which is
a statement reaching beyond the limits of the present article. However it is related to
what comes now.

1.4.3. The glocal problem for diffeomorphisms.
It is not clear how to distinguish which local objects are actually global objects having

been processed through a local change of coordinates. The glocal problem in the context
of germs of diffeomorphisms refers to the following question:

« Is any element of Diff (C,0) locally conjugate to a rational one ? If not, how do we recognize
that some of them are ? »

In his thesis A. Epstein underlines that ÉV(∆), for rational ∆, behave (dynamically)
very much like a rational map itself (a «finite-type map»), except for the fact that it is
transcendental and must admit a frontier for analytic continuation, so the answer to the
former question is «no». Yet no answer to the latter one is known. Somehow glocality
must be readable in the map ÉV, but this task is a difficult one hindered by the fact that
obtaining general properties on the invariants map is hard work.

9And therefore, according to Nakai’s theorem, have dense orbits in a «big» domain of the transversal Σ.
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Another approach consists in acknowledging that being glocal is a sub-analytic prop-
erty. Indeed the set of biholomorphisms locally conjugate to a polynomial of degree d is
the projection on the second factor of the analytic set Ω defined by the zero-locus of

Diff (C,0)×Diff (C,0) −→ C {z}
(ϕ,∆) 7−→ (Id− Jd)

(
ϕ◦−1 ◦∆ ◦ϕ

)
,

where Jd is the dth-jet of a germ and Id stands for the identity mapping from C {z} to
C {z}. Therefore it should be possible to gain knowledge from the study of the tangent
space of Ω. This can be done using the Fréchet calculus detailed in this paper, although
we need a more powerful tool to derive existential (or explicit) results by geometrical
arguments. An article is in preparation regarding the glocal problem in Diff (C,0).

1.4.4. The glocal problem for foliations.
A similar problem can be stated in the realm of germs of singular holomorphic folia-

tions in C2:

« Is any element of Sing locally conjugate to a polynomial one ? »

A non-constructive, negative answer is given to the question in [GT10]: the generic
local conjugacy class of germs of saddle-node10 singularities do not contain polynomial
representative. The methods used there generalize flawlessly to the case of resonant-
saddle singularities11, which are 2-dimensional counterparts to parabolic diffeomor-
phisms through the holonomy correspondence. Using the enhanced theorems that we
prove here, we can be slightly more precise:

Corollary E. The generic germ of a 2-dimensional resonant-saddle foliation is not glocal.
More precisely, glocal resonant-saddle foliations form a countably meager set in the space of
all foliations.

We point out that, unlike the discrete case, no explicit example of non glocal folia-
tion is yet known, as no characterization (even partial ones) of glocal foliations exists. I
hope that from the developments to come for discrete dynamics will emerge a general
framework in which explicit examples and/or criteria can be devised using perturba-
tions along non-tangential directions provided by the Fréchet calculus.

1.5. Structure of the paper and table of contents.

⊛ In Section 2 we review «usual» topologies on C {z} and introduce the factorial
and «useful» normally convex topologies we will use. We compare their relative
thinness. We also explicit the sequential completion of these spaces.

⊛ In Section 3 we give a short survey of the standard definitions and general prop-
erties of analytic maps between locally convex spaces. We also introduce strong
analyticity and Theorem D is proved.

⊛ In Section 4 we introduce analytic sets and prove the Baire analyticity and re-
lated properties of C {z}, including Theorem A and Theorem B.

⊛ In Section 5 we introduce and give examples of the Fréchet calculus in C {z}.
10The linear part at (0,0) of (⋄) has exactly one non-zero eigenvalue.
11The linear part at (0,0) of (⋄) has two non-zero eigenvalues whose ratio lies in Q≤0, not formally

linearizable.
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⊛ In Section 6 we present more applications of the main results to complex analy-
sis, particularly by equipping the field of germs of meromorphic functions with
an analytical structure modelled on C {z}. In doing so we study coprimality in
the ring C {z} and prove that coprime families (f1, . . . , fk) ∈ C {z}k form an open,
Zariski-dense set.

⊛ In Section 7 we give a complete proof to Theorem C and Corollary C.
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1.6. Notations and conventions.

⊛ The usual sets of numbers N,Z,Q, R,C are used with the convention that N is
the set of non-negative integers.

⊛ Let m ∈ N ; we use bold-typed letters to indicate m-dimensional vectors z =
(z1, . . . , zm) and multi-indexes j = (j1, . . . , jm). We define as usual
⊚

∣∣∣j
∣∣∣ :=∑m

ℓ=1 jℓ,
⊚ j! :=

∏m
ℓ=1 jℓ!,

⊚ zj :=
∏m
ℓ=1 z

jℓ
ℓ .

⊛ N(N) denotes the set of all finitely-supported sequences of non-negative inte-
gers, that can be identified with

∐
m≥0N

m.
⊛ We also define the insertion symbol

z ⊳j a :=
(
z1, · · · , zj−1,a,zj+1 , · · · , zm

)
.

⊛ We use the notation «⊕» to concatenate vectors

(z1, · · · , zk )⊕ (zk+1, · · · , zm) := (z1, · · · , zm) ,
and by a convenient abuse of notations we set z⊕ a := z⊕ (a) = (z1, · · · , zm ,a). In
the same way we define

z⊕0 := ()

z⊕k+1 := z⊕k ⊕ z .
⊛ The symbol «•» stands for the argument of a mapping, for instance exp• stands

for the function z 7→ expz. We use it when the context renders the notation
unambiguous.

⊛ If X and Y are topological spaces with the same underlying set, we write X ≥ Y
if the identity mapping Id : X→ Y is continuous. We write X > Y if in addition
the spaces are not homeomorphic.

⊛ A complex locally convex space whose topology is induced by a family (||•||a)a∈A
of norms will be called a normally convex space.

⊛ C [[z]] is the complex algebra of formal power series, C {z} the sub-algebra con-
sisting of those that converge (nontrivial domain of convergence). We distin-
guish between the formal power series

∑
n≥0 fnz

n ∈ C [[z]] with its sum, when it
exists, z 7→ ∑∞

n=0 fnz
n understood as a holomorphic function on a suitable do-

main.
⊛ C [z]≤d is the complex vector space of all polynomial of degree at most d, while

C [z]=d is the Zariski-full open set consisting of those with degree exactly d.
⊛ For the sake of keeping notations as simple as possible we often identify the

symbol «z» both with an element of Cm and with the identity mapping of the
ambient space. This ambiguity will resolve itself according to the context. It may
not be orthodoxically sound but it will prove quite convenient in some places.
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⊛ In the context of the previous item the notation Id will be kept for the linear
operator of an underlying, implicit vector space such as C [z] or C {z}.

⊛ Diff (Cm,0) is the group of germs of biholomorphisms fixing the origin of Cm.
⊛ Throughout the article the notation D stands for the open unit disc of C.
⊛ A domain of a topological space is a non-empty, connected open set.

2. About useful topologies on C {z}
For the sake of simplicity we only present the casem = 1, from which the general case

is easily derived. We say that the space C {z} of germ of a holomorphic function at 0 ∈ C
is a compositing differential algebra when it is endowed with a structure of topological
algebra for which the differentiation ∂

∂z
and the right- (resp. left-) composition g∗ : f 7→

f ◦ g with a given germ g vanishing at 0 (resp. f∗ : g 7→ f ◦ g with a given germ f ),
are continuous operations. We review here some topologies usually put on the space of
convergent power series. We prove that some of them fail to be «useful» in the sense
that they do not induce a structure of compositing differential algebra. For the sake of
example if C {z} is given a normed topology then it cannot be a compositing differential
algebra. The sequence z 7→ exp(kz), for k ∈N, indeed shows that differentiation is not
continuous, while z 7→ zk provides a sequence for which the right-composition with e.g.
z 7→ 2z does not satisfy the axiom of continuity.

Notice that the «most» natural topology onC {z}, the inductive topology, is useful. Al-
though it is not so easy to handle as compared to the sequential topologies we introduce
(in particular because the inductive topology is not metrizable), we establish that the
inductive topology coincides with the one obtained by taking all sequential norms. We
end this section by proving that the factorial topologies (for instance) are useful.

2.1. The inductive topology.
The usual definition of the space of germs of holomorphic functions at 0 ∈ C intro-

duces C {z} as an inductive space

C {z} := lim−−→ (Br )r>0 ,
where Br denotes the Banach space of bounded holomorphic functions on the disk rD
equipped with the sup norm

||f ||rD := sup
|z|<r
|f (z)| ,

transition maps Br →Br′ for r ′ ≤ r being defined by the restriction morphisms

ιr→r′ : f ∈ Br 7−→ f |r′D ∈ Br′ .
An element f ∈ C {z} is therefore understood as en equivalence class of all couples (r, fr ) ∈∐
r>0 {r} × Br such that

(r, fr )! (r ′ , fr′ ) ⇐⇒ (∃0 < ρ ≤min(r, r ′) ) fr |ρD = fr′ |ρD .
We denote by

(r, fr )

the equivalence class of (r, fr ). The «convergence radius» function

R : C {z} −→ ]0,∞]

f 7−→ sup
{
r > 0 : ∃fr ∈ Br , (r, fr ) = f

}



ANALYTICITY IN SPACES OF CONVERGENT POWER SERIES AND APPLICATIONS† 17

is well-defined.

Definition 2.1. The topological space obtained as the direct limit lim−−→ (Br )r>0 equipped
with the inductive topology will be denoted by

C {z}
−−−−→

:= lim−−→ (Br)r>0 .

Notice that this direct limit is the same as that obtained by considering the countable
family (B1/k)k∈N>0

.

The fact that this topology is actually that of a locally convex one is not straightfor-
ward, and can be deduced from a general result of H. Komatsu [Kom67, Theorem 6’
p375] regarding countable inductive systems of Banach spaces and compact maps.

Proposition 2.2. The topological space C {z}
−−−−→

is naturally endowed with a structure of a lo-

cally convex vector space.

Such a locally convex structure will be described afterwards, when we establish the
fact that C {z}

−−−−→
is homeomorphic to the locally convex topology obtained by gathering all

sequential norms (Proposition 2.15).

Remark 2.3. By construction a mapping Λ : C {z}
−−−−→

→ X, where X is a topological space,

is continuous if, and only if, for all r > 0 the map Λ ◦ • : {r} × Br → X is.

It is possible to show that the inductive topology on C {z}
−−−−→

is non-metrizable, ultra-

bornological and nuclear. It also satisfies the next additional property, which will follow
from its counterpart for sequential spaces: Propositions 2.12, 2.14 and 2.22.

Proposition 2.4. The space
(
C {z}
−−−−→

, ·,+,×, ∂
∂z

)
is a compositing differential algebra, which is

complete but not Baire.

2.2. The analytic topology.
Another topology on C {z} has been introduced by F. Takens [Tak84]. It is worth

noticing that although C {z} becomes a Baire space it is not a topological vector space,
and for that reason will not be of great interest to us in the sequel; we only mention it
for the sake of being as complete as possible. This topology is spanned by the following
collection of neighborhoods of 0 (and their images by the translations of C {z}):

Uρ,δ :=
{
f ∈ C {z} : ∃

(
ρ,fρ

)
∈ f and

∣∣∣
∣∣∣fρ

∣∣∣
∣∣∣
ρD

< δ
}
, ρ, δ > 0 .

The resulting topological space is written C {z}ω. This space is not a topological vector
space since no Uρ,δ is absorbing

12. Let us conclude this paragraph by mentioning the

Proposition 2.5. C {z}ω is a Baire space. The multiplication, differentiation or the right-
composition with a dilatation are not continuous operations.

12If the radius of convergence of f is strictly less than ρ then f does not belong to any λUρ,δ whatever

λ ∈C may be.
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2.3. The projective topology.
Because we work in the holomorphic world the space C {z} can also be analyzed

through the Taylor linear one-to-one (but not onto) mapping

C {z}
−−−−→

T−→ C [[z]]

(r, fr ) 7−→
∑

n≥0

f
(n)
r (0)
n!

zn .

The space C {z} is therefore isomorphic to the sub-algebra of the formal power series

C [[z]] :=


∑

n≥0
fnz

n : (fn)n ∈CN

 ,

which differs from CN by the choice of the Cauchy product instead of the Hadamard
(term-wise) product, characterized by the condition

liminf |fn|−1/n > 0 .

Hadamard’s formula stipulates that this value is nothing but the radius of convergence
R

(∑
n≥0 fnz

n
)
of the corresponding germ. The latter is given by the evaluation map

C {z} E−→ C {z}
−−−−→

f =
∑

n≥0
fnz

n 7−→


R (f )

1 +R (f )
, z 7→

∞∑

n=0

fnz
n


 .

There is no special meaning in taking R(f )
1+R(f ) , any finite number less than R (f ) would

work (e.g. min
{
1, 12R (f )

}
).

We can therefore equip C {z} with the projective topology inherited from C [[z]] and
defined by the N th-jet projectors:

JN : C {z} −→ C [z]≤N∑

n≥0
fnz

n 7−→
∑

n≤N
fnz

n

where the topology on each C [z]≤N is the standard normed one. It will also be conve-
nient to introduce the Taylor-coefficient map of degree N as:

TN : C {z} −→ C
∑

n≥0
fnz

n 7−→ fN

so that JN (•) = ∑N
n=0Tn (•)zn. The induced topology is that of the product topology on∏

N≥0C; this coarseness renders the projective topology almost useless for our purposes
in this article13.

13We also mention that C {z} could be equipped with the restriction of the normed topology offered by the
Krull distance on C [[z]], but this topology is rougher yet and even less interesting.
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Definition 2.6. The topological space obtained as the restriction to C {z} of the inverse
limit lim←−−

(
C [z]≤N

)
N∈N, equipped with the projective topology, will be denoted by

C {z}
←−−−−

:= lim←−−
(
C [z]≤N

)
N∈N ∩C {z} .

Proposition 2.7.
(
C {z}
←−−−−

,+,×
)
is a non-Baire, non-complete topological algebra. Neither is it

a compositing differential algebra.

Proof. This space clearly is not complete. Besides the decomposition C {z} = ⋃
N∈NFN ,

where

FN :=


∑

n≥0
fnz

n : |fn| ≤Nn

 =
⋂

n∈N
|Tn|−1 ([0,Nn])(2.1)

is a closed set with empty interior, shows the space cannot be Baire. �

2.4. Sequential topologies.
We define a norm on C {z} by making use of the Taylor coefficients at 0 of a germ at 0.

Being given a sequence a = (an)n∈N of positive numbers we can formally define
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∑

n≥0
fnz

n

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
a

:=
∞∑

n=0

an |fn| .

It is a genuine norm on C {z} if, and only if, a is asymptotically sufficiently flat, i.e. that
it belongs to

A :=
{
a ∈RZ≥0

>0 : lim
n→∞

a
1/n
n = 0

}
.

Definition 2.8.

(1) For any a ∈ A the above norm will be called the a-norm on C {z}.
(2) The entire function

ca : x ∈C 7−→
∞∑

n=0

anx
n

is called the comparison function of a. The amplitude of a is the function

aa : r > 0 7−→ max
n∈N
{anrn} <∞.

(3) For every non-empty subset A ⊂ A we define the A-topology of C {z} as the nor-
mally convex topology associated to the family of norms (||•||a)a∈A. The topolog-
ical vector space (C {z} , (||•||a)a∈A) will be written C {z}A. Such a topology is also
called a sequential topology.

(4) Two collections A, A′ ⊂ A will be deemed equivalent if they induce equivalent
topologies, that is the identity mapping is a homeomorphism C {z}A → C {z}A′ .
For all intents and purposes we then say that both sequential topologies are the
same but we write A ≃ A′ for precision.
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Remark. With a similar construction it is possible to derive norms induced by hermitian
inner products on C {z} ×C {z} as defined by

〈∑

n≥0
fnz

n,
∑

n≥0
gnz

n

〉

a

:=
∞∑

n=0

anfngn .

Since we have not felt the need to use the associated extra structure this viewpoint pro-
vides, we will not particularly develop it (although the results presented here should
continue to hold).

Every A-topology is spanned by the family of finite intersections of open a-balls of
some radius εa > 0 and center 0

Ba (0,εa) :=
{
f ∈C {z} : ||f ||a < εa

}

for a ∈ A. We recall that a linear mapping L : C {z}A→ C {w}B is continuous if, and only
if, for all b ∈ B there exists a finite set F ⊂ A and some Cb ≥ 0 such that

(∀f ∈C {z}) ||L (f )||b ≤ Cbmax
a∈F
||f ||a .

We denote by L (C {z}A→C {w}B) the space of all linear, continuous mappings and en-
dow it with the natural locally convex topology induced by that of the source and range
spaces.

We finish this section by mentioning the following easy lemma, based on the obser-
vation that if f (z) =

∑
n≥ν fnz

n ∈ C {z} with fν , 0 then for every a ∈ A and g ∈ Ba
(
f , aν|fν |

)

either the derivative dνg
dzν (0) does not vanish or some derivative of lesser order does not.

Lemma 2.9. For any A-topology on C {z} the valuation map

C {z}A \{0} −→N
∑

n≥0
fnz

n
, 0 7−→ inf {n : fn , 0}

is lower semi-continuous.

2.4.1. Naive polydiscs.

Definition 2.10. Let r := (rn)n∈N be a sequence of positive real numbers and take f ∈
C {z}. The naive-polydisc of center f and poly-radius r is the set

D (f , r) := {g ∈C {z} : (∀n ∈N) |Tn (f − g)| < rn} .
Lemma 2.11. A naive-polydisc D (f , r) contains an open a-ball of center f if, and only if,

liminf
n→∞

anrn > 0 .

This particularly means that 1
r ∈ A and lim r = ∞. Beside the above limit represents the

maximum radius of a-balls that can be included in D (f , r).

Proof. We can suppose that f = 0 and write r = (rn)n. Assume first that there exists ε > 0
such that Ba (0,ε) ⊂ D (0, r). In particular for a given n ∈N the polynomial ηzn belongs
to D (0, r) for every η ∈ C such that

∣∣∣η
∣∣∣an < ε, which implies ε ≤ rnan. Conversely if

liminfanrn > 0 then there exists ε > 0 such that anrn ≥ ε for every n ∈N. If we choose
f ∈ Ba (0,ε) then for all integer n we particularly have the estimate an |fn| ≤ ε ≤ anrn so
that Ba (0,ε) ⊂D (0, r). �
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2.4.2. Topological completion.
Any sequential topology induces a uniform structure on C {z}, allowing to contem-

plate the notion of topological completeness14. We give without proof the following
statements.

Proposition 2.12. Consider some A-topology on C {z}.
(1) The Cauchy (sequential) completion ofC {z}A is canonically isomorphic, asC-algebras,

to the locally convex subspace of C [[z]] defined by

�C {z}A :=
⋂

a∈A


∑

n≥0
fnz

n :
∞∑

n=0

an |fn| <∞


endowed with the family of norms (||•||a)a∈A.
(2) Take f =

∑
n fnz

n ∈�C {z}A and the associated sequence of jets JN (f ) =
∑N
n=0 fnz

n as
N ∈N. Then for every a ∈ A

lim
N→∞

||f − JN (f )||a = 0.

In particular the subspace of polynomials is dense in �C {z}A.
(3) We have

C {z} = �C {z}A ,
whichmeans the spaceC {z}A is sequentially complete. Besides no other (non-equivalent)
A-topology can be.

Remark 2.13. When A is at most countable the space �C {z}A is a special case of a Köthe
sequential space [Köt69], some of which have been extensively studied (e.g. rapidly
decreasing sequences) in particular regarding the property of tameness to be used in
Nash-Moser local inversion theorem [Ham82]. Unfortunately it is known that the Köthe
spaces presented here do not fulfill Nash-Moser’s theorem hypothesis although, as we
see further down, some of them are nuclear.

2.4.3. Radius of convergence and Baire property.
We relate now the Baire property on C {z}A to the absence of a positive lower bound

forR (•) on any domain. This relationship was suggested by R. Schäfke.

Proposition 2.14. Fix some A-topology on C {z}.
(1) R is upper semi-continuous on �C {z}A and for all non-empty open set U ⊂ C {z}A we

have R (U ) =]0,∞]. In particular R can never be positively lower-bounded on U .
(2) The space C {z}A can never be Baire (in particular not Fréchet when A is countable).

Proof.

(1) Each map HN :
∑
n≥0 fnz

n 7→ |fN |1/N is continuous and ranges in [0,∞[. As a
consequence each member of the sequence of functions indexed by n ∈ N and
defined by

Rn := sup
N≥n

HN

14In general one only needs sequential completeness, and the corresponding completed space will be
named Cauchy’s completion as opposed to Hausdorff’s topological completion of the uniform space C {z}A.
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is lower semi-continuous. Therefore 1
R(•) is the limit of an increasing sequence of

lower semi-continuous functions and consequently is itself lower semi-continuous.
According to Theorem 2.12 (2) the value ∞ belongs to R (U ), so let us now take
an arbitrary r > 0. For all λ ∈ C,0 the radius of convergence of the power se-
ries fλ := λ

∑
n≥0 r

−nzn is precisely r. By taking λ small enough and by picking
f ∈ U ∩C [z] the germ f + fλ belongs to U and its radius of convergence is pre-
cisely r.

(2) C {z} is covered by the countable family of closed sets FN defined in (2.1). Every
one of these has empty interior because of (1).

�

2.5. Comparing the topologies.
We particularly prove that the inductive topology is homeomorphic to the full A-

topology. This fact was mentioned to me by Y. Okada (to which I am indebted also for
having spotted some mistakes in earlier versions of this manuscript).

Proposition 2.15. Let A ⊂ A be given. We have the following ordering of topologies

C {z}
←−−−−

< C {z}A ≤ C {z}
−−−−→

.

Moreover C {z}
−−−−→

and C {z}A are homeomorphic if, and only if, A ≃ A.

On the one hand C {z}
←−−−−

≤ C {z}A because of the next obvious lemma.

Lemma 2.16. The N th-jet projector JN : C {z}A→ C [z]≤N is continuous. More precisely for
all a ∈ A and f ∈ C {z}

||JN (f )||a ≤ ||f ||a .

The fact that C {z}
←−−−−

is not homeomorphic to C {z}A is clear enough. On the other hand

C {z}A ≤ C {z}
−−−−→

because of Cauchy’s estimate, as stated below.

Lemma 2.17. The Taylor map T : C {z}
−−−−→

→ C {z}A is continuous. More precisely, for all

r > 0, all fr ∈ Br and all a ∈ A:

||T (fr )||a ≤
∣∣∣∣
∣∣∣∣z 7→

r

r − z
∣∣∣∣
∣∣∣∣
a
||fr ||rD .

Because C {z}
−−−−→

is complete and C {z}A is only when A ≃ A, the spaces cannot be home-

omorphic if A is not equivalent to A. We prove now that the evaluation mapping
E : C {z}A → C {z}

−−−−→
is continuous. I reproduce here the argument of Y. Okada with his

kind permission.
First observe the inductive limit of nested linear subspaces

(
Xρ

)
ρ>0

Xρ :=

∑

n≥0
fnz

n ∈C {z} : sup
n≥0

ρn |fn| <∞


results in the same topological space C {z}
−−−−→

(again it is sufficient to take the countable

direct system (X1/k)k∈N>0
).
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Lemma 2.18. For any balanced, convex neighborhood U of 0 in C {z}
−−−−→

there exists a sequence

ε = (εk )k∈N of positive numbers such that

U (ε) :=
∑

k≥0
Bk (0,εk ) ⊂U ,

where Bk (0,εk ) stands for the ball of X1/1+k of center 0 and radius εk .

Proof. There clearly exists ε̃k > 0 such that Bk (0, ε̃k ) ⊂ U since C {z}
−−−−→

≃ lim−−→X1/1+k . Because

U is convex and contains 0 the inclusion
N∑

k=0

2−k−1Bk (0, ε̃k ) ⊂U

holds for any N ∈N≥0. Simply take εk := 2−k−1ε̃k . �

The proposition’s proof is completed with the next lemma.

Lemma 2.19. There exists a ∈ A such that

Ba (0,1) ⊂U (ε) .

Proof. Without loss of generality we choose the sequence ε of the previous lemma in
such a way that εk ≤ e−k−1. For the sake of clarity write rk :=

1
k+1 . Define for n ∈N

an := 2n+3 inf
k≥0

rnk
εk

and let us prove Ba (0,1) ⊂U (ε). Notice first that by construction we have

limsup
n→∞

a1/nn ≤
2

k +1
(∀k ∈N)

an ≥ 2n+3
(
e

n

)n

from which we deduce a ∈ A. The latter estimates follows from
rnk
εk
≥ ek+1

(k +1)n
≥
(
e

n

)n
.(2.2)

Take now an arbitrary f ∈ Ba (0,1) which we decompose as

f (z) =
∑

n<N

fnz
n +

∑

n≥N
fnz

n

for a suitable N to be determined later, and we shall prove that both terms belong to
1
2U (ε). There exists k ∈N such that f ∈ X1/1+k , i.e.

sup
n≥0

rnk |fn| =:M <∞ .

Therefore when N is large enough we have

sup
n≥N

rnk+1 |fn| ≤M
(
k +1
k +2

)N
<
1
2
εk+1 ,

so that
∑
n≥N fnz

n ∈ 1
2Bk+1 (0,εk+1) ⊂ 1

2U (ε) as claimed. We deal now with the other part
f̂ (z) :=

∑
n<N fnz

n.
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We deduce from (2.2) the following statement: for any n ∈N there exist at least one
k ∈N for which

an > 2n+3
rnk
εk
− 2n+2

(
e

n

)n

= 2n+2
rnk
εk

+2n+2
(
rnk
εk
−
(
e

n

)n)

≥ 2n+2
rnk
εk
.

For any n < N pick such a k =: k (n) and form the finite set K := {k (n) : n < N }. For k ∈ K
define the polynomial

gk (z) :=
∑

n < N
k = k (n)

fnz
n

so that f̂ (z) =
∑
k∈K gk (z). Since ||f ||a < 1 we particularly have an |fn| < 1, hence for all

n < N

rnk(n) |fn| < 2−n−2εk(n) .

Thus gk ∈ 1
2Bk (0,εk ) for each k ∈ K , which finally yields f̂ ∈ 1

2
∑
k∈K Bk (0,εk ) ⊂ 1

2U (ε). �

2.6. Useful topologies.

Definition 2.20. Let A ⊂ A be non-empty.

(1) An A-topology is finite if it is equivalent to some A′-topology, A′ being a finite
set.

(2) An A-topology is useful when
(
C {z}A , ·,+,×, ∂∂z

)
is a compositing differential

topological algebra.
(3) The factorial topology is the metrizable sequential topology spanned by the

family

AF :=
{
a
(1
k

)
: k ∈N

}
,

a (α) := (n!−α)n∈N , α ∈R>0.

Remark 2.21. In case onewants to study the factorial topology onC {z}with z = (z1, · · · , zm)
then one defines for α > 0 ∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

∑

n∈Nm

fnz
n

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
a(α)

:=
∞∑

n=0

|fn| (n!)−α .

2.6.1. General properties of useful topologies.

Proposition 2.22. The A-topology is useful, while no finite A-topology can be.

Proof. The fact that no finite A-topology may be useful has been hinted at in the in-
troduction of this section, the argument being the same as in the normed case. The
remaining of the proposition is mainly a consequence of the next trivial lemma:
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Lemma 2.23. For every a ∈ A there exists b, c ∈ A such that for all m ∈N and all j ∈Nm we
have cn ≤ 1 and

a|j| ≤ cm
m∏

ℓ=1

bjℓ .

Back to our proposition, let us first address the continuity of the multiplication. For
a ∈ A:

||f × g ||a =
∞∑

n=0

an

∣∣∣∣∣∣∣

∑

p+q=n

fpgq

∣∣∣∣∣∣∣
.

According to the lemma there exist b, c ∈ A such that an ≤ bpbq for every p+q = n, which
means that

||f × g ||a ≤ ||f ||b ||g ||b .
Now consider the action of the derivation:

∂f

∂z
=

∑

n≥0
(n+1) fn+1z

n(2.3)

so that for every a, b ∈ A
∣∣∣∣∣
∣∣∣∣∣
∂f

∂z

∣∣∣∣∣
∣∣∣∣∣
a
=
∞∑

n=0

an (n+1) |fn+1| ≤
∞∑

n=0

bn+1 |fn+1| ×
(n+1)an
bn+1

.

We can always find b such that the sequence
(
(n+1)an
bn+1

)
n∈N

is bounded by some15 C > 0 so
that ∣∣∣∣∣

∣∣∣∣∣
∂f

∂z

∣∣∣∣∣
∣∣∣∣∣
a
≤ C ||f ||b .

We end the proof by using the composition formula, being given g ∈C {z},

f ◦ g =
∑

n




∑

m≤n
fm

∑

j∈Nm , |j|=n

m∏

ℓ=1

gjℓ



zn .(2.4)

For a ∈ A w e have

||f ◦ g ||a ≤
∞∑

n=0

an
∑

m≤n
|fm|

∑

j∈Nm , |j|=n

m∏

ℓ=1

∣∣∣gjℓ
∣∣∣ .

Invoking once more the previous lemma we conclude the existence of b, c ∈ A such that

||f ◦ g ||a ≤
∞∑

m=0

cm |fm|
∞∑

n=0

∑

j∈Nm , |j|=n

m∏

ℓ=1

bjℓ
∣∣∣gjℓ

∣∣∣

≤
∞∑

m=0

√
cm |fm|

√
cm ||g ||mb ≤ ||f ||√c a√c (||g ||)

where the amplitude function a• is introduced in Definition 2.8. �

15Take for instance b0 := 1 and bn+1 :=
√
an .
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We show now a nice feature of useful topologies:

Proposition 2.24. Assume that the sequential topology C {z}A is useful. Then C {z}A is a

nuclear space. In particular if A is countable then �C {z}A is a Montel space (i.e. every closed,

bounded16 set of �C {z}A is compact).

Proof. To show that C {z}A is nuclear we must show that for every a ∈ A the natural
embedding ιa : C {z}A →֒�C {z}a is nuclear. By definition this boils down to proving the
existence of a sequence (gn)n∈N of �C {z}a and a sequence (ϕn)n∈N of continuous linear
forms C {z}A→ C such that

⊛ there exists b ∈ A with
∑∞
n=0 ||ϕn||b ||gn||a <∞

⊛ ιa (•) =
∑∞
n=0ϕn (•)gn for the above normal convergence.

The natural choice is gn := zn and ϕn := Tn, so that ||gn||a = an and ||Tn ||b ≤ 1
bn
. Since A is

useful there exists b ∈ A and C > 0 such that for all f ∈C {z}
||f ◦ (2z)||a ≤ C ||f ||b .

Take now f (z) := zn so that for all n ∈N
2nan ≤ Cbn ,

and
∑∞
n=0

an
bn
<∞ as expected. It is besides well known [Trè06, Section 50] that nuclear

Fréchet spaces are Montel spaces. �

2.6.2. Factorial topology.
We study now the factorial topology, which we will use in most applications because

of its nice combinatorial and analytical properties. The choice of the exponents 1/k is
rather arbitrary and one could chose any strictly decreasing to zero sequence of positive
numbers in what follows. The topological completion of the space �C {z}AF corresponds
to the Köthe sequence space of finite order Λ0

(
n!−1/k

)
which has been well studied, and

the choice of exponent we make is therefore «standard»17.

Proposition 2.25. The factorial topology is useful. Moreover the next three additional quan-
titative properties hold.

(1) For every f , g ∈C {z} and all α > 0:

||f × g ||a(α) ≤ ||f ||a(α) ||g ||a(α) .
(2) For all α > β > 0 and every f , g ∈C {z} with g = 0:

||f ◦ g ||a(α) ≤ ||f ||a(β) aa(α−β)
(
||g ||a(α)

)

where the amplitude a• is defined in Definition 2.8. It is equal to supn∈Nn!
β−α ||g ||na(α),

whose maximum is reached for some rank

n0 ∈ {−1,0,1}+
⌈
||g ||1/α−βa(α)

⌉
.

This constant is optimal.

16We recall that a subset Ω of a locally convex space is bounded if every neighborhood of 0 can be rescaled
to contain Ω.

17Another reason why this choice may be deemed natural is that �C {z}AF is the space of «sub-Gevrey»
formal power series, that is those power series

∑
n≥0 fnzn such that

∑
n≥0 (n!)

−α fnzn converges for all α > 0.
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(3) For all α > β > 0 there exists a sequence of positive real numbers Dk,α,β such that for
every f ∈C {z}:

∣∣∣∣∣∣

∣∣∣∣∣∣
∂kf

∂zk

∣∣∣∣∣∣

∣∣∣∣∣∣
a(α)

≤Dk,α,β ||f − Jk (f )||a(β) .

The optimal constant is given by

Dk,α,β = sup
n∈N

(n+ k)!β+1

n!α+1

whose maximum is reached for some rank

n0 ∈ {−1,0,1}+
⌈
rk,α,β

⌉
,

where rk,α,β is the positive solution of the equation (x + k)β+1 = xα+1. We also have

rk,α,β ∼k→∞ kβ+1/α+1 and rk,α,β > kβ+1/α+1 .
Besides there exists χk,α,β ∈]rk,α,β , rk,α,β + 1[ such that for all k, writing χ instead of
χk,α,β ,

Dk,α,β ≤
eβ+1

(2π)α+1/2
χk(α+1) exp((α − β)χ − (β +1)k) .

One has

kβ+1/α+1 < χk,α,β < e
√
β+1/α−βkβ+1/α+1 +1 .

Proof. The proof first relies on the following trivial combinatorial estimate, which is a
counterpart to Lemma 2.23:

Lemma 2.26. Let m ∈N>0 and j ∈Nm. Then
∣∣∣j
∣∣∣! ≥ j!

and if moreover jℓ > 0 for all ℓ we have
∣∣∣j
∣∣∣! ≥ m!j! .

The addition and scalar multiplication are of course continuous. The three estimates
(1), (2) and (3) guarantee the usefulness of the factorial topology. Take two elements f
and g in C {z} and write them down respectively as

∑
n fnz

n and
∑
n gnz

n.

(1) According to the lemma we have (p + q)! ≥ p!q! so that

||f × g ||a(α) =
∞∑

n=0

n!−α
∣∣∣∣∣∣∣

∑

p+q=n

fpgq

∣∣∣∣∣∣∣

≤
∞∑

n=0

∑

p+q=n

p!−αq!−α
∣∣∣fpgq

∣∣∣ = ||f ||a(α) ||g ||a(α) .

(2) Because of the lemma we can show in the same spirit as Proposition 2.22 that

||f ◦ g ||a(α) ≤ ||f ||a(β) sup
m∈N

m!β−α ||g ||ma(α) .
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We can try to estimate aa(β−α)
(
||g ||a(α)

)
using the Gamma and Digamma func-

tions, through the study of the auxiliary function

φ : R>1 −→R

x 7−→ Γ (x)−δ rx

where δ, r > 0 are given. This function admits a unique maximum, located at the
zero of its logarithmic derivative (expressed in terms of the Digamma function
ψ = Γ′

Γ
)

φ′

φ
(x) = −δψ (x) + ln r .

It is well known that for x > 1

ln(x − 1) ≤ ψ (x) ≤ lnx(2.5)

so that the equality ψ (x) = 1
δ lnr happens only when

x ∈
[
r1/δ, r1/δ +1

]
.

Since this interval has length 1 the result follows by setting r := ||g ||a(α) and δ :=
α − β.

(3) We apply formula (2.3) repeatedly so that
∣∣∣∣∣∣

∣∣∣∣∣∣
∂kf

∂zk

∣∣∣∣∣∣

∣∣∣∣∣∣
a(α)

=
∞∑

n=0

a (α)n
(n+ k)!
n!

|fn+k |

≤
∞∑

n=0

(n+ k)!−β |fn+k | ×
(n+ k)!β+1

n!α+1

≤Dk,α,β ||f − Jk (f )||a(β) .

The constant is optimal: take for f the monomial zd where d is any integer

such that (d+k)!β+1

d!α+1
equals Dk,α,β . In order to derive the final estimate we need

to determine d; for this we study the auxiliary function

ϕ : R>1 −→R

x 7−→ Γ (x + k)β+1

Γ (x)α+1

much in the same way as we did just before. This function admits a unique
maximum, which is the positive zero of its logarithmic derivative

ϕ′

ϕ
(x) = (β +1)ψ (x + k)− (α +1)ψ (x)

= (β −α)ψ (x) + (β +1)
k−1∑

j=0

1
x + j

.
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We therefore seek the positive real χ such that

δψ (χ) =
k−1∑

j=0

1
χ + j

(2.6)

where

δ : =
α − β
β +1

> 0

δ +1 =
α +1
β +1

.

It is completely elementary that for x > 1 we have

ln
x + k
x

<
k−1∑

j=0

1
x + j

< ln
x+ k − 1
x − 1 .

This estimate, coupled with (2.5), implies particularly that the equality (2.6) is
possible only if ln x+k

x < δ lnx and ln x+k−1
x−1 < δ ln(x − 1). As a consequence x∗ lies

in the interval ]r, r +1[ where r is the positive solution of

(x + k)β+1 = xα+1

or, equivalently,

xδ+1 − x = k .
Since this interval has length 1 one has

d ∈ {−1,0,1}+ ⌈r⌉ .

Plugging x := k1/δ+1 in the previous expression shows that

k1/δ+1 < r

(in particular the sequence r is unbounded). The relation k
r = rδ − 1 proves r =

o (k). Both relations hold also for χ instead of r. Moreover let σ > 0 be given such
that

σ ≥ e1/
√
δ > 1 .

Then

δ ≥ 1

(lnσ)2
>

1
σ lnσ

≥ ln(1 + 1/σ)
lnσ

δ +1 >
ln (σ +1)

lnσ

1 >
σ

σδ+1 − 1

k ≥ 1 >
(

σ

σδ+1 − 1

)δ+1/δ

k
(
σδ+1 − 1

)
> σk

1/δ+1

(
σk1/δ+1

)δ+1 −σk1/δ+1 > k
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so that

r < σk1/δ+1 .

We use finally the classical relation for x > 0
√
2πxx−1/2e−x ≤Γ (x) ≤ e1−xxx−1/2(2.7)

and the fact that χα+1 > (χ + k)β+1 to derive

ϕ (χ) ≤ eβ+1

(2π)α+1/2
χk(α+1) exp((α − β)χ − (β +1)k) .

�

3. Analyticity

In this section we consider two Hausdorff, locally convex spaces (E, (||•||a∈A)) and
(F, (||•||b∈B)), i.e. topological linear spaces whose topologies are induced by a collection of
separating semi-norms. We begin with giving general definitions and properties, sum-
marizing some important results of the references [Bar85] and [Maz84]. We then present
specifics for the spaces C {z}A and C {z}

−−−−→
, as well as introducing the notion of strong an-

alyticity. Notice that because of Proposition 2.15 and Definition 3.2 below, as soon as a
map Λ : C {z} → C {x} is proved analytic for some sequential A-topology, which is com-
paratively an easier task to perform, it will automatically be analytic for the inductive
topology.

A notion we will need is that of ample boundedness, which mimics the criterion for
the continuity of linear mappings.

Definition 3.1. A mapping Λ : U → F from an open set U of E is amply bounded if
for every f ∈U and all b ∈ B there exists a neighborhoodW ⊂ E of 0 such that

sup
h∈W
||Λ (f + h)||b < ∞.

Continuous mappings are amply bounded.

3.1. Polynomials, power series and analyticity.

Definition 3.2.

(1) A polynomial on E of degree at most d with values in F is a finite sum

P (f ) =
d∑

p=0

Pn
(
f ⊕p

)

of continuous, symmetric p-linear mappings Pp ∈ Lp (E→ F). The least d for
which the above expansion holds for P , 0 is its degree degP. As usual we
conventionally set deg0 := −∞, and recall that

f ⊕p = (f , · · · , f ) ∈ Ep .
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(2) A formal power series Φ from E to F is a series built from a sequence of contin-
uous, symmetric p-linear mappings

(
Pp

)
p∈N ∈

∏
p∈NLp (E→ F) :

Φ (f ) :=
∑

p≥0
Pp

(
f ⊕p

)
.

The space of all such objects is a complex algebra with the standard sum and
Cauchy product operations on series.

(3) A mapping Λ defined on some neighborhood U of f ∈ E , with values in F, is
said to be analytic at f if for all b ∈ B there exists a neighborhood W of 0 ∈ E
such that

lim
N→∞

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
Λ (f + h)−

N∑

p=0

Pp
(
h⊕p

)
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
b

= 0

uniformly in h ∈W .
(4) We say that Λ is analytic on U if it is analytic at any point of U . If Λ is analytic

on the whole E we say that Λ is entire.
(5) The p-linear mapping p!Pp is called the p-th Taylor coefficient of Λ at f and is

written as

∂pΛ

∂f p
|f := p!Pp.

The formal power series
∑
p≥0

1
p!
∂pΛ
∂f p
|f is called the Taylor series of Λ at f .

Theorem 3.3. Let U ⊂ E be an open set. In the following hatted spaces denotes their Haus-
dorff topological completion (as uniform spaces).

(1) ([Bar85, p177]) If Λ is analytic at some point f ∈ U then its Taylor coefficients are

unique. In that case Λ (f ) = ∂0Λ
∂f 0
|f .

(2) ([Bar85, p195]) Analytic mappings U → F are continuous.
(3) ([Bar85, p196]) An amply bounded mapping U → F is analytic if, and only if, for

every f ∈ U there exists a sequence
(
Pp

)
p∈N of p-linear mappings, not necessarily

continuous but satisfying nonetheless the rest of condition (3) in the above definition.
Particularly in that case each Pp is a posteriori continuous.

(4) ([Bar85, p187]) Polynomials with values in F are entire. If Φ is a polynomial then
∂pΦ
∂f p
|f = 0 for all p > degP and f ∈ E.

(5) ([Bar85, p192]) Let Λ : U → F be analytic and Ξ : F → G be a continuous linear
mapping with values in a normally convex space G. Then Ξ ◦Λ is analytic and

∂pΞ ◦Λ
∂f p

|f = Ξ ◦ ∂
pΛ

∂f p
|f .

(6) ([Maz84, p63]) More generally the composition of source/range compatible analytic
maps remains analytic.

(7) ([Maz84, p68]) Any analytic map Λ : U → F extends in a unique fashion to an

analytic map Λ̂ : Û → F̂ from an open set of Ê. Notice that Û might not be a
topological completion of U .
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Notice that from (1) is deduced the identity theorem, using a standard
connectedness argument:

Corollary 3.4. (Identity Theorem [Bar85, p241]) Let U ⊂ E be a domain and Λ analytic
on U such that Λ vanishes on some open subset of U . Then Λ is the zero map.

3.2. Analytical spaces.
As usual with analyticity, the definition is given for maps defined on open sets. Yet in

practice we would like to speak of analyticity of maps defined on sets with empty inte-
rior (e.g. proper analytic sets). Although there exists a notion of analytic variety [Maz84]
we do not want to venture into those territories. As we will be in general able to param-
eterize the sets of interest to us, we introduce instead the notion of induced analytic
structure:

Definition 3.5. Let X be a topological space, Ψ : U ⊂ E ։ X be continuous and onto
from an open set U of E.

(1) We say that a map Λ : X → F is analytic with respect to the analytic structure
induced by Ψ if Ψ∗Λ =Λ ◦Ψ : U → F is analytic.

(2) Let V ⊂ F be an open set. We say that a map Λ : V → X is analytic with respect
to the analytic structure induced by Ψ if there exists an analytic map Λ̃ : V →
U such that Λ̃∗Ψ =Λ.

(3) We say in this case that X is an analytic space modeled on E, equipped with the
analytic structure induced by Ψ.

(4) These definitions allow to speak of analytic maps between analytic spaces X and
Y , each one equipped with an induced analytic structure, respectivelyΨX : UX ։
X and ΨY : UY ։ Y . A map Λ : X → Y is analytic if there exists an analytic
map Λ̃ : UX →UY such that the following diagram commutes:

X
Λ

// Y

UX
Λ̃

//

ΨX

OO
OO

UY

ΨY

OO
OO

Basic examples include vector subspaces F < E with a continuous projector E ։ F
and, more generally, quotient spaces with respect to equivalence relations ∼ whose
canonical map E ։ E/∼ is continuous. Also the space of diffeomorphisms Diff (C,0) is
the range of the continuous map (see Proposition 3.20)

Ψ : C {z} −→Diff (C,0) ⊂ C {z}
f 7−→ (z 7→ zexp f (z))

and is therefore an analytic space for the analytic structure induced by Ψ. According to
Proposition 3.20 the group law

(∆1,∆2) ∈Diff (C,0)2 7−→ ∆1 ◦∆2 ∈Diff (C,0)

is continuous since it corresponds via Ψ to the entire mapping

(f1, f2) 7−→ f2 + f1 ◦ (zexp f2) .
Corresponding statements for the m-dimensional case follow.
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3.3. Cauchy integrals and estimates.
In the finite-dimensional setting a key element of the theory of analytic functions

is the Cauchy’s formula and related estimates. The infinite-dimensional setting is no
exception to that rule and those estimates likewise play a major role in all the theory. If
Λ is analytic on some open set U then, for fixed f ∈ U and h small enough we can pick
η > 0 in such a way that the mapping

x ∈ ηD 7−→ Λ (f + xh) ∈ F
is also analytic (for the standard normed topology on C). In particular it is continuous
and the integral

¸

|x|=ηΛ (f + xh) dx
xp+1

makes perfectly sense in some topological comple-
tion of F. Yet the very nature of the formula below implies a posteriori that this integral
belongs to F.

Proposition 3.6. [Bar85, p210-212] Let Λ : U → F be analytic and pick f ∈ U . For every

h ∈ E, p ∈N and η > 0 such that f + ηDh ⊂U we have

∂pΛ

∂f p
|f
(
h⊕p

)
=

1
2iπ

˛

ηS1
Λ (f + xh)

dx
xp+1

.

Besides if a ∈ A and b ∈ B then for all h ∈ E and all η > 0 so that Ba (f ,η) ⊂U we have18

∣∣∣∣∣
∣∣∣∣∣
1
p!
∂pΛ

∂f p
|f
(
h⊕p

)∣∣∣∣∣
∣∣∣∣∣
b
≤ ||h||pa

ηp
sup
||u||a=η

||Λ (f + u)||b .

Notice that a variation on this presentation of Cauchy’s formula can be used to define
completely the values of the p-symmetric linear mapping (see [Bar85, p229])

∂pΛ

∂f p
|f
(
h1, · · · ,hp

)
=

1
2iπ

˛

η/pS1
· · ·
˛

η/pS1
Λ


f +

p∑

j=1

xjhj




p∏

j=1

dxj

x2j
,(3.1)

so that
∣∣∣∣∣
∣∣∣∣∣
1
p!
∂pΛ

∂f p
|f

(
h1, · · · ,hp

)∣∣∣∣∣
∣∣∣∣∣
b
≤ p

p

p!
×

∏p
j=1

∣∣∣
∣∣∣hj

∣∣∣
∣∣∣
a

ηp
sup
||u||a≤η

||Λ (f + u)||b .(3.2)

This estimate is optimal, and can still be useful for studying convergence of power series
since pp

p! is sub-geometric.

3.4. Fréchet- and Gâteaux-holomorphy.

Definition 3.7. Let Λ : U → F be a mapping defined on a non-empty open set U ⊂ E.
In the following F̂ represents the topological Hausdorff completion of F (as a uniform
space).

(1) We say that it is G-holomorphic (meaning Gâteaux-holomorphic) if for all fi-
nite dimensional linear subspace S < E the restriction Λ|S∩U is analytic. This
is equivalent ([Maz84, p51]) to requiring that for all f ∈ U and h ∈ E the map
x 7→ Λ (f + xh) be analytic at 0 ∈C.

18We point out that the right-hand side can be infinite if the choice of a,b is not done so that ||Λ||b is
bounded on Ba (f ,η).
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(2) We say that it is F-holomorphic (meaning Fréchet-holomorphic) if it is differ-
entiable at every point f ∈ U in the following sense : there exists a continuous
linear map ∂f Λ ∈ L

(
E→ F̂

)
such that for all b ∈ B we can find a ∈ A and some

function ǫ : U − f → R≥0 with
⊛ for all h ∈U − f we have

∣∣∣
∣∣∣Λ (f + h)−Λ (f )−∂f Λ (h)

∣∣∣
∣∣∣
b
≤ ε (h) ||h||a ,

⊛ limh→0 ε (h) = 0.

Remark 3.8. If Λ is analytic then it is F-holomorphic and

∂1Λ

∂f 1
|f = ∂f Λ.

If Λ is F-holomorphic then it is continuous.

Theorem 3.9. [Bar85, p246][Maz84, p62]Consider a mapping Λ : U → F with U an open
set of E. The following propositions are equivalent

(1) Λ is analytic,
(2) Λ is amply bounded and G-holomorphic,
(3) Λ is F-holomorphic.

Remark 3.10. Non-continuous linear maps provide examples of G-holomorphic func-
tions which are not analytic. It is likewise possible to build two G-holomorphic map-
pings whose composition is not G-holomorphic anymore ([Maz84, p63]). In view of the
results presented earlier in this section these maps obviously fail to be amply bounded.

3.5. Multivariate analyticity.
Many good properties of finite dimensional complex analysis persist. In particular

we dispose of Hartogs theorems regarding separate analyticity for analytic mappings
defined on a Cartesian product of finitely many locally convex spaces equipped with
the product topology. This is indeed a direct consequence of the characterization of
Theorem 3.9.

Theorem 3.11. (Hartogs lemma) Let Λ : W1 × · · · ×Wm → F be a map from a product of
open sets in locally convex spaces. Then Λ is analytic if, and only if, Λ is separately analytic,

meaning that for all choices of p ∈ {1, · · · ,m} and of f ∈∏
jWj the mapping f 7→ Λ

(
f ⊳p f

)
is

analytic onWp .

3.6. The case of ultrabornological spaces.
The following universal characterization will be useful in practice:

Theorem 3.12. (Universal property of the analytic inductive limit [Bar85, p254]) Let
E = lim→ (Ek)k∈N be ultrabornological, each Ek being endowed with its Banach topology;
denote by ιr : Er →֒ E the canonical (continuous) embedding. Then a map Λ : U ⊂ E → F,
where F is any locally convex space, is analytic if, and only if, every Λ ◦ ιr is analytic for r > 0.

3.7. Specifics for spaces of germs.
From now on (E, (||•||a)a∈A) (resp. (F, (||•||b)b∈B)) stands for the vector space C {z} (resp.

C {w}) endowed with a Hausdorff, locally convex topology such as a sequential topology
or the inductive topology. Before diving into more details, let us first state once and for
all that the analytic structure put on the finite-dimensional vector subspaces C [z]≤N ≃
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CN+1 is that induced, in the sense of Definition 3.5, by the (continuous) jets projectors
JN : C {z}։ C [z]≤N . It coincides with the standard analytic structure, and the space of
analytic functions with respect to JN is the same as the usual holomorphic functions on
open sets of CN+1.

3.7.1. Uniform convergence of the Taylor series.

Proposition 3.13. Let Λ be analytic on a neighborhood of some f ∈ E, with Taylor coeffi-
cients Λp ∈ Lp (E→ F). For any b ∈ B there exists a ∈ A such that the formal power series∑
pΛp (h⊕p) converges ||•||b-normally towards Λ (f + h), uniformly in ||h||a small enough. Be-

sides for such values of h

Λ (f + h) = lim
m→∞

∑

j∈Nm

∣∣∣j
∣∣∣!
j!

Λ|j|
(
⊕n (zn)⊕jn

)∏

n

h
jn
n

=
∑

j∈N(N)

∣∣∣j
∣∣∣!
j!

Λ|j|
(
⊕n (zn)⊕jn

)∏

n

h
jn
n .

Proof. Take a sequence (fn)n∈N ⊂ C {z}. Using the multinomial formula we derive for
every m ∈N

Λp






m∑

n=0

fn




⊕p =
∑

j∈Nm , |j|=p

p!
j!
Λp

(
⊕mn=0 (fn)

⊕jn
)
.

Since Λ is analytic for all b ∈ B there exists η > 0 small enough and a ∈ A such that
sup||u||a=η ||Λ (f + u)||b is finite ; let us write K this value. We have for for all m ∈ N

and all h =
∑
n hnz

n ∈ C {z}, invoking Cauchy’s extended estimate (3.2) and Stirling esti-
mate (2.7):

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
Λp






m∑

n=0

hnz
n




⊕p

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
b

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

∑

j∈Nm , |j|=p

p!
j!
Λp

(
⊕mn=0 (hnzn)

⊕jn
)
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
b

≤ K

(
e

η
||h||a

)p
.

The left-hand side thereby admits a limit as m → ∞ and because Λp is continuous we
obtain

Λp

(
h⊕p

)
= lim

m→∞

∑

j∈Nm , |j|=p

p!
j!
Λp

(
⊕n (hnzn)⊕jn

)

=
∑

j∈NN , |j |=p

p!
j !
Λp

(
⊕∞n=0 (hnzn)

⊕jn
)

with convergence of the right-hand side in C {z}, and if ||h||a <
η
e we have

∑

p

∣∣∣∣
∣∣∣∣Λp

(
h⊕p

)∣∣∣∣
∣∣∣∣
b
≤ K

η

η − e ||h||a
.

�
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3.7.2. Quasi-strong analyticity.
We introduce now a notion of holomorphy between spaces of germs that does not

require any a priori topology on C {z}. This notion is traditionally referred to as «the»
notion of holomorphy in C {z} in the context of dynamical systems.

Definition 3.14. Let U be a non-empty subset of C {z}.
(1) A germ of a holomorphic map λ : (Cm,0)→ U is a mapping defined on some

neighborhood of 0 ∈Cm and such that the map

λ∗ : (x, z) 7−→ λ (x) (z)

belongs to C {x, z}. The set of all such germs will be denoted by O ((Cm,0)→U ).
(2) A map Λ : U → C {w} is said to be quasi-strongly analytic on U if for any m ∈

N>0 and any λ ∈ O ((Cm,0)→U ) the compositionΛ◦λ belongs toO ((Cm,0)→C {w}).
(3) We extend in the obvious way these definitions to analytic maps between ana-

lytic spaces as in Definition 3.5.

Remark.

(1) The notion (2) is called «strong analyticity» in [GT10]. Here we reserve this
name to the yet stronger notion we introduce below.

(2) Notice that by definition the composition of source/range-compatible quasi-
strongly analytic mappings is again quasi-strongly analytic.

(3) Each affinemap x 7→ f +xh is quasi-strongly analytic for fixed f ∈ U and h ∈C {z}.
(4) It is not sufficient to consider the case m = 1, as opposed to what happens for

G-holomorphic mappings.

We begin with a characterization of quasi-strongly analytic maps in terms of power-
wise holomorphy:

Proposition 3.15. Let a mapping Λ : U → F be given, where U ⊂ C {z}, and write Λ (f ) =∑
n≥0Tn (Λ (f ))wn. The following assertions are equivalent:

(1) Λ is quasi-strongly analytic,
(2) for all λ ∈ O ((Cm,0)→U ) the following two conditions are fulfilled

⊛ Tn (Λ ◦λ) ∈ O ((Cm,0)→C) is analytic on a disc whose size does not depend on
n,

⊛

liminf
x→0

R (Λ (λ (x))) > 0.

In that sense quasi-strongly analytic maps are precisely those who are uniformly
power-wise quasi-strongly analytic and who respect lower-boundedness of the radius
of convergence, a fact that was implicitly used in [GT10].

Proof. Let λ ∈ O ((Cm,0)→U ) with λ (0) = f ∈U be given. If (1) holds then Λ∗ : (x,w) 7→
Λ (λ (x)) (w) is analytic, and

Tn (Λ (λ (x))) =
1
n!
∂nΛ∗

∂wn
(x,0)

so that Tn ◦Λ : U → C is quasi-strongly analytic on εDm for some ε > 0 independent
on n. Besides inf||x||<εR (Λ (λ (x))) > 0 by definition. Assume now that (2) holds and take
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η > 0 strictly less than liminfx→0R (Λ (λ (x))), together with ε for which Tn ◦ Λ ◦ λ is
holomorphic on εDm. Then there exists ε ≥ γ > 0 such that

inf
||x||=γ

liminf
n→+∞

|Tn ◦Λ (λ (x))|−1/n > η > 0 .

In particular
∑
n≥0Tn (Λ (λ (x)))wn is absolutely convergent on γDm × η

2D. �

We can establish a link between this notion of holomorphy and that of G-holomorphy,
which is only natural since the concepts look alike.

Proposition 3.16. Let Λ : U → F be quasi-strongly analytic and assume that the ordering
between topologies C {z}

−−−−→
≥ F holds. Then Λ is G-holomorphic.

Proof. We exploit the fact that it possible to use the usual Cauchy integral formula of
(x,w) 7→ Λ (f + xh) (w) to derive the Taylor coefficients of x 7→ Λ (f + xh).

Lemma 3.17. Assume Λ : U → F is quasi-strongly analytic. Let f ∈ U and h ∈ E; we can
choose η > 0 such that f +2ηDh ⊂U . Then for all p ∈N

Λp

(
h⊕p

)
:= w 7→

˛

ηS1
Λ (f + xh) (w)

dx
xp+1

defines a p-linear symmetric mapping, whose values do not depend on the choice of η provided
it is kept sufficiently small.

The p-linear mappingsΛp need not be continuous and Theorem 3.3 (3) will be of help
here. Because of the extended Cauchy estimates in F (Proposition 3.6) we have for all
b ∈ B ∣∣∣∣

∣∣∣∣Λp

(
h⊕p

)∣∣∣∣
∣∣∣∣
b
≤ η−p sup

|x|=η
||Λ (f + xh)||b .

Since F ≤ C {z}
−−−−→

for every b ∈ B and every

0 < ρ < inf
|x|=η
R (Λ (f + xh))

there exists a constant C = Cb,ρ > 0 such that

||Λ (f + xh)||b ≤ C ||Λ (f + xh)||ρD .

For example if F is given by a sequential B-topology then the Cauchy estimates in C

(Lemma 2.17) states that C :=
∣∣∣∣
∣∣∣∣w 7→ ρ

ρ−w

∣∣∣∣
∣∣∣∣
b
. As a consequence

∣∣∣∣
∣∣∣∣Λp

(
h⊕p

)∣∣∣∣
∣∣∣∣
b
≤ Cη−p ||(x,w) 7→ Λ (f + xh) (w)||ηD×ρD

defines the general term of a normally convergent power series

x 7−→
∞∑

p=0

Λp

(
h⊕p

)
xp ,

uniformly in |x| ≤ η
2 . By construction this mapping is analytic at 0 and its sum is

Λ (f + xh). This is the required property of G-holomorphy. �
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3.7.3. Strong analyticity.
It is tempting to declare that the Taylor coefficient Λp computed in Lemma 3.17 co-

incides with the value of the integral
˛

ηS1
Λ (f + xh)

dx
xp+1

.

Yet nothing guarantees that this integral exists and belongs to C {w}. If we require that
Λ be amply bounded and quasi-strongly analytic then it does and equals Λp (h

⊕p). For
instance its value can be obtained as the limit of the sequence of Riemann sums

IN :=
2iπη
N +1

N∑

j=0

Λ
(
f + xjh

)

x
p
j

where

xj := η exp
(
j
2iπ
N +1

)
.

There exists ε > 0 such that (x,w) ∈ 3
2ηD × εD 7→ Λ (f + xh) (w) is holomorphic and

bounded, in which case

IN (w) =
2iπη
N +1

N∑

j=0

Λ
(
f + xjh

)
(w)

x
p
j

converges as N →∞ toward
¸

ηS1 Λ (f + xh) (w) dx
xp+1

on the one hand, while it converges

toward
¸

ηS1 Λ (f + xh) dx
xp+1

(w) on the other hand. This motivates the

Definition 3.18. Assume F ≤ C {z}
−−−−→

. An amply bounded map Λ : U ⊂ E → F which is

also quasi-strongly analytic will be called strongly analytic.

Remark.

⊛ Notice again that the composition of source/range compatible strongly analytic
mappings remains strongly analytic.

⊛ We recall that ample boundedness derives from continuity, and the latter prop-
erty will in fact be automatically guaranteed in virtue of Theorem 3.9 and as a
consequence of Theorem C, which we prove now.

Proposition 3.19. Let a map Λ : U ⊂ E → F be given, where U is an open set of E and
F ≤ C {z}
−−−−→

. The following assertions are equivalent:

(1) Λ is strongly analytic,
(2) Λ is analytic and for every λ ∈ O ((Cm,0)→U ) we have simultaneously

liminf
x→0

R (Λ ◦λ (x)) > 0

limsup
x→0 , r→0

||Λ ◦λ (x)||rD <∞ .

Proof. (1)⇒(2) is a direct consequence of the definition of holomorphy and of the ap-
plication of Theorem 3.9 to Proposition 3.16. Let us prove (2)⇒(1). Since an ana-
lytic map is amply bounded we only need to prove the holomorphy of Λ. Let λ ∈
O ((Cm,0)→U ) be given; without loss of generality we can assume that λ (0) = 0 ∈ U .
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Since (u,x) 7→ uλ (x) belongs to O
((
Cm+1,0

)
→U

)
we can consider a positive number

0 < r ′ < liminf(u,x)→0R (Λ (uλ (x))). Repeating the construction of Lemma 3.17 and of
the beginning of this paragraph we deduce that there exists ρ, ρ′ > 0 such that for all
integer p

(∀|w| < r ′ , ∀||x|| < ρ′) Λp

(
λ (x)⊕p

)
(w) =

1
2iπ

˛

ρS1
Λ (uλ (x)) (w)

du
up+1

,

whereΛp is the Taylor coefficient ofΛ. This formula implies particularly thatΛp

(
λ (x)⊕p

)
∈

Br′ and ∣∣∣∣Λp

(
λ (x)⊕p

)
(w)

∣∣∣∣ ≤ ρ−p sup
|u|=ρ
|Λ (uλ (x)) (w)| .

By choosing ρ > η > 0, and using that limsupx→0, r→0 ||Λ (λ (x))||rD < ∞ we deduce that,
at the expense of decreasing r ′ and ρ′, there exists K > 0 such that

∣∣∣∣Λp

(
(ηλ (x))⊕p

)
(w)

∣∣∣∣ ≤ K
(
η

ρ

)p
.

Hence the functional series (x,w) 7→ ∑
p≥0Λp

(
λ (x)⊕p

)
(w) is uniformly convergent and

the sum is thereby analytic on ρ′D× r ′D. �

Let us conclude this part by proving the

Proposition 3.20. Assume that C {z} is endowed with a useful topology and pick f ∈ C {z}
with radius of convergence R (f ). The right-composition mapping

f∗ : C {z} −→ C {z}
g 7−→ f ◦ g

is strongly analytic on the domain U := J−10 (R (f )D) = {g : |g (0)| <R (f )}.
We refer to Proposition 5.2 for the computation of the coefficients of the power series

representing f∗.

Proof. By definition of a useful topology f∗ is continuous, so we only need to show
that it is quasi-strongly analytic. The latter property is trivial because being given
λ ∈ O

((
Cm

′
,0

)
→U

)
with λ (0) = g ∈U , the map f∗◦λ also belongs to O

((
Cm

′
,0

)
→ C {z}

)

as (f∗ ◦λ)∗ (x,z) = f (λ∗ (x,z)) defines a convergent power series in (x,z). �

4. Analytic sets

This section is devoted to introducing and studying properties of analytic sets, as de-
fined by the vanishing locus of analytic maps E→ F where (E, (||•||a)a∈A) and (F, (||•||b)b∈B)
are Hausdorff, locally convex spaces.

Definition 4.1.

(1) A closed subset Ω ⊂ E is an analytic set if for all f ∈ Ω there exists a domain
U ∋ f and some collection (Λι)ι∈I of analytic mappings Λι : U → F such that
Ω ∩U =

⋂
ι∈I Λ

−1
ι (0).

(2) An analytical set is called proper at some point f ∈Ω if for all collection ((Λι)i∈I ,U ),
withU ∋ f andΩ∩U =

⋂
ι∈I Λ

−1
ι (0), we haveΩ∩U ,U . We say thatΩ is proper

if it is proper at one of its points.
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(3) A subset M ⊂ E is said to be analytically meager if M is included in a count-
able union of proper analytic sets. M is countably meager if it is included in
an at-most-countable union of images by analytic maps of at-most-countable-
dimensional linear spaces.

(4) Let X be an analytic space whose analytic structure is induced by a continuous
and onto map ϕ : U ⊂ E → X as in Definition 3.5. A closed subset Ω ⊂ X is an
analytic set if ϕ−1 (Ω) is an analytic set of U . We likewise extend to this setting
the notion of analytically meager subsets of X, and say that X is an analytical
Baire space if every analytically meager subset of X has empty interior.

Remark 4.2.

(1) There is no a priori hypothesis on the cardinality of the set I in the definition of
analytic sets.

(2) It is obvious from the definition that finite unions and unspecified intersections
of analytic sets still are analytic sets.

(3) We will show shortly that a proper analytic set is actually proper at each one of
its points (Proposition 4.8).

(4) In (4) above we expressly do not define analytic sets of X as the vanishing loci of
analytic maps. This condition is indeed far too restrictive, as will be illustrated
in Section 6 when speaking about the analytic space of meromorphic functions
(Remark 6.3).

Because taking the N th-jet of a germ is an analytic operation, each subspace of poly-
nomials with given upper-bound N on their degree

C [z]≤N = ker



∑

n

anz
n 7−→

∑

n>N

anz
n


 = ker(Id− JN )

is a proper analytic set. The countable union C [z] of all these subspaces is consequently
analytically meager (and dense) in C {z}, and therefore C [z] is not an analytical Baire
space.

A nice feature of analytic sets is that they are negligible, in the sense that the remov-
able singularity theorem holds:

Theorem 4.3. (Removable Singularity Theorem [Maz84]) Let U ⊂ E be an open set,
Ω ⊂ U a proper analytic set and Λ be analytic on U\Ω. We assume that for every a ∈ A and

every f ∈Ω there exists a neighborhood V ⊂ U of f such that
∣∣∣
∣∣∣Λ|V \Ω

∣∣∣
∣∣∣
a
is bounded. Then Λ

admits a unique analytic extension to U .

The aim of this section is mainly to show the next result:

Theorem 4.4. Assume there exists a Banach space V and a continuous, linear mapping ι :
V → E such that ι (V ) is dense in E. Then any analytic space X modeled on E is an analytical
Baire space.

We deduce Theorem A from this statement and the next trivial lemma:
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Lemma 4.5. Let V be the vector subspace of C {z} defined by

V :=


∑

n

fnz
n : |fn| is bounded



equipped with the norm ||•||∞ :
||f ||∞ := sup

n
|fn| .

Then (V , ||•||∞) is a Banach space and the inclusion (V , ||•||∞) →֒ C {z}A is continuous. More
precisely for each f ∈ V and each a ∈ A

||f ||a ≤ ||f ||∞
∣∣∣∣∣
∣∣∣∣∣

1
1− z

∣∣∣∣∣
∣∣∣∣∣
a
.

We also intend to prove the Theorem B:

Theorem 4.6. Let X be an analytic space modeled on C {z} and consider an analytic map
Λ : U → X on an open set U ⊂ E. The image by Λ of the trace on U of any linear subspace
of E with at most countable dimension is analytically meager. In particular countably meager
sets are analytically meager.

Remark 4.7.
(1) It is worth noticing that the analyticity condition on Λ can be loosened a little.

Indeed we are only considering the countable union of range of analytic maps
restricted to finite-dimensional open sets, so that only G-holomorphy (or quasi-
strong analyticity) is actually required. In this form the spine of the proof is
borrowed from [GT10], but some flesh is added to cover the more general con-
text.

(2) Be careful that «analytically meager» does not imply «empty interior» in general,
according to Theorem 4.4.

4.1. Proper analytic sets.

Proposition 4.8. Let Ω be a connected, non-empty analytic set. The following assertions are
equivalent :

(1) Ω is proper,
(2) Ω is proper at any one of its points,
(3) the interior of Ω is empty,
(4) for all f ∈ Ω there exists a domain U ∋ f and a non-empty collection (Λι)ι∈I such

that U ∩Ω =
⋂
ι∈I Λ

−1
ι (0) while Λι , 0,

(5) there exists a domain U meeting Ω and a non-empty collection (Λι)ι∈I such that
U ∩Ω =

⋂
ι∈I Λ

−1
ι (0) while Λι , 0.

A consequence of this result is that proper analytical meager subsets of C {z} are gen-
uine meager subsets in the sense of Baire.

Proof. The implications (3)⇒(2)⇒(4)⇒(5)⇒(1) are trivial. Because of the identity the-
orem (Corollary 3.4) we also have (4)⇒(3). Let us show (1)⇒(2) by a connectedness
argument; for this consider the set

C := {f ∈Ω : Ω is not proper at f } ,
which is an open subset of Ω. Let us consider a sequence (fn)n∈N ⊂ C converging in Ω

to some f∞ and prove that f∞ ∈ C. Pick a domain U ∋ f∞ such that U ∩Ω =
⋂
ι∈I Λ

−1
ι (0)
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for some collection of maps (Λι)ι∈I analytic on U , acknowledging that for n big enough
we have fn ∈ U . Therefore Λι must vanish on some small ball around fn and the identity
theorem applies once more proving that Λι vanishes on the whole U , which is f∞ ∈ C.
Because by hypothesis Ω is connected and Ω\C , ∅ we showed C = ∅, which is (2), as
required. �

4.2. Analytical Baire property : proof of Theorem 4.4. By definition of the analytic
sets of X it is sufficient to show the property for E. Assume then that there exists a
countable collection of analytic sets (Cn)n∈N such that

⋃
nCn has non-empty interiorW ,

and show that at least one Cn is not proper. Pick some point f inW ; the affine subspace

Vf : = f + ι (V )
is Baire. SinceW is open the intersectionW ∩Vf is a non-void open subset in Vf (i.e. for
the topology induced by ||•||V ), and Cn∩Vf is closed in Vf . Therefore at least one Cn∩Vf
has a non-empty interior Wn. Let Λ : U → F be an analytic map on a neighborhood U
of some point f̃ ∈Wn such that Cn∩U ⊂Λ−1 (0). BecauseΛ|Vf is analytic for the analytic
structure of Vf inherited from its Banach topology, necessarily Λ vanishes on Vf . By
denseness of Vf in E we deduce that Λ = 0 and Cn cannot be proper, according to the
characterization given in Proposition 4.8.

4.3. Range of a finite-dimensional analytic map : proof of Theorem B.

Proposition 4.9. Take an analytic map λ : V → C {w} defined on some neighborhood V of
0 ∈ Cm such that rank(∂0λ) = m. There exists an open neighborhood W ⊂ V of the origin
such that the following properties hold:

(1) λ|W is one-to-one,
(2) λ (W ) is the trace of a proper analytic set on some domain U ⊂ C {w} containing λ (0),

defined by the vanishing of a non-zero analytic mapping Λ : U →C {w}.
Proof. We can assume, without loss of generality, that λ (0) = 0.

(1) We adapt here the proof done in [GT10]. If there exists N ∈ N such that the
map JN ◦λ is one-to-one, then so is λ. We claim that a family f1, . . . , fk ∈ C {w} is
free (over C) if, and only if, there exists N ∈N such that their N-jets are free (as
elements of the vector space C [w]≤N ). Suppose that for any N ∈N there exists a
non-trivial relation

LN :=
(
λ1,N , . . . ,λk,N

)
, 0

for the family CN := (JN (f1) , . . . , JN (fk)), that is

JN



k∑

j=1

λj,N fj


 = 0 .

Up to rescaling of LN one can suppose that it belongs to the unit sphere of Ck

and thereby one can consider some accumulation point L∞ :=
(
λ1,∞, . . . ,λk,∞

)
.

Because Jp+1 (f ) = 0 implies Jp (f ) = 0, by taking the limit N → ∞ while fixing
an arbitrary p we obtain that L∞ is a non-trivial relation for Cp (by continuity
of JN ), and thus is a non-trivial relation for (f1, · · · , fk), proving our claim. If λ is
of maximal rank at 0, i.e. the rank of ∂0λ is m, there accordingly exists N ∈N
such that the mapping JN ◦λ is of maximal rank. Therefore the mapping JN ◦λ
is locally one-to-one around 0, say on some domain V ′ ⊂ V , and so is λ.
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(2) LetN ∈N andV ′ be given as above, so that JN◦λ|V ′ is one-to-one. Let (b0, · · · ,bm−1) ⊂
C [z]≤N be a basis of im(∂0 (JN ◦λ)), which we complete with a basis (bm, · · · ,bN ) ⊂
C [z]≤N of the cokernel of ∂0 (JN ◦λ), so that C [z]≤N = C 〈b0, · · · ,bN 〉. Write
JN ◦ λ (x) =

∑N
j=0λj (x)bj with λj : V ′ → C holomorphic. According to the

local inversion theorem there exists a domain W ⊂ V ′ containing 0 such that
λ̃ : x ∈ W 7→ ∑

j<mλj (x)bj is a biholomorphism onto its image. Let us write Φ

the inverse map, holomorphic from the open set λ̃ (W ) of C 〈b0, . . . ,bm−1〉 intoW
and introduce the natural (continuous) projector

P : C {w} −→ C 〈b0, . . . ,bm−1〉∑

n≤N
fnbn +

∑

n>N

fnId
n 7−→

∑

n<m

fnbn ,

so that P ◦λ = λ̃. Consider the (analytic) mapping

Λ : J−1N
(
λ̃ (W )

)
⊂ C {w} −→ C {w}

f 7−→ f −λ ◦Φ ◦P (f ) .
By construction Λ (f ) = 0 if, and only if, f ∈ λ (W ). In particular λ (W ) is closed
in U := J−1N

(
λ̃ (W )

)
.

�

Corollary 4.10. Let λ : V ⊂ Cm→C {w} be analytic. Then λ (V ) is analytically meager.

Since a countable union of analytically meager subsets remains analytically meager
Theorem B derives from this result.

Proof. It is done by induction on m, the result being trivially true for m = 0. The rea-
soning is essentially the same as in [GT10], and consists in splitting V into at most
countably many sets on which the restriction of λ has relative maximal rank. Outside
a proper analytic subset Σ of V the rank of the map λ is constant; let us call µ (λ) this
generic rank. If µ (λ) < m then we can find at most countably many analytic discs Dk ⊂ V
of dimension µ (λ) such that

⋃
k λ (Dk) = λ (V ). Thanks to our induction hypothesis this

case has already been dealt with and λ (V ) is analytically meager. We therefore assume
that µ (λ) =m. The set Σ admits a decomposition Σ =

⋃
kCk into at most countably many

analytic discs of dimension pk with 0 ≤ pk < m (see e.g. [Cos82]). We apply the induc-
tion hypothesis to each λ|Ck as before to obtain that λ (Σ) is analytically meager. We can
apply Proposition 4.9 at each point of the open set V \Σ, which is therefore covered by
countably many domains (Wk)k such that each λ (Wk ) is included in a proper analytic
set. This settles the induction. �

4.4. Remarks on tangent spaces.
As in the finite dimensional case we can build (at least) two candidate tangent spaces.

Definition 4.11. Let Ω be a non-empty analytic set and pick f ∈ Ω, together with a
collection of locally defining maps (Λι)ι.

(1) We define the algebraic tangent space ofΩ at f

T Af Ω :=
⋂

ι

ker
∂Λι

∂f
|f .
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(2) We define the geometric tangent space of Ω at f

T Gf Ω :=
{
λ′ (0) : λ holomorphic (C,0)→ (Ω, f )

}
.

Obviously T Gf Ω < T Af Ω and equality is equivalent, for finite-dimensional spaces and
irreducible Ω, to the fact that f is a regular point of Ω. Therefore we propose the fol-
lowing definition:

Definition 4.12. Assume Ω is irreducible. We say that f is a regular point of Ω if
T Gf Ω = T Af Ω.

We conjecture that regular points of (at least strongly) analytic sets enjoy «nice» geo-
metric features, maybe reaching as far as the existence of a local analytic parameteriza-
tion.

5. Fréchet calculus

In this section we fix a choice of a useful A-topology onC {z}. For a ∈C {z} the notation
a × • stands for the endomorphism h 7→ a × h of C {z}. More generally in the formulas
bellow the symbol «•» will stand for the argument of a continuous linear mapping.

5.1. Actually computing derivatives.
Computing actual derivatives of «simple» operations can be performed easily. In fact

one can compute them in many less simple cases using the following formula, which is
only a consequence of the continuity of the derivative:

Lemma 5.1. Let Λ : U → C {w} be analytic and f ∈U . Then

∂Λ

∂f
|f



∑

n≥0
hnz

n


 =

∑

n≥0
hn
∂Λ

∂f
|f (zn)

=
∑

n≥0
hn
∂Λ (f + x × zn)

∂x
(0) .

We shall present an example: differentiating the strongly analytic map (Proposi-

tion 3.20) g 7→ f ◦ g with respect to g (i.e. for fixed f ). This allows to compute ∂f ◦g
∂g
|g for

any g ∈U :

∂f ◦ g
∂g

|(f ,g) (zn) =
∂f ◦ (g + xzn)

∂x
(0) = zn × f ′ ◦ g

so that

Proposition 5.2. Let f ∈C {z} be given. The right-composition mapping g 7→ f ◦g is analytic
on the domain J−10 (R (f )D) and for all g within this domain we have

∂f ◦ g
∂g

|(f ,g) = (f ′ ◦ g)× • .(5.1)

More generally we have, for all p ∈N,

∂pf ◦ g
∂gp

|g
(
•⊕p

)
=

(
f (p) ◦ g

)
× •p .
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5.2. The chain rule.
A corollary of Theorem 3.11, and of the usual rules of calculus, is that ifΛ : W1×W2 ⊂

C {z} × C {z} → C {w} is (strongly) analytic, and if Λj : U → Wj are (strongly) analytic
maps, j ∈ {1,2}, then Λ (Λ1,Λ2) is also (strongly) analytic and, for all f ∈ U ,

∂Λ (Λ1,Λ2)
∂f

|f =
∂Λ

∂f1
|(Λ1(f ),Λ2(f ))

(
∂Λ1

∂f
|f
)
+
∂Λ

∂f2
|(Λ1(f ),Λ2(f ))

(
∂Λ2

∂f
|f
)
.

Let us give applications of this calculation and of Proposition 5.2.

Proposition 5.3.

(1) The diffeomorphing map

D : g ∈C {z} 7−→ z × exp◦g ∈Diff (C,0) ,

is strongly analytic and for all g ∈C {z}
∂D
∂g
|g = D (g)× • .

More generally, with convergence in C {z},

D (g) = z ×
∞∑

p=0

gp

p!
.

(2) The inversion map

ι : C {z} −→ Diff (C,0)

g 7−→ D (g)◦−1

is strongly analytic and for all g ∈C {z} we have
∂ι

∂g
|g = −

(
z

1+ z × g ′ × •
)
◦ ι (g) .

(3) There exists a unique strongly analytic map

H : C {z} −→ C {z}
such that H (0) = 0 and

ι = D ◦H .
If Log denotes the principal determination of the logarithm then

H (g) = Log◦ ι (g)
z

for all g ∈C {z}. We have also

∂ι

∂g
|g = ι (g)× ∂H

∂g
|g ,

that is

∂H
∂g
|g = −

(
•

1+ z × g ′
)
◦ ι (g) .

Every other holomorphic map H̃ such that ι =D◦H̃ is obtained fromH by adding an
element of 2iπZ.
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Proof. We use the rules established in the previous sections. For the sake of clarity we
use the notation Cf to denote the right composing mapping g 7→ f ◦ g .

(1) We have

∂D
∂g
|g = z × ∂ expg

∂g
|g =D (g)× • .

(2) Using the previous lemma to differentiate with respect to g the relation

Cι(g) (D (g)) = z

we derive the formula:

0 =
∂Cf (D (g))

∂f
|ι(g)

(
∂ι

∂g
|g
)
+
∂Cι(g) (h)
∂h

|D(g)
(
∂D
∂g
|g
)

= C ∂ι
∂g
|g (D (g)) + Cι(g)′ (D (g))×D (g)× • .

The same relation differentiated with respect to z yields the usual formula

D (g)′ ×Cι(g)′ (D (g)) = 1 ,

completing the proof since D (g)′ = (1+ Id× g ′)× exp◦g .
(3) The equality regarding the derivatives, whenever they exist, comes from differ-

entiating ι =D ◦H. Let us now prove the existence of H. Consider

L : h ∈C {z} 7−→
∑

p>0

(−1)p+1
p

hp ,

which is a convergent series for the topology ofC {z}. Obviously Cexp◦L (h) = 1+h

for all h ∈ Ĉ {h}. Therefore setting

H (g) := L

(
ι (g)
z

)
− 1

does the trick.
�

Corollary 5.4. The universal covering of Diff (C,0) can be represented by the analytic cover-
ing

D : C {z} −→ Diff (C,0)

g 7−→ zexp◦g .
The fiber is canonically isomorphic to 2iπZ: the Galois group of the covering is generated by
the shift g 7→ g +2iπ.

6. Application to complex analysis

For a family of k germs F := (fℓ)1≤ℓ≤k we let I (F) be the ideal of C {z} spanned by the
family. Define the Milnor number of F as

µ (F) := dimC
C{z}/I (F) ∈ N∪ {∞} .

It is a well-known consequence of the Nullstellensatz for complex analytic functions that
the following statements are equivalent:

⊛ µ (F) <∞ ,
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⊛ I (F) contains a power of Z, the maximal ideal of C {z},
⊛ no element of Z is a common factor to all the fℓ’s.

As it turns out the set of collections F ∈ C {z}m with infinite Milnor number has the
structure of an analytic set.

Theorem 6.1. Let m and k be integers greater than 1. We understand µ here as the mapping

µ : C {z}k −→N∪ {∞}
F 7−→ µ (F) .

Endow each factor C {z} with a sequential topology. Then the set I := µ−1 (∞) is a proper

analytic set of Zk .

We actually show that µ−1 (∞) is «algebraic» in the sense that for each N ∈ N there
exists a polynomial map ΛN : C [z]k≤N →Cd(N ) such that

µ−1 (∞) =
⋂

N∈N
(ΛN ◦ JN )−1 (0) ,

where JN is the Cartesian product of the N th-jet operator of each copy ofC {z}. From this
particular decomposition stems the fact that the theorem derives from the same result
in the factorial ring C [[z]].

We show, in the rest of this section, that determining if k ≥ 2 formal power series
have a non-trivial common factor, i.e. belonging to the maximal ideal (still written) Z
of C [[z]], is an «algebraic» condition. Observe the set I ⊂ Zk formed by non-coprime
families is never empty since (f , · · · , f ) ∈ I whenever f ∈ Z. The case k = 2 encompasses
all technical difficulties so it is completed first, in Section 6.2. We finally reduce the
general case k ≥ 2 to the latter study, in Section 6.4. In Section 6.3 we present an effective
computable process which stops in finite time if, and only if, the given family (fℓ)ℓ≤k is
not coprime, using a growing sequence of Macaulay-like matrices.

Before performing all these tasks we shall use the above structure theorem to equip
the space of germs of meromorphic functions with an analytic structure.

6.1. The analytic space of meromorphic germs.
Let C ({z}) stand for the space of germs of meromorphic functions (for short, a mero-

morphic germ) at the origin of Cm. This space is by definition the fractions field of the
ring C {z}, that is the set of equivalence classes of couples (P,Q) ∈ C {z}×(C {z}\ {0}) given
by

(P1,Q1)! (P2,Q2)⇐⇒ P1Q2 = P2Q1 .(6.1)

Of course we write P
Q the equivalence class of (P,Q), and name Quot the canonical pro-

jection

Quot : C {z} × (C {z}\ {0}) −→ C ({z})

(P,Q) 7−→ P

Q
.

Definition 6.2.
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(1) We say that (P,Q) is a proper representative of P
Q if µ (P,Q) < ∞. Two proper

representatives differ by the multiplication with a multiplicatively invertible
holomorphic germ.

(2) We say that a meromorphic germ is purely meromorphic if it does not admit a
representative of the form (P,1) or (1,Q). This is equivalent to requiring that any
proper representative belongs to Z2. The set of all purely meromorphic germs is
written

C ({z})0 :=
{
P

Q
: P (0) =Q (0) = 0 , µ (P,Q) <∞

}
.

Since C {z} is factorial any meromorphic germ admits a proper representative. There-
fore we can equip the space C ({z}) with the analytic structure (as in Definition 3.5) in-
duced by the quotient map Quot restricted to the complement of µ−1 (∞), which is a
nonempty open set by Theorem 6.1.

Remark 6.3.

(1) Working with proper representative is quite natural since a lot of constructions
involving meromorphic germs (e.g. analytic maps Λ from some open set U ⊂
C ({z})) fail to be possible for non-proper representatives of meromorphic germs.
Besides if Quot∗Λ is amply bounded near µ−1 (∞) then Theorem 4.3 applies and
allows to extend analytically Quot∗Λ to the whole Quot−1 (U ).

(2) Let us say a few words about the definition of analytic sets of C ({z}) as in Defi-
nition 4.1 (4). If analytic sets of C ({z}) were defined solely as the vanishing loci
of analytic maps then the set of germs P

Q where, for instance, JN (P) = JN (Q) = 0
would not form an analytic set, since the natural map jN : (P,Q) 7→ (JN (P) , JN (Q))
is neither left- nor right-invariant by Quot. Yet the vanishing locus of jN is Quot-
invariant, in the sense that JN (P) = JN (Q) = 0 implies JN (uP) = JN (uQ) = 0 for
any u ∈C {z}.

(3) The map

M : C {z} × (C {z}\C)\µ−1 (∞) −→ C {z} × (C {z} \C)
(P,Q) 7−→ (P − J0 (P) ,Q − J0 (Q))

is analytic and onto, so we can equip C ({z})0 with the analytic structure induced
by

M0 := Quot ◦M .

6.2. Coprime pairs of C [[z]]2.

6.2.1. Reduction of the proof of Theorem 6.1 when k = 2.
The result is «only» an exercise in linear algebra. Assume there exists (h1,h2) ∈ C [[z]]k

such that

f1h1 = f2h2(6.2)

with ν (h1) < ν (f2) and ν (h2) < ν (f1), where ν is the valuation associated to the gradation
by homogeneous degree on C [[z]]. We say in that case, for short, that the collection
(f1, f2) is composite. It follows that I is the set of all composite collections; notice in
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particular that if ν (hℓ) < ν (f3−ℓ) for some ℓ ∈ {1,2} then the relation equally holds for the
other one. We set

ν := min(ν (f1) ,ν (f2)) > 0,(6.3)

and write fℓ =:
∑

n∈Nm fℓ,nz
n with fℓ,n := 0 for |n| < ν. We set likewise hℓ =:

∑
n∈Nm hℓ,nz

n

then express the relationship (6.2) coefficients-wise:

(∀n ∈Nm)
∑

p+q=n

(
f1,p × h1,q − f2,p × h2,q

)
= 0.(6.4)

We say that (f1, f2) is composite at rank d ∈ N if, and only if, one can find a tuple(
hℓ,q

)
|q|≤d,ℓ≤k

such that

⊛ the previous relation holds for every |n| ≤ d +1,
⊛ at least one hℓ,q is non-zero for |q| < ν.

If a collection (fℓ)ℓ is composite then it is composite at every rank d ∈N. If a collection
fails to be composite at some rank then it also does at every other bigger rank.

We work with the family of linear spaces Ed := C [z]k≤d , indexed by d ∈N. Define the
linear mapping

ϕd : Ed −→C [z]≤d+1 ∩Z
(h1,h2) 7−→Jd+1 (f1h1 − f2h2) .

Proposition 6.4. The following properties are equivalent:

(1) The family (fℓ)ℓ is composite.
(2) The family (fℓ)ℓ is composite at every rank d ≥ 0.
(3) For all d ≥ 0 we have

rank(ϕd ) ≤
(
m+ d
d

)
.

We deduce that composite collections form a proper analytic subset of C [[z]]2, ex-
pressing for all d the vanishing of every minor of size greater than

(m+d
d

)
of a given

matrix of ϕd .

6.2.2. Proof of (2)⇒(1).
Only the case f1f2 , 0 is non-trivial, for which 0 < ν < ∞ (see (6.3)). We prove that

if (f1, f2) is composite at every rank d ∈ N then there exists two formal power series
h1, h2 ∈ C [[z]] such that f1h1 = f2h2 and ν (hℓ) < ν (f3−ℓ). Consider the restriction jd :
Ed+1։ Ed of Jd , each one yielding a canonical section Ed →֒ Ed ⊕ ker jd = Ed+1. For that
identification we have

ϕd+1 |Ed = ϕd(6.5)

and ϕd+1 (ker jd ) < ker jd+1. Write κd : kerϕd+1→ kerϕd the restriction of jd . We choose
a direct system of one-to-one maps (κd : Kd+1 →֒ Kd )d∈N of complement subspaces of
kerϕd ∩ Jd (ker Jν−1) in kerϕd in the following fashion:

⊛ Kd := kerϕd if d ≤ ν − 1
⊛ define K := κ−1d (Kd ) and, observing that K ∩ kerκd = ker jd ∩ kerκd , define Kd+1

as some complement in K of K ∩kerκd .
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Fact 6.5. A collection (fℓ)ℓ is composite at some rank d if, and only if,

dimKd , 0 .

Now if (f1, f2) is composite at every rank d ∈N then the inverse limit K∞ is embeddable
as a linear subspace of finite positive dimension in C [[z]]2, solving our problem.

6.2.3. Proof of (1)⇒(3).
If f1 = f2 = 0 then (f1, f2) is composite and ϕd = 0. Assume now that, say, f1 , 0 and

ν = ν (f1). We introduce a notation regarding the number of multi-indexes whose length
satisfy some property P

CP := # {n ∈Nm : P (|n|)} .

For instance the number of multi-indexes of length less than or equal to d is

C≤d =

(
m+ d
d

)
,

which incidentally is the sought bound on rank(ϕd ) for composite collections. We ob-
serve that Ed has dimension 2C≤d , hence the

Fact 6.6. Condition (3) holds if, and only if, for all d ∈N

dimkerϕd ≥C≤d .

Because Ed ∩ker Jd+1−ν < kerκd contributes for a subspace of dimension 2Cd+2−ν≤•≤d
we are only interested in studying the dimension of a complement Ad of Ed ∩ker Jd+1−ν
in kerϕd . Notice also that

(∀d < 2(ν − 1)) 2Cd+2−ν≤•≤d =C≤d + (C≤d − 2C≤d+1−ν )
≥C≤d +C≤2(ν−1) − 2C≤ν−1
≥C≤d

so that (3) holds for all such d. In the sequel we thus assume d ≥ 2(ν − 1). As before we
choose:

⊛ two direct systems (κd : Kd+1 →֒ Kd )d∈N and (κd : Ad+1→ Ad )d∈N,
⊛ for each d, a subspace Cd < kerϕd ∩ker Jν−1 such that

Ad = κd (Ad+1)⊕Cd .(6.6)

Lemma 6.7. Assume that K∞ , 0 and d ≥ 2(ν − 1). Then

dimAd ≥C≤d−2(ν−1) .

Now we have

kerϕd ≥ 2Cd+2−ν≤•≤d +C≤d−2(ν−1) =C≤d +
d∑

j=d+2−ν

(
C=j −C=j−ν+1

)

≥C≤d

as expected.
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Proof. We begin with the trivial remark that Jd+1−ν (ZK∞)∩ ker Jν−1 < Ad ∩ ker Jν−1 then
bound from below the dimension of the leftmost space. The «worst-case scenario» cor-
responds to the support of Jν−1 (K∞) consisting in a single point n0 located on the ho-
mogeneous segment {n : |n| = ν − 1}. Yet in that case ZK∞ contains an embedding of the
ideal zn0Z so that

dim Jd+1−ν (ZK∞)∩ker Jν−1 ≥ dim Jd+1−ν (z
n0Z) =

d−2(ν−1)∑

p=1

C=j

=C≤d−2(ν−1) − 1 .
Finally

dimAd ≥
(
C≤d−2(ν−1) − 1

)
+dimKd

≥C≤d−2(ν−1) .

�

6.2.4. Proof of (3)⇒(2).
This is the most involved part of the proof. We start from the decomposition (6.6).

Because the restriction κ̂d := κd |Ad is still a projector we have Ad+1 = ker κ̂d ⊕ Im κ̂d .
Whence:

Fact 6.8. For any collection (f1, f2) and any d ∈N
Ad ⊕ ker κ̂d = Ad+1 ⊕Cd .

In particular

dimAd +dimker κ̂d = dimAd+1 +dimCd .

As before we would like to use the image Zp := Jd+p+1−ν (ZCd ) to bound from below
dimCd+p , but Zp need not be included in Cd+p :

⊛ an element h ∈ Zp might not lie in ker Jd+1−ν , and Jd+2−ν
(
ϕd+p (h)

)
has no reason

to vanish,
⊛ contrary to what happened in the previous paragraph’s lemma, we do not dis-

pose of a global object like K∞ and there is no reason why the question

0 = J d+p+2−ν (gϕd (h))
?
= ϕd+p

(
Jd+p+1−ν (gh)

)

should admit a positive answer when g ∈ Z and h ∈ Cd .
Yet both conditions can be resolved if on the one hand

p ≥ d̂ := d +1− ν
and on the other hand we replace Z by its trace Z=p on the space of homogeneous poly-
nomials of degree d.

Lemma 6.9. If dimCd > 0 then Z=pCd contains at least a vector space of dimension C=p ,
since each map

τn : Cd −→ Cd+p

h 7−→ znh

is a monomorphism whenever |n| = p.
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Proof. Take any h ∈ Cd\0 and show that hn := znh ∈ Cd+p\0. Suppose now, by contradic-

tion, that hn < Cd+p : there exists ĥn ∈ Ad+p+1 such that κd+p
(
ĥn

)
= hn. Because hn has

support inside
{
m : mj ≥ nj

}
we may require without loss of generality that ĥn also has.

Then ĥn = znĥ for some ĥ ∈ Ad+1, as indeed znϕd+1
(
ĥ
)
= ϕd+α+1

(
ĥn

)
= 0. We reach the

contradiction h = κd
(
ĥ
)
∈ Cd\0. �

Assume now that (2) does not hold: there exists d ≥ 2(ν − 1) such that dimKd+1 <
dimKd , so that dimCd > 0. Then for all p ≥ d̂

dimAd+p ≤ dimAd̂ +
p∑

j=d̂

(
dimker κ̂d+j−1 −C=j

)
.

Lemma 6.10. For every d ≥ 2(ν − 1) the following estimate holds:

dimker κ̂d ≤C=d+2−ν .

Proof. This is clear from the matrix representation of ϕd given if Section 6.3. �

Now we can write for p ≥ d̂
dimAd ≤C≤d̂+p −C≤p + c ,

where c is some term constant with respect to p. Whence

dimkerϕd+p ≤ 2Cd̂+p+1≤•≤d+p +C≤d̂+p −C≤p + c

≤C≤d+p +
(
Cd̂+p+1≤•≤d+p −C≤p + c

)
.

Because C≤p =
pm

p! +O
(
pm−1

)
and Cd̂+p+1≤•≤d+p =O

(
pm−1

)
we deduce that the parenthe-

sized, rightmost term is eventually negative.

6.3. Computations (k = 2).
The setNm ofmulti-indexes of given dimensionm comeswith the lexicographic order

≪, that is (0,2)≪ (1,0)≪ (1,1). Define the «lexicomogeneous» order � on Nm by

a � b⇐⇒


|a| < |b|
or |a| = |b| and a≪ b

so that e.g. (2,0) � (1,1) � (0,2) � (1,0) � (0,1) � (0,0). For d ∈N we form the matrix of
multi-indexes

Md :=
[
np,q

]
0≤|p|≤d , 0<|q|≤d+1

defined by the relation

np,q :=


q−p if q−p ∈Nm

0 otherwise

where p, q are ordered counter-lexicomogeneously with 0 � p � d ⊕ 0 and 0 ≺ q �
(d +1) ⊕ 0. See Table 1 below for an example. This matrix is upper (d +1) × (d +1)
block-triangular, the blocks

[
np,q

]
corresponding to constant lengths |p| and |q|. Its size
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is C≤d+1 ×C≤d . EachMd is naturally nested withinMd+1 as the right-bottom-most sub-
matrix formed by the last d blocks both vertically and horizontally, accounting for the
relation (6.5).

(1,0,0) (2,0,0) (3,0,0)
(0,1,0) (1,0,0) (1,1,0) (2,0,0) (2,1,0)
(0,0,1) (1,0,0) (1,0,1) (2,0,0) (2,0,1)

(0,1,0) (1,0,0) (0,2,0) (1,1,0) (1,2,0)
(0,0,1) (0,1,0) (1,0,0) (0,1,1) (1,0,1) (1,1,0) (1,1,1)

(0,0,1) (1,0,0) (0,0,2) (1,0,1) (1,0,2)
(0,1,0) (0,2,0) (0,3,0)
(0,0,1) (0,1,0) (0,1,1) (0,2,0) (0,2,1)

(0,0,1) (0,1,0) (0,0,2) (0,1,1) (0,1,2)
(0,0,1) (0,0,2) (0,0,3)

(1,0,0) (2,0,0)
(0,1,0) (1,0,0) (1,1,0)
(0,0,1) (1,0,0) (1,0,1)

(0,1,0) (0,2,0)
(0,0,1) (0,1,0) (0,1,1)

(0,0,1) (0,0,2)
(1,0,0)
(0,1,0)
(0,0,1)

Table 1. The matrix M2 when m = 3. Null entries are not shown. Ho-
mogeneous blocks are drawn in solid lines.

We build a matrix Md (f1, f2) fromMd , that of the mapping ϕd . It has twice as many
rows and is obtained from the latter by replacing each column

(
np,q

)
0<|q|≤d+1

with the

pair of columns whose respective entries are (−1)ℓ+1 fℓ,np,q for ℓ ∈ {1,2}.

0 -1 0 0 0 0 -1 0 0 0 1 0
0 -1 0 -1 0 0 -2 3 -1 0 2 0
0 0 0 -1 0 -1 -1 3 -2 3 1 0
0 0 0 0 0 -1 0 0 -1 3 0 0
0 0 0 0 0 0 0 -1 0 0 -1 0
0 0 0 0 0 0 0 -1 0 -1 -2 3
0 0 0 0 0 0 0 0 0 -1 -1 3
0 0 0 0 0 0 0 0 0 0 0 -1
0 0 0 0 0 0 0 0 0 0 0 -1

Table 2. ThematrixM2

(
(x− 1) (x + y)2 , (1− 3y) (x + y)

)
whenm = 2. Its

rank is 6 = ρ (2,3,2) and ν = 1.
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Remark 6.11. When m = 2 the first non-trivial case occurs for d = 2(ν − 1). The con-
dition dimkerϕd ≥

(m+d
d

)
is equivalent to the vanishing of the determinant of the ma-

trix occupying the homogeneous bloc (2ν − 1) × ν − 1. This matrix is nothing but the
Sylvester matrix (up to columns/rows permutation) of the homogeneous part of degree
ν of (f1, f2). Indeed if (f1, f2) is composite then also is its part of lowest homogeneous
degree, which can be written 1

xν (f1 (1, t) , f2 (1, t)) with t = y
x . This situation persists for

other values ofm as the Macaulay matrix of the homogeneous part of (f1, f2) is embedded
in M2(ν−1) (f1, f2). I am aware that the topic discussed here is well-known in the setting
of commutative algebra on the C-module of polynomials, but I have not been able to
locate a similar construction in the framework of formal power series.

6.4. Coprime families of C [[z]]k .
The general case is not more difficult. Proposition 6.4 holds actually for any k ≥ 2 as

we explain now.

Fact 6.12. The collection f = (fℓ)1≤ℓ≤k is composite if, and only if, there exists (h1, . . . ,hk ) ∈
C [[z]]k such that fℓhℓ does not depend on ℓ and for every 1 ≤ ℓ ≤ k

ν (hℓ) < εℓ (f ) :=
∑

j,ℓ

ν
(
fj
)
− ν




∏k
j=1 fj

gcd(f )k−1 lcm(f )


 .

Notice that when k = 2 the right-hand side equals ν (f3−ℓ) as before.

The result follows from the study of the linear maps

ϕ̂d : Ed −→ C [[z]]
×(k2)
≤d+1

(h1, . . . ,hk ) 7−→
(
Jd+1

(
fphp − fqhq

))
1≤p<q≤k

and the property of being composite is expressed in terms of the dimension of K̂d :=
kerϕ̂d/kerJε where the extra parameter

ε := min
ℓ
εℓ (f )

may in general not be equal to ν =minℓ ν (fℓ). This in turn is equivalent to dimker ϕ̂d ≥
(k − 1)(m+d

d

)
, as can be recovered from repeating the arguments developed in the case

k = 2.

7. Application to differential equations

In this section every space of germs is given the factorial topology (Definition 2.20).
In particular C {z} becomes a metric space.

7.1. Analyticity of the flow of a vector field: proof of Theorem C.

Theorem 7.1. Fix m ∈ N and consider the space VF of germs at 0 ∈ Cm of a holomorphic
vector field, identified with C {z}m. For X ∈ VF we name ΦX the flow of X, that is the unique
germ of a holomorphic mapping near (0,0)

ΦX : Cm ×C −→ Cm

(p, t) 7−→ Φt
X (p)
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that is solution of the differential system

ż (p, t) = X (z (p, t))

z (p,0) = p .

Then the «flow mapping»

VF −→ C {z, t}m

X 7−→ ΦX ,

where the target space is also given the factorial topology (see Remark 2.21), is strongly ana-
lytic.

I believe this theorem should hold for every useful topology. Yet the proof of this
result is simplified by the fact that we know the norms of differentiation operators in
the factorial topology.

Proof. Let χ ∈ O ((Cq,0)→ VF) as in Definition 3.18; for the sake of keeping notations
unobtrusive we write χx instead of χ (x). From the differential system ż = χx (z) we
build a new differential system incorporating the extra parameter x ∈ (Cq ,0) in the new
variable w = z⊕ x


ẇ (p,x, t) = χx (z)

w (p,x,0) = (p,x)
.

By assumption on χ the vector field (z,x) 7→ χx (z) is holomorphic on a neighborhood
of 0 ⊕ 0. Therefore the Cauchy-Lipschitz theorem applies to this system and yields a
flow which is a germ of a holomorphic mapping with respect to (p,x, t). In particular
χ∗Φ• : x 7→ Φχx belongs to O ((Cq,0)→ C {z, t}) and the flow mapping is quasi-strongly
analytic in the sense of Definition 3.18.

To complete the proof that the flow is strongly analytic on VF we need to establish
that χ∗Φ• is amply bounded for the factorial topology. In fact we show that Φ• is amply
bounded on the whole VF, so that Theorem 4.3 will automatically apply. This can be
achieved using Lie’s formula for the flow:

Φt
X (p) =



∞∑

k=0

tk

k!
X ·k Id


(p)

with uniform convergence, as a power series in (p, t), on a neighborhood of 0×0. The iter-
ated Lie derivatives are given for germs of functions by X ·0 f = f and X·k+1 := X ·

(
X ·k f

)
,

and then extended to vectors of functions by acting component-wise. The factorial topol-
ogy on C {z, t} is induced by a (•) = a (•)⊕ (k!−•)k∈N while a (•) induces the factorial topol-
ogy on VF. We thus have for α > 0

∣∣∣
∣∣∣ΦX

∣∣∣
∣∣∣
a(α)

=
∞∑

k=0

1

(k!)α+1
∣∣∣
∣∣∣X ·k Id

∣∣∣
∣∣∣
a(α)

and want to show that this quantity is uniformly bounded when X lies in some a (β)-ball
for α > β > 0. In all the following the letter C denotes a positive number depending only
on α and β, whose exact value does not matter much and may vary from place to place.
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Let us show the claim when m = 1, the general case being not very more difficult but
hampered with cumbersome notations. We write

X (z) := ξ (z)
∂

∂z
.

It is easy to check that X ·k z is of the form, for k > 0,

X ·k z = ξ ∂
∂z

(
ξ
∂

∂z
(· · ·ξ)

)

= ξ
∑

j∈Jk

∏

ℓ

(
∂jℓξ

∂zjℓ

)

with Jk a finite set of multi-indexes j ∈ Nk−1 of length
∣∣∣j
∣∣∣ = k − 1. Proposition 2.25 (3)

taken into account we can write∣∣∣∣∣∣

∣∣∣∣∣∣

(
∂jℓξ

∂zjℓ

)∣∣∣∣∣∣

∣∣∣∣∣∣
a(α)

≤ C exp
(
σ (α − β) jβ+1/α+1ℓ − (β +1) jℓ

)
σ(α+1)jℓ j

(β+1)jℓ
ℓ ||ξ ||a(β)

for some positive σ. We use Lemma 2.26, more specifically the relation
∣∣∣j
∣∣∣! ≥ j!, and

relation (2.7) to derive (with the convention 00 = 1)

∣∣∣
∣∣∣ΦX

∣∣∣
∣∣∣
a(α)
≤
∞∑

k=0

(
C ||ξ ||a(β)

)k ∑

|j|=k−1



∏

ℓ

j
jℓ
ℓ




β−α

.

Define

En,k :=
∑

j∈Nk , |j|=n

∏

ℓ

j
(β−α)jℓ
ℓ ,

the nth Taylor coefficient of ϕk , where ϕ is the entire function

ϕ : z ∈ C 7−→
∑

n≥0
znn(β−α)n .

For any ρ > 0 Cauchy’s formula yields

ρnEn,k ≤ ϕ (ρ)k

Ek−1,k−1 ≤
(
ϕ (ρ)
ρ

)k−1
.

Consequently

∣∣∣
∣∣∣ΦX

∣∣∣
∣∣∣
a(α)
≤
∞∑

k=0

(
C ||ξ ||a(β)

)k
,

with convergence of the right-hand side if ||ξ ||a(β) is small enough.
We have just proved that the flow is amply bounded near the null vector field. Let

us show now that this property implies that of the flow being amply bounded near any
point of VF. Since for any λ ∈C

Φ•λX = Φλ•
X
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we can rescale any given vector field X so that λX belongs to a convenient neighborhood
of the null vector field. Since the composition λ∗ : Φ•X 7→ Φλ•

X is continuous (Proposi-
tion 2.25) we derive the sought property of ample boundedness near X. �

7.2. Solvability of first-order, ordinary differential equations: proof of Corollary C.
In this section we consider a germ, defined near (0,0) ∈ C2, of an ordinary differential

equation

y′ = f (x,y)(♦)

where f ∈C ({x,y}) is a germ of a meromorphic function. We refer to Remark 6.3 for the
description of the analytic structure we put on C ({x,y}).

The geometric object underlying this equation is the foliation it defines: local solu-
tions of (♦) define the local leaves of the foliation. If (P,Q) is a proper representative of
f the singular locus of the germ of a foliation is P−1 (0)∩Q−1 (0) and consists of at most
the origin. As was discussed in the introduction we are only concerned with singular
germs of foliations whose first jet vanishes at (0,0), that is

⊛ f is purely meromorphic (i.e. P (0,0) =Q (0,0) = 0), see Definition 6.2,
⊛ the matrix

L (P,Q) :=




∂P
∂x

(0,0) ∂P
∂y

(0,0)
∂Q
∂x

(0,0) ∂Q
∂y

(0,0)




is zero. In particular it is non-reduced in the sense that L (P,Q) is nilpotent.

Notice that these conditions do not depend on the choice of a proper representative of f .
In particular the set ZLP (for Zero Linear Part) of those foliations can be identified with
the analytic subset C ({x,y})1 of C ({x,y})0 defined by the vanishing locus of

P

Q
∈C ({x,y}) 7−→ (J1 (P) , J1 (Q)) ∈C [x,y]2 ,

which is the range of the analytic mapping

M1 : (P,Q) ∈C {x,y} × (C {x,y}\ {0})\µ−1 (∞) 7−→ P − J1 (P)
Q − J1 (Q)

∈C ({x,y})1 ,

and we equip from now ZLP with the analytic structure induced by this map (Defini-
tion 3.5).

The usual process when one is faced with such a singularity is to study a foliated com-
plex surface obtained by pulling-back the germ of a foliation by the standard blow-up
of the origin. This foliation has «simpler» singularities, and the repetition of the process
at any successive singular point eventually stops at the stage where every singular point
is reduced [Sei68]. We are interested in those foliations for which the reduction proce-
dure stops after the first step. Let us describe this process in more details. The complex
manifoldM obtained by blowing-up the origin of C2 is defined by the gluing of

Mx :=
{
(x,u) ∈C2

}

My :=
{
(v,y) ∈C2

}



ANALYTICITY IN SPACES OF CONVERGENT POWER SERIES AND APPLICATIONS† 58

through the map

Mx\{u = 0} −→My\{v = 0}

(x,u) 7−→
(1
u
,xu

)
.

The blow-up morphism π is therefore given in these charts by

πx : Mx −→C2

(x,u) 7−→ (x,xu)

and

πy : My −→ C2

(v,y) 7−→ (vy,y) .

The exceptional divisor E ofM is the projective line π−1 (0) of self-intersection −1, and
M\E is biholomorphic toC2\{0}. The pulled-back foliation F is well-defined on a neigh-
borhood of E inM, which we still callM for the sake of simplicity. F is said dicritic if E
is not a leaf, otherwise F only admits a finite number of singularities on E . A finite set
of algebraic conditions in the second jet of P and Q can be included to ensure that F is
reduced and non-dicritic:

Proposition 7.2. The set RND (for Reduced Non-Dicritic) of non-dicritic foliations reduced
after one blow-up is Zariski-full and open in ZLP. Besides the following conditions describe a
Zariski-full open set RND∗ ⊂ RND:

⊛ F admits exactly three distinct singular points on E and ξ∗ := (0,0) ∈ Mx is not
among them,

⊛ the linear part of the foliation at every singular point admits two non-zero eigenval-
ues.

We postpone the proof of this property till Subsection 7.2.1 below. Since F is trans-
verse, outside E and maybe three regular analytic curves19, to the fibers of the natural
projection σ : (x,u) ∈ Mx 7→ u, we can build the holonomy group Hol(f ) of F based at
ξ∗, which is canonically identified with a subgroup of Diff (C,0) spanned by two gener-
ators h1 and h2. Simply identifying the group 〈h1,h2〉 with the pair (h1,h2) ∈ Diff (C,0)2

will not do, since one can follow a loop in RND∗ in order to exchange h1 and h2. This
difficulty is overcome by considering the quotient Diff(C ,0)2/S2 of the pairs (a,b) modulo
the action of the 2-symmetric group

(a,b) 7−→ (b,a) .

This quotient space is endowed with the induced analytic structure.

Theorem 7.3. The map

Hol(•) : RND∗ −→ Diff(C ,0)2/S2

f 7−→ {h1,h2}

is strongly analytic. Its image contains the open set
{
h′1 (0) < exp(iR) or h′2 (0) < exp(iR)

}
.

19They correspond to the local separatrices near singular points on E .



ANALYTICITY IN SPACES OF CONVERGENT POWER SERIES AND APPLICATIONS† 59

Remark 7.4. The map Hol(•) is not onto according to a result by Y. Il’Yashenko [Il’97],
which states that every group 〈h1,h2〉 generated by non-linearizable, small-divisors-
impaired diffeomorphisms (such that h1 ◦ h2 is equally not linearizable) cannot be re-
alized as the projective holonomy of any germ of a foliation at the origin of C2. The
range of Hol(•) however contains a non-empty open set, so we say for short that it is
quasi-onto.

The proof of the theorem splits into three parts:

⊛ first we recall how the «projective» holonomy group of F is built in Subsec-
tion 7.2.2,

⊛ we then study in Subsection 7.2.3 the local strong analyticity of the holonomy
mapping with respect to P

Q by restricting ourselves to a small neighborhood V ⊂
RND∗ of some P0

Q0 ,
⊛ we perform next in Subsection 7.2.4 its analytic continuation to obtain a globally

strongly analytic, quasi-onto map on RND∗.

This theorem is the key to Theorem D: for RND foliations the differential equation (♦) is
solvable by quadratures (in the sense of Liouville) only if its image by Hol(•) is solvable.
It is indeed classical that a «solution» lying in a Liouvillian extension of the differential
field C ({x,y}) must have a solvable monodromy, property which translates into a solv-
able projective holonomy. Using Corollary A we then deduce that the former condition
defines a proper analytic set of RND (since the image of Hol(•) contains a non-empty open
set) whose complement is a Zariski-full open set of ZLP and consists only of non-solvable
equations.

7.2.1. Proof of Proposition 7.2.
Let f ∈ ZLP be given and fix a proper representative (P,Q) of f ; for the sake of clarity

we write P (x,y) :=
∑
p+q>1 Pp,qx

pyq and Q (x,y) :=
∑
p+q>1Qp,qx

pyq . To compute the pull-
back F of the foliation defined by (♦) we consider the vector field

XF (x,y) :=Q (x,y)
∂

∂x
+P (x,y)

∂

∂y

whose integral curve t ∈ (C,0) 7→ Φt
X (x,y) coincides with the local leaf of F passing

through (x,y). Its pull-back by e.g. πx is given by

π∗xXF = xQ (x,xu)
∂

∂x
+ (P (x,xu)− uQ (x,xu))

∂

∂u

whose components belong to C {x,u}. The affine trace {x = 0} of E on Mx is a line of
singularities for π∗xXF , since both of its components belong to the ideal I

(
x2

)
< C {x,u}

spanned by x2. We indeed have

xQ (x,xu) = x3
(
Q0,2u

2 +Q1,1u +Q2,0

)
+O

(
x4

)

uQ (x,xu)−P (x,xu) = x2
(
Q0,2u

3 +
(
Q1,1 −P0,2

)
u2 +

(
Q2,0 −P1,1

)
u −P2,0

)
+O

(
x3

)
.

If F is dicritic then

uQ (x,xu)−P (x,xu) ∈ I
(
x3

)
.
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If we require that

Q0,2 = 0(7.1)

does not hold then we ensure that the foliation is non-dicritic. Notice that F is given in
the chartMx by the holomorphic vector field with isolated singularities

X :=
1
x2
π∗XF .(7.2)

This vector field admits three singularities (counted with multiplicity) on E whose affine
coordinates are given by the roots of the polynomial

φ (u) :=−Q0,2u
3 +

(
P0,2 −Q1,1

)
u2 +

(
P1,1 −Q2,0

)
u +P2,0 .(7.3)

The discriminant of φ is a polynomial in the variables (Pn,Qn)|n|=2: requiring that it
vanishes describes the analytic set defined by

Q0,2

(
27P0,2Q0,2 − 4

(
Q2,0 −P1,1

)3 − 18(Q1,1 −P0,2
)(
Q2,0 −P1,1

)
P2,0

)

+
(
Q1,1 −P0,2

)2 ((Q2,0 −P1,1
)2 +4

(
Q1,1 −P0,2

)
P2,0

)
= 0 .(7.4)

Under the condition that this quantity does not vanish we particularly derive that the
linearized part of F at any singular point of E ∩Mx, the matrix

[
Q0,2u

2 +Q1,1u +Q2,0 ⋆
0 φ′ (u)

]
,

cannot be nilpotent. The condition Q0,2 , 0 also ensures that F has no singularity at
(0,∞) = E\Mx, and the foliation is reduced. As announced above, if we assume that

P2,0 = 0(7.5)

is not fulfilled then 0 is never a root of φ.
The union of the analytic sets defined by each one of the three conditions 7.1, 7.4

and 7.5 forms a proper analytic subset Ω of {(P,Q) : J1 (P) = J1 (Q) = 0}. Since any other
proper representative of P

Q defines the same foliation on a (maybe smaller) neighbor-
hood of E , in particular the roots (and their multiplicity) of the polynomial φ remain
unchanged. Therefore Ω corresponds to a proper analytic set of ZLP, whose comple-
ment RND∗ is Zariski-full.

7.2.2. Building the holonomy.
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u0

u1

0Σ
1Σ

u2

h γ (p)

uN

x

E

u

γ

p

Figure 7.1. Computing the holonomy by composing local flows.

Choose a vector field X = a ∂
∂x

+ b ∂
∂u

holomorphic on a neighborhood of E and a path
γ : [0,1]→ E\Sing(X) of base-point ξ∗ = (0,u0), such that X is tangent to E . We require
that X be transverse to the lines {u = cst} outside its singular locus and define

X̂ :=
a

b

∂

∂x
+
∂

∂u
,

whose restriction to E is holomorphic outside Sing(X). It defines the same foliation as
X. The image of γ does not meet any singularity of X therefore at each point γ (s) there
exists a polydisc Σs ×Ds on which the mapping

hs : (x,u) 7−→ Φu
X̂
(x,u (s)) = (ηs (x,u) ,u + u (s))(7.6)

is holomorphic. From the open cover (Σs ×Ds)s∈[0,1] of the image of γ we can extract a
finite sub-cover corresponding to discs centered at points γ (sℓ) for 0 ≤ ℓ ≤N with

⊛ s0 = 0 and sN = 1,
⊛ sℓ+1 > sℓ,
⊛ γ (sℓ+1) ∈ {0} ×Dsℓ .

We say that the collection of times (sℓ)0≤ℓ≤N is adapted to (X,γ), and write

γ (sℓ) = (0,uℓ) .

Since each hs is holomorphic there exists ε > 0 such that the mapping

hγ : Σ0 × {u0} −→ Σ1 × {uN }
p = (x,u0) 7−→ hγ (p) := hsN−1

(
hsN−2 (· · ·h0 (x,u1 − u0) · · · ) ,uN − uN−1

)

is a well-defined mapping. We call this germ of a function the holonomy of X (or of
the underlying foliation) along γ with respect to the projection (x,u) 7→ u. Although
hγ should depend on the particular choice of an adapted collection this is not so, as is
asserted in the well-known folk theorem:
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Theorem 7.5. (Holonomy theorem) Let a vector field X be holomorphic on a neighborhood
of E , transverse to the fibers of the projection (x,u) 7→ u outside the singular locus. For every
path γ of E\Sing(X) the following properties hold:

(1) the holonomy hγ of X along γ depends only on the homotopy class of γ in E\Sing(X),
(2) hγ is a germ of a biholomorphism of Σ := Σ0 × {u0} and hγ (0,u0) = (0,uN ),
(3) if ξ∗ is a given base-point in E\Sing(X) the mapping

h• : π1 (E\Sing(X) ,ξ∗) −→Diff (Σ,ξ∗) ≃Diff (C,0)

γ 7−→ hγ

is a group morphism. Its image is the holonomy group of X (or better, of the induced
foliation).

7.2.3. Local study.

γ
2

γ
1

p
2

p
0

p
1

0

Figure 7.2. Generators of the fundamental group of P1 (C)\{p0,p1,p2}.

We continue to work in the affine coordinates (x,u) through the chart πx and we fix
the base-point ζ∗ whose coordinates inMx is (0,0). For

P
Q ∈ RND∗ we fix a proper repre-

sentative (P,Q) and consider the holomorphic vector field X defined in (7.2) by

X (x,u) :=
Q (x,xu)

x

∂

∂x
+
P (x,xu) − uQ (x,xu)

x2
∂

∂u
.

Its integral curves define the foliation F . The (isolated) singular set Sing(X) of X co-
incides with that of F , and because X (0,u) = φ (u) ∂

∂u
the singularities located on E are

given by the three simple roots of the polynomial φ defined by (7.3). It is obvious that
the map

(P,Q) ∈Quot−1 (RND∗) 7−→ X ∈ VF
is strongly analytic, and from now on we only work with vector fields X instead of foli-
ations F .

In the sequel the superscript «0» refers to objects computed from a fixed proper
representative

(
P0,Q0

)
of a meromorphic germ belonging to RND∗. We also fix a par-

ticular set of generators γ1, γ2 of the fundamental group π1

(
E\Sing

(
X0

)
,ζ∗

)
, where
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Sing
(
X0

)
=

{
p00,p

0
1 ,p

0
2

}
is the singular locus of X0. For instance one can choose two sim-

ple loops, each turning once around the singular point p0j . Because RND
∗ does not cross

the vanishing locus of the discriminant (7.4) there exists a biholomorphic map in the
variables (Pn)|n|=2 and (Qn)|n|=2, well-defined in a neighborhood of

(
P0
n ,Q

0
n

)
|n|=2

, whose

range is the collection of roots of φ. It is in particular possible to find a neighborhood
U ′ of

(
P0
n ,Q

0
n

)
|n|=2
∈ C6 so that the roots of φ does not cross the images of γ1 and γ2 for

values of the second jet of (P,Q) in U ′. Let V ′ := J−12 (U ′) be the corresponding neighbor-
hood of

(
P0,Q0

)
.

Take (P,Q) ∈ V ′; by construction γ1 and γ2 generates π1 (E\Sing(F ) ,ζ∗). Therefore
the holonomy group of F is spanned by h1 := hγ1 and h2 := hγ2 . In the neighborhood V ′

of
(
P0,Q0

)
it is possible to keep track of the pair (h1,h2), with ordering, since the paths

γ1 and γ2 do not vary. The mapping

(P,Q) ∈ V ′ 7−→ (h1,h2) ∈Diff (C,0)2

is thereby well-defined. Let us show it is strongly analytic on a maybe smaller V ⊂ V ′ .
The way the holonomy is constructed guarantees that it is Quot-invariant, meaning that
the map P

Q ∈Quot(V ′) 7→ (h1,h2) also is well-defined and strongly analytic.

Lemma 7.6. Let γ be a loop of E\Sing
(
X0

)
with base-point ξ∗ and consider a sequence

(sℓ)0≤ℓ≤N adapted to
(
X0,γ

)
. There exists a neighborhood V ⊂ V ′ of

(
P0,Q0

)
such that the

sequence (sℓ)0≤ℓ≤N continues to be adapted to (X,γ).

Before we prove this lemma we describe briefly how to derive Theorem 7.3 from it.
Consider a neighborhood V ⊂ V ′ of

(
P0,Q0

)
such that γ1 and γ2 both admit an adapted

covering uniform with respect to (P,Q) ∈ V . Each holonomy generator h1 and h2 is
obtained by composing N local flows, and because N does not depend on (P,Q) this
composition is strongly analytic with respect to (P,Q) whenever each flow is. But the
former statement precisely is the content of Theorem (7.1), which ends our proof.

Proof. Since this property is local, and because there is only finitely many times (sk)0≤k<N ,
we prove it only for the first point u0 = 0. We can request without loss of generality that
η > |u1| be chosen so small that

sup
|u|=η

∣∣∣φ (u)−φ (0)
∣∣∣ < 1

4

∣∣∣φ (0)
∣∣∣ ,

with a suitable, fixed choice of a thinner adapted covering of the image of γ . Since φ
depends only on the second jet of (P,Q) we can find a neighborhood V ⊂ V ′ such that
the above estimate holds for fixed η and all (P,Q) ∈ V .

For (P,Q) ∈ V let us introduce

X̂ (x,u) := ξ (x,xu)x
∂

∂x
+
∂

∂u

ξ (x,u) :=
Q (x,xu)

P (x,xu)− uQ (x,xu)
=

Q (x,xu)
φ (u) + x (f (x,xu) + ug (x,xu))

.

Because of the form of the arguments in the functions making ξ up, we can always find
ε > 0 sufficiently small so that ξ is holomorphic on εD× ηD, in particular because there
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exists ε > 0 such that for all |x| < ε and all |u| ≤ η we have
∣∣∣φ (u)−φ (0) + x (f (x,xu) + ug (x,xu))

∣∣∣ < 1
2

∣∣∣φ (0)
∣∣∣ .

Let us define

C := ||ξ ||εD×η0D .

We need to prove that the parameterization of the integral curves of X̂ by the flow, start-
ing from points of {u = 0 , |x| < ε}, is holomorphic on a domain which contains the disc
ηD for a maybe smaller ε > 0. Let t 7→ z (t,x,u) be the x-component of the flow Φt

X̂
(x,0),

i.e. the solution of

ż (t) = z (t)ξ (z (t) , tz (t))
z (0) = x

.

Setting t := eiθτ with τ, θ ∈ R≥0 and differentiating |z|2 = zz with respect to τ brings the
equation

d |z (t)|2
dτ

= 2 |z (t)|2ℜ
(
eiθξ (z (t) , tz (t))

)
,

therefore

|z (t)| ≤ |x|exp(C |t|) .

In particular the integral curve t 7→ Φt
X̂
(x,0) does not escape the polydisc εD× ηD pro-

vided |x| < εexp(−ηC) and |t| < η, which means that the local holonomy h0 defined
in (7.6) is holomorphic on Σ0 ×D0 where Σ0 := εexp(−ηC)D and D0 := ηD. Since η
depends only on V and not on a particular choice of (P,Q) ∈ V the result is proved. �

7.2.4. Hol(•) is globally analytic and quasi-onto.
The local strong-analyticity we just established implies that Hol(•) is a well-defined

strongly analytic map on the universal covering C : �RND∗ → RND∗. We perform the ana-
lytic continuation of Hol(•) by deforming continuously the loops γ1 and γ2 so that no
singular point ever crosses the image of any loop. The fiber of C thereby corresponds
to foliations with same singular points on the exceptional divisor but with generators
of the holonomy group that may not appear in the same order. Yet the group generated
is the same, so the mapping Hol(•) is well-defined as a map from RND∗ to the orbifold
quotient Diff(C ,0)2/S2.

To show the holonomy map is quasi-onto we use a result by A. Lins-Neto:

Theorem 7.7. [Lin87] Any finitely-generated subgroup 〈h1, · · · ,hn〉 of Diff (C,0) such that
©n
k=1hk = Id and at least one generator is analytically linearizable, can be obtained as the

projective holonomy group computed along the exceptional divisor of a foliation reduced after
one blow-up.

The construction, based on Grauert’s theorem, also ensures that the foliation realizing
a given subgroup 〈h1,h2〉 belongs to RND∗. Besides it is well known that if 1

2iπ logh
′
1 (0) or

1
2iπ logh′2 (0) is not real then h1 or h2 is hyperbolic and therefore linearizable.
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