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Linear multifractional multistable motion: LePage
series representation and modulus of continuity

Hermine Biermé and Céline Lacaux

Abstract - In this paper, we obtain an upper bound of the modulus
of continuity of linear multifractional multistable random motions. Such
processes are generalizations of linear multifractional α-stable motions for
which the stability index α is also allowed to vary in time. In the case
of linear multifractional α-stable motions, we improve the recent result of
[2]. The main idea is to consider some conditionnally sub-Gaussian LePage
series representations to fit the framework of [5].

Key words and phrases : stable and multistable random fields, modulus
of continuity.
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1 Introduction

Self-similar random fields are required to model persistent phenomena in
internet traffic, hydrology, geophysics or financial markets, e.g. [1, 22]. The
fractional Brownian motion ([15, 9]) provides the most famous self-similar
model. Nevertheless, in image modeling, in finance or in biology for example,
the phenomena under study are rarely Gaussian. Then, α-stable random
processes have been proposed as an alternative to Gaussian modeling, since
they allow to model data with heavy tails, such as in internet traffic [16].
The linear fractional stable motion, which has been proposed in [21, 14], is
one of the numerous stable extensions of the fractional Brownian motion.
Let us recall how this self-similar random motion can be defined through a
stochastic integral representation. To this way, let us consider H1 ∈ (0, 1),
α1 ∈ (0, 2) and Mα1 a real-valued symmetric α1-stable random measure
with Lebesgue control measure (see [17] p.281 for details on such measures).
Then, a linear fractional stable motion is defined by

Xα1,H1(t) =

∫
R
f+(α1, H1, t, ξ)Mα1(dξ), t ∈ R (1.1)

where f+ is defined by

f+(α1, H1, t, ξ) = (t− ξ)H1−1/α1
+ − (−ξ)H1−1/α1

+ (1.2)
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with for c ∈ R,

(x)c+ =

{
xc if x > 0
0 if x ≤ 0.

Since the self-similarity property is a global property which can be too re-
strictive for applications, a multifractional generalization Xα1,h of this pro-
cess has also been introduced by [18] to model internet traffic, by replacing
H1 by a real function h with values on (0, 1). Some necessary and sufficient
conditions for the stochastic continuity of the linear multifractional stable
motion Xα1,h have been given in [18] and its Hölder sample path regularity
has been studied in [19]. The Hölder sample path properties have also been
improved in [2] by establishing upper and lower bounds for the modulus of
continuity. In the following, we will improve the upper bound, using the
results we established in [5]. Let us mention that in the case where h ≡ H1

is constant, that is when Xα1,h is a linear fractional stable motion, sample
path regularity properties have previously been studied in [17, 20, 10].

Moreover, the framework of [5] allows to study Xα1,h as well as some
multistable generalizations for which the stability index α1 is also allowed
to vary with t. Multistable processes have been defined in [7] using sums
over Poisson processes or in [6] using a Klass-Ferguson LePage series.

In this paper we consider a random field Sm defined using a Lepage series
representation of the linear fractional α1-stable motion and such that

Sm(α(t), h(t), t), t ∈ R

is a linear multifractional multistable motion. This auxiliary random field
Sm allows to study the variations due to the functions α, h and to the posi-
tion t separately. Then, to study sample path regularity of linear multistable
motions, our first step is to establish an upper bound for the modulus of
continuity of the field Sm considering a conditionnally sub-Gaussian rep-
resentation and applying [5]. The main property of sub-Gaussian random
variables, which have been introduced by [8], is that their tail distributions
decrease exponentially as the Gaussian ones. This property is one of the
main tool used in [5] to study the sample path regularity property of condi-
tionnally sub-Gaussian random series.

The paper is organized as follows. Section 2 introduces LePage series
random fields under study. An upper bound of their modulus of continuity
and a rate of convergence are stated in Section 3. Section 4 focuses on linear
multifractional multistable motions. Some technical proofs are postponed
to the appendix for reader convenience.

2 LePage series models

In order to define LePage series, let us introduce some notation.
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Hypothesis 2.1 Let (gn)n≥1, (ξn)n≥1 and (Tn)n≥1 be three independent
sequences of random variables satisfying the following conditions.

1. (gn)n≥1 is a sequence of independent identically distributed (i.i.d.)
real-valued symmetric sub-Gaussian random variables, that is such
that there exists s ∈ [0,+∞) for which

∀λ ∈ R, E(eλgn) ≤ e
s2λ2

2 . (2.3)

2. (ξn)n≥1 is a sequence of i.i.d. random variables with common law

µ(dξ) = m(ξ)dξ

equivalent to the Lebesgue measure (that is such that m(ξ) > 0 for
almost every ξ).

3. Tn is the nth arrival time of a Poisson process with intensity 1.

Let us now introduce the random field (Sm(α,H, t))(α,H,t)∈(0,2)×(0,1)×R we
study in this paper.

Proposition 2.1 (LePage series representation) Assume that Hypoth-
esis 2.1 is fulfilled and let f+ be defined by (1.2). Then, for any (α,H, t) ∈
(0, 2)× (0, 1)× R, the sequence

Sm,N (α,H, t) =
N∑
n=1

T−1/αn f+(α,H, t, ξn)m(ξn)−1/αgn, N ≥ 1 (2.4)

converges almost surely and its limit is denoted by

Sm(α,H, t) :=

+∞∑
n=1

T−1/αn f+(α,H, t, ξn)m(ξn)−1/αgn. (2.5)

Proof. Let (α,H, t) ∈ (0, 2)× (0, 1)×R. Then, since Hypothesis 2.1 holds,
the variables

Wn := f+(α,H, t, ξn)m(ξn)−1/αgn, n ≥ 1,

are i.i.d., symmetric and such that

E(|W1|α) = E(|g1|α)

∫
R
|f+(α,H, t, ξ)|α dξ < +∞,

since g1 and ξ1 are independent (see e.g. [17]). Therefore, by Theorem 5.1
of [13], the sequence (

N∑
n=1

T−1/αn Wn

)
N≥1
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converges almost surely as N → +∞, that is (Sm,N (α,H, t))N≥1 converges
almost surely. �

Let us conclude this section by some remarks.

Remark 2.1 According to Proposition 5.1 of [5], the finite dimensional
distributions of Sm do not depend on m as soon as Condition 2 of Hypoth-
esis 2.1 holds. Moreover, when studying the sample path regularity of Sm,
Proposition 5.1 of [5] allows us to change m by a more convenient function
m̃ if necessary.

Remark 2.2 When α = α1 ∈ (0, 2) is fixed, (Sm(α1, H, t))(H,t)∈(0,1)×R is
an α1-stable symmetric random field, which can also be represented as an
integral under an α1-stable random measure Mα1 with Lebesgue control
measure. More precisely, for every α1 ∈ (0, 2),

(Sm(α1, H, t))(H,t)∈(0,1)×R
fdd
= dα1(Yα1(H, t))(H,t)∈(0,1)×R (2.6)

where
fdd
= means equality of finite distributions and

Yα1(H, t) :=

∫
R
f+(α1, H, t, ξ)Mα1(dξ), (H, t) ∈ (0, 1)× R, (2.7)

for Mα1 a real-valued symmetric α1-stable random measure with Lebesgue
control measure and

dα1 := E(|g1|α1)1/α1

(∫ +∞

0

sinx

xα1
dx

)1/α1

. (2.8)

One can check Equation (2.6) following the proof of Proposition 5.1 of [5]
or Proposition 4.2 of [4], which is a consequence of Lemma 4.1 of [11].

3 Sample path properties

Several papers [20, 10, 18, 19, 2] have already investigated sample path prop-
erties of the linear fractional stable motion Xα1,H1 defined by Equation (1.1)
or of its multifractional generalization Xα1,h defined on R by

Xα1,h(t) := Yα1(h(t), t), t ∈ R (3.9)

where α1 ∈ (0, 2), Yα1 is given by (2.7) and h is a function with values in
(0, 1). In the following, we improve the upper bound of the global modulus
of continuity of Xα1,h stated in [2]. Our first step is to establish an upper
bound for the global modulus of continuity of the field Sm defined by (2.5)
on a compact set K of (0, 2)×(0, 1)×R. To obtain our upper bound, we use
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the results we established in [5] on conditionally sub-Gaussian random series.

Let us first recall (see [17] for example) that the α1-stable random process
Xα1,H1 = (Yα1(H1, t))t∈R is unbounded almost surely on each compact set
with non-empty interior when H1 < 1/α1. A similar result holds for Sm as
stated in the following proposition.

Proposition 3.1 Assume that K = [α1, α2] × [H1, H2] × [a, b] ⊂ (0, 2) ×
(0, 1)× R with 0 < α1 ≤ α2 < 2, 0 < H1 ≤ H2 < 1 and a < b.

1. If H1 < 1/α1, then the random field Sm is almost surely unbounded
on K.

2. If H1 = 1/α1, then Sm does not have almost surely continuous sample
paths on the compact set K.

Proof. By Equation (2.6)

(Sm(α1, H1, t))t∈R
fdd
= dα1(Xα1,H1(t))t∈R, (3.10)

where dα1 is defined by Equation (2.8) and Xα1,H1 is the linear fractional
stable motion given by (1.1).
Let us first assume that H1 < 1/α1. Then, since a < b, by Corollary 10.2.4
of [17], (Sm(α1, H1, t))t∈R is unbounded almost surely on the compact set
[a, b]. It follows that

sup
(α,H,t)∈K

|Sm(α,H, t)| = +∞ a.s.

since sup(α,H,t)∈K |Sm(α,H, t)| ≥ supt∈[a,b] |Sm(α1, H1, t)|.

Let us now assume that H1 = 1/α1 (which implies that α1 > 1). Then,

Xα1,H1=(Mα1([0, t))1t>0 +Mα1((t, 0])1t<0)t∈R

is a Lévy α1-stable motion and by Equation (3.10), so is the process (Sm(α1, H1, t))t∈R.
Since α1 < 2, the stable motion (Sm(α1, 1/α1, t))t∈R is not a Brownian mo-
tion and then does not have almost surely continuous sample paths (see
Exercice 2.7 p.64 of [12] for instance). This concludes the proof. �

Therefore, it remains to study the sample paths on a compact set

K = [α1, α2]× [H1, H2]× [−A,A] ⊂ (0, 2)× (0, 1)× R

such that H1 > 1/α1, which implies that α1 ∈ (1, 2) and H1 > 1/2.
The main result of this paper is the following theorem, which states an

upper bound for the modulus of continuity of Sm on K, and for some m a
rate of uniform convergence on K for the series Sm,N defined by (2.4).
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Theorem 3.1 Assume that Hypothesis 2.1 is fulfilled. Let Sm,N and Sm be
defined by (2.4) and (2.5) and let us consider the compact set

K = [α1, α2]× [H1, H2]× [−A,A] ⊂ (1, 2)× (1/2, 1)× R

with A > 0 and H1 > 1/α1.

1. As N → +∞, the series (Sm,N )N≥1 converges uniformly on K to Sm
and almost surely

sup
x,x′∈K
x 6=x′

|Sm(x)− Sm(x′)|
τ(x− x′)

√
|log (τ(x− x′))|+ 1

< +∞

with τ(z) = |α|+ |H|+ |t|H1−1/α1 for z = (α,H, t) ∈ R3.

2. For η > 0, let us consider m = mη defined by

mη(ξ) = cη|ξ|−1 (1 + | log(|ξ|)|)−1−η , (3.11)

with cη > 0 such that
∫
Rmη(ξ)dξ = 1. Then, almost surely

sup
N≥1

N ε sup
x∈K

∣∣Smη ,N (x)− Smη(x)
∣∣ < +∞

for any ε ∈ (0, 1/α2 − 1/2).

Proof. For all x = (α,H, t) ∈ (0, 2)× (0, 1)× R and all integer n ≥ 1, we
consider

Vm,n(x) := f+(α,H, t, ξn)m(ξn)−1/α, (3.12)

so that

Sm,N (x) =
N∑
n=1

T−1/αn Vm,n(x)gn and Sm(x) =
+∞∑
n=1

T−1/αn Vm,n(x)gn.

Let us also remark that for all x = (α,H, t) ∈ (0, 2)× (0, 1)× R,

E(|Vm,n(x)|α) =

∫
R
|f+(α,H, t, ξ)|αdξ < +∞.

Note that if in Equation (2.3) the sub-Gaussian parameter s of gn is less than
1, Equation (2.3) also holds for s = 1. Moreover, if s is greater than 1 we
may write Vm,n(x)gn = (sVm,n(x)) gn/s so that gn/s is sub-Gaussian with
parameter 1. Hence without loss of generality we may and will assume that
s = 1. It follows that (gn)n≥1, (Tn)n≥1 and (Vm,n)n≥1 are three independent
sequences that satisfy Assumption 4 in [5] on (0, 2) × (0, 1) × R. Then, by
Theorem 4.2 of [5], the result follows once we prove E

(
|Vm,1(x0)|2

)
< +∞
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for some x0 ∈ K and Equation (15) of [5] for p = 1, namely (in our setting)
if there exists r > 0 such that

E


 sup

x,x′∈K
0<‖x−x′‖≤r

|Vm,1(x)− Vm,1(x′)|
τ(x− x′)


2 < +∞. (3.13)

The following proposition, whose proof is postponed to the appendix, allows
to find some m satisfying such conditions.

Proposition 3.2 There exists a finite deterministic constant c3,1(K) > 0
such that a.s. for all x, x′ ∈ K = [α1, α2]× [H1, H2]× [−A,A],

|Vm,1(x)− Vm,1(x′)| ≤ c3,1(K)τ(x− x′)hm,K(ξ1),

with, for almost every ξ ∈ R,

hm,K(ξ) = max
(
m(ξ)−1/α1 ,m(ξ)−1/α2

)
(1 + |logm(ξ)|) (3.14)

×
(
1|ξ|≤e + |ξ|−1+H2−1/α2 log |ξ|1|ξ|>e

)
.

Let us first consider m = mη given by (3.11) for some η > 0. In view of
Proposition 3.2, since Vmη ,1(α,H, 0) = 0 for all (α,H, 0) ∈ K, up to use a
finite covering of K, it is enough to prove that there exists r > 0 with

E
(
hmη ,K(ξ1)

2
)
< +∞, (3.15)

for K = [α1, α2]× [H1, H2]× [−A,A] with α2 − α1 ≤ r. One has

E(hmη ,K(ξ1)
2) =

∫
R
hmη ,K(ξ)2mη(ξ)dξ

=

∫
|ξ|≤e

+

∫
|ξ|>e

:= I1 + I2.

On the one hand,

I1 =

∫
|ξ|≤e

mη(ξ) max(mη(ξ)
−2/α1 ,mη(ξ)

−2/α2)(1 + | log(mη(ξ))|)2dξ

≤ c3,2(η,K)

∫
|ξ|≤e
|ξ|−1+2/α2 (1 + | log(|ξ|)|)(1+η)(2/α1−1) (1 + | log(mη(ξ))|)2dξ,

with c3,2(η,K) a positive finite constant. It follows that I1 < +∞ since
α2 > 0. On the other hand,

I2 =

∫
|ξ|>e

mη(ξ) max(mη(ξ)
−2/α1 ,mη(ξ)

−2/α2)(1 + | log(mη(ξ))|)2|ξ|2(H2−1/α2)−2 log(|ξ|)2dξ

≤ c3,3(η,K)

∫
|ξ|>e
|ξ|2(H2+1/α1−1/α2)−3 log(|ξ|)(1+η)(2/α1−1)+2(1 + | log(mη(ξ))|)2dξ,
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with c3,3(η,K) a positive finite constant. Since α1 > 1, note that α2−α1 <
1−H2 implies that H2+1/α1−1/α2 < H2+α2−α1 < 1 and thus I2 < +∞.
Therefore choosing r ∈ (0, 1−H2), Equation (3.15) and then (3.13) hold for
m = mη. By Theorem 4.2 of [5], (Smη ,N )N≥1 and Smη satisfy 1. and 2. of
the theorem.
Since for almost every ξ ∈ R the map (α,H, t) 7→ f+(α,H, t, ξ) is continuous
on K, by Assertion 2. of Proposition 5.1 of [5], Sm satisfies Assertion 1.
whatever m is.

�

Remark 3.1 Assertion 2. in Theorem 3.1 holds for any m satisfying Equa-
tion (3.15) instead of mη.

4 Linear multifractional multistable and stable mo-
tions

From now on let us consider α : R 7→ (0, 2) and h : R 7→ (0, 1) two continuous
functions. Under Hypothesis 2.1, by Proposition 2.1, we may consider the
linear multifractional multistable motion defined on R by

S̃m(t) := Sm(α(t), h(t), t), (4.16)

with Sm given by (2.5).

4.1 Regularity and rate of convergence

We may also define S̃m,N (t) := Sm,N (α(t), h(t), t), for all N ≥ 1. The
following theorem is a direct consequence of Theorem 3.1.

Theorem 4.1 Let us consider α : R 7→ (0, 2) and h : R 7→ (0, 1) two
continuous functions and two real numbers a < b. Then let us set

α1 = min
t∈[a,b]

α(t), α2 = max
t∈[a,b]

α(t) and H1 = min
t∈[a,b]

h(t).

Assume that H1 > 1/α1 and that α and h are (H1−1/α1)-Hölder continuous
functions on [a, b].

1. Then, as N → +∞, the series
(
S̃m,N

)
N≥1

converges uniformly on

[a, b] to S̃m and almost surely

sup
t,t′∈[a,b]
t 6=t′

∣∣∣S̃m(t)− S̃m(t′)
∣∣∣

|t− t′|H1−1/α1
√
|log |t− t′||+ 1

< +∞.
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2. Moreover if m = mη is defined by (3.11) with η > 0, then, almost
surely

sup
N≥1

N ε sup
t∈[a,b]

∣∣∣S̃mη ,N (t)− S̃mη
(
t′
)∣∣∣ < +∞

for any ε ∈ (0, 1/α2 − 1/2).

Note that one can use S̃mη ,N to simulate S̃mη . The error of approximation
is then given by N ε.

4.2 Stochastic integral and series representation

Assuming that α is a constant function equal to α1, we have already seen that

S̃m
fdd
= dα1Xα1,h where Xα1,h is the linear multifractional α1-stable motion

defined by (3.9) and dα1 is given by (2.8). Using the previous theorem we
will prove the following one.

Theorem 4.2 Let α1 ∈ (0, 2) and h : R 7→ (0, 1) be a continuous function.
Let us also consider Xα1,h the linear multifractional α1-stable motion defined
by (3.9) and two real numbers a < b. If H1 := mint∈[a,b] h(t) > 1/α1 and if
h is (H1 − 1/α1)-Hölder continuous on [a, b], then there exists a continuous
modification X∗α1,h

of Xα1,h such that almost surely

sup
t,t′∈[a,b]
t6=t′

∣∣∣X∗α1,h
(t)−X∗α1,h

(t′)
∣∣∣

|t− t′|H1−1/α1
√
|log |t− t′||+ 1

< +∞.

Proof. Let α : R→ (0, 2) be the constant function equal to α1 and let S̃m

be defined by (4.16). Since S̃m
fdd
= dα1Xα1,h with dα1 6= 0 defined by (2.8),

by Theorem 4.1, we already know that a.s.

sup
t,t′∈[a,b]∩D

t 6=t′

|Xα1,h(t)−Xα1,h(t′)|
|t− t′|H1−1/α1

√
|log |t− t′||+ 1

< +∞,

where D is the dense set of dyadic real numbers. Moreover, since h is
continuous with values in (0, 1), the stochastic continuity of the linear mul-
tifractional α1-stable motion Xα1,h has been established in [19]. This implies
that there exists a modification X∗α1,h

of Xα1,h such that

sup
t,t′∈[a,b]
t 6=t′

∣∣∣X∗α1,h
(t)−X∗α1,h

(t′)
∣∣∣

|t− t′|H1−1/α1
√
|log |t− t′||+ 1

< +∞,
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see e.g. Section D.2 of [5] for the construction of X∗α1,h
. Then, the proof is

complete. �

In [2], using a wavelet series expansion, under our assumptions of Propo-
sition 3.9, the authors obtained a continuous modification X∗α1,h

satisfying
a.s. for all η > 0,

sup
t,t′∈[a,b]
t6=t′

∣∣∣X∗α1,h
(t)−X∗α1,h

(t′)
∣∣∣

|t− t′|H1−1/α1 (|log |t− t′||+ 1)2/α1+η
< +∞.

Since 1/2 < 2/α1, our result is sharper. Moreover it is quasi-optimal since,
for η > 0, one can find h such that a.s.

sup
t,t′∈[a,b]
t6=t′

∣∣∣X∗α1,h
(t)−X∗α1,h

(t′)
∣∣∣

|t− t′|H1−1/α1 (|log |t− t′||+ 1)−η
= +∞,

by Theorem 6.1 of [2]. Let us also quote that following our method based
on [5], one may obtain an upper bound for the global modulus of continuity
of linear fractional stable sheets, which is sharper than the one given in [3].

A Proof of Proposition 3.2

Let us consider K = [α1, α2] × [H1, H2] × [−A,A] ⊂ (1, 2) × (1/2, 1) × R
such that 1/α1 < H1 ≤ H2 < 1. Let us note that it is enough to prove
Proposition 3.2 for A large enough. Then, in this proof, we assume, without
loss of generality that A > e (so that log ξ > 1 for ξ > A).

For all x = (α,H, t) ∈ K, we set

β(x) = H − 1/α ∈ (0, 1)

and remark that β(x) ∈ [β1, β2] ⊂ (0, 1) with

β1 = H1 − 1/α1 and β2 = H2 − 1/α2.

Moreover, for all x = (α,H, t) ∈ K and all ξ ∈ R, let us note that

f+(α,H, t, ξ) = g(β(x), t, ξ)

with g defined on (0, 1)× R× R by

g(β, t, ξ) := (t− ξ)β+ − (−ξ)β+.

Let us now consider x = (α,H, t) ∈ K and x′ = (α′, H ′, t′) ∈ K. Then,
by (3.12),

Vm,n(x)−Vm,n
(
x′
)

=
(
g(β(x), t, ξn)m(ξn)−1/α − g

(
β(x′), t′, ξn

)
m(ξn)−1/α

′
)
.

Proposition 3.2 follows from the following lemma, which proof is given at
the end of this section.



11

Lemma A.1 Let 0 < β1 ≤ β2 < 1 and A > e.

1. There exists a finite positive constant c1(A, β1, β2) such that for all
β, β′ ∈ [β1, β2], all t, t′ ∈ [−A,A] and all ξ ∈ R,∣∣g(β, t, ξ)− g

(
β′, t′, ξ

)∣∣ ≤ c1(A, β1, β2)(∣∣t− t′∣∣β1 +
∣∣β − β′∣∣)hA,1(ξ, β2)

with
hA,1(ξ, c) = 1|ξ|≤2A + |ξ|c−1 log |ξ|1|ξ|>2A.

2. Moreover, there exists a finite positive constant c2(A, β1) such that for
all β ∈ [β1, β2] and t ∈ [−A,A],

|g(β, t, ξ)| ≤ c2(A, β1)hA,2(ξ, β2)

with
hA,2(ξ, c) = 1|ξ|≤2A + |ξ|c−1 1|ξ|>2A.

Setting for almost every ξ ∈ R{
F1(x, x

′, ξ) := |g(β(x), t, ξ)− g(β(x′), t′, ξ)|m(ξ)−1/α,

F2(x, x
′, ξ) := |g(β(x′), t′, ξ)|

∣∣∣m(ξ)−1/α −m(ξ)−1/α
′
∣∣∣,

we then have∣∣Vm,1(x)− Vm,1
(
x′
)∣∣ ≤ F1

(
x, x′, ξ1

)
+ F2

(
x, x′, ξ1

)
.

Before we apply Lemma A.1 to bound F1 and F2, let us remark that for all
ξ ∈ R,

hA,2(ξ, β2) ≤ hA,1(ξ, β2) ≤ c3(A, β2)
(
1|ξ|≤e + |ξ|β2−1 log |ξ|1|ξ|>e

)
(A.17)

with c3(A, β2) a finite positive constant, which does not depend on ξ. Then,
combining this remark with Lemma A.1, for almost every ξ ∈ R,

F1

(
x, x′, ξ

)
≤ c1(A, β1, β2)c3(A, β2)

(∣∣t− t′∣∣β1 +
∣∣β(x)− β(x′)

∣∣)hm,K(ξ)

with hm,K defined by Equation (3.14). Since α1 > 1, by definition of the
function β, it follows that for almost every ξ ∈ R,

F1

(
x, x′, ξ

)
≤ c1(A, β1, β2)c3(A, β2)τ

(
x− x′

)
hm,K(ξ),

with τ(x− x′) = |t− t′|β1 + |H −H ′|+ |α− α′|.
Moreover, applying Assertion 2 of Lemma A.1, Equation (A.17) and the
mean value theorem, for almost every ξ ∈ R,

F2

(
x, x′, ξ

)
≤ c2(A, β1)c3(A, β2)

∣∣α− α′∣∣hm,K(ξ).
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In view of the previous computations, we have: almost surely,∣∣Vm,1(x)− Vm,1
(
x′
)∣∣ ≤ c3,1(K)τ

(
x− x′

)
hm,K(ξ1)

with c3,1(K) := c3(A, β2)(c1(A, β1, β2) + c2(A, β1)). This concludes the
proof of Proposition 3.2. �

We conclude this section by the proof of Lemma A.1.
Proof. [Proof of Lemma A.1] Let 0 < β1 < β2 < 1 and A > e. Let
β, β′ ∈ [β1, β2] ⊂ (0, 1) and t, t′ ∈ [−A,A]. Let us write for all ξ ∈ R,∣∣g(β, t, ξ)− g

(
β′, t′, ξ

)∣∣ ≤ g1(β′, t, t′, ξ)+ g2
(
β, β′, t, ξ

)
with {

g1(β
′, t, t′, ξ) := |g(β′, t′, ξ)− g(β′, t, ξ)|

g2(β, β
′, t, ξ) := |g(β′, t, ξ)− g(β, t, ξ)|.

Step 1: Control of g1. Let us note that if t = t′, g1(β
′, t, t′, ξ) = 0 for all

ξ ∈ R. Then, in this step, we assume now, without loss of generality that
t < t′. This implies that

g1
(
β′, t, t′, ξ

)
=


0 if ξ ≥ t′

(t′ − ξ)β
′

if t ≤ ξ < t′∣∣∣(t− ξ)β′ − (t′ − ξ)β
′
∣∣∣ if ξ < t.

Let ξ ∈ R with |ξ| > 2A. If ξ < 0 it follows that ξ < t < t′. Since β′ > 0,
applying the mean value theorem,

g1(β
′, t, t′, ξ) ≤ β′ |t− t′|

∣∣∣c
ξ,t,t′ − ξ

∣∣∣β′−1
with c

ξ,t,t′ ∈ (t, t′) ⊂ [−A,A]. Moreover, since |ξ| > 2A∣∣∣c
ξ,t,t′ − ξ

∣∣∣ ≥ |ξ| − ∣∣∣c
ξ,t,t′

∣∣∣ ≥ |ξ| −A ≥ |ξ|/2
and then

g1
(
β′, t, t′, ξ

)
≤ 21−β

′ ∣∣t− t′∣∣ |ξ|β′−1
since β′ ∈ (0, 1). Therefore, for |ξ| > 2A,

g1
(
β′, t, t′, ξ

)
≤ 4A

∣∣t− t′∣∣β1 |ξ|β2−1 (A.18)

since |t− t′| ≤ 2A, β′ ∈ [β1, β2] ⊂ (0, 1) and 2A > 1.

Now let ξ ∈ R with |ξ| ≤ 2A. Since 0 < β′ < 1, we have∣∣∣aβ′ − bβ′∣∣∣ ≤ |a− b|β′
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for all a, b ≥ 0. By definition of g, it follows that

g1
(
β′, t, t′, ξ

)
≤
∣∣∣(t′ − ξ)+ − (t− ξ)+

∣∣∣β′ ≤ ∣∣t′ − t∣∣β′ ≤ 2A
∣∣t′ − t∣∣β1

since −A ≤ t < t′ ≤ A, 0 < β1 ≤ β′ < 1 and A > 1. From this last
inequality and Equation (A.18), we deduce that for all ξ ∈ R,

g1
(
β′, t, t′, ξ

)
≤ 4A

∣∣t− t′∣∣β1hA,2(ξ, β2) (A.19)

with hA,2(ξ, β2) = 1|ξ|≤2A + |ξ|β2−11|ξ|>2A.

Step 2: Control of g2. Let us recall that for all ξ ∈ R,

g2
(
β, β′, t, ξ

)
=
∣∣∣(t− ξ)β′+ − (t− ξ)β+ + (−ξ)β+ − (−ξ)β

′

+

∣∣∣.
Then, applying the mean value theorem, for all ξ ∈ R,

g2
(
β, β′, t, ξ

)
≤
∣∣β − β′∣∣ sup

β1≤c≤β2

∣∣(t− ξ)c+ log(t− ξ)+ − (−ξ)c+ log(−ξ)+
∣∣

where for c > 0,

(x)c+ log(x)+ =

{
xc log x if x > 0
0 if x ≤ 0.

Let us first consider ξ ∈ [−2A, 2A]. Then, (−ξ)+ ∈ [0, 2A] and (t− ξ)+ ∈
[0, 3A] since t ∈ [−A,A]. Therefore,

g2
(
β, β′, t, ξ

)
≤ c̃1(A, β1, β2)

∣∣β − β′∣∣ (A.20)

with

c̃1(A, β1, β2) = 2 max
β1≤c≤β2

max
0<u≤3A

uc|log u| = 2 max

(
1

eβ1
, (3A)β2 log(3A)

)
< +∞.

Let us now assume that ξ < −2A. Then, ξ < t and

g2
(
β, β′, t, ξ

)
≤
∣∣β − β′∣∣ sup

β1≤c≤β2
|(t− ξ)c log(t− ξ)− (−ξ)c log(−ξ)|

with t − ξ > 0 and −ξ > 0. Let us remark that −ξ ∈ (−ξ/2,−3ξ/2) since
−ξ > 0 and that

−ξ/2 < −A− ξ ≤ t− ξ ≤ A− ξ < −3ξ/2

since t ∈ [−A,A] and ξ < −2A. Then, for each c ∈ [β1, β2] ⊂ (0, 1), by the
mean value theorem,

|(t− ξ)c log(t− ξ)− (−ξ)c log(−ξ)| ≤ |ut,ξ,c|c−1(c|log ut,ξ,c|+ 1)
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with ut,ξ,c ∈ (−ξ/2,−3ξ/2). Since ut,ξ,c ∈ (−ξ/2,−3ξ/2) and −ξ/2 > A > e,
we get

|(t− ξ)c log(t− ξ)− (−ξ)c log(−ξ)| ≤ 4|ξ|β2−1 log |ξ|

for all c ∈ [β1, β2] ⊂ (0, 1). Hence, for ξ < −2A,

g2
(
β, β′, t, ξ

)
≤ 4
∣∣β − β′∣∣|ξ|β2−1 log |ξ|.

Note that this last inequality still holds for ξ > 2A since in this case,
g2(β, β

′, t, ξ) = 0.
Then, we have proved that for all ξ ∈ R,

g2
(
β, β′, t, ξ

)
≤ c̃2(A, β1, β2)

∣∣β − β′∣∣hA,1(ξ, β2) (A.21)

with c̃2(A, β1, β2) = max (c̃1(A, β1, β2), 4) and

hA,1(ξ, β2) = 1|ξ|≤2A + |ξ|β2−1 log |ξ|1|ξ|>2A.

Step 3: Proof of Assertion 1. It follows from Equations (A.19) and
(A.21) choosing c1(A, β1, β2) = c̃2(A, β1, β2) + 4A ∈ (0,+∞) and using the
fact that hA,2(ξ, β2) ≤ hA,1(ξ, β2) since A > e.

Step 4: Proof of Assertion 2. Let us remark that

g
(
β′, t′, ξ

)
= g
(
β′, t′, ξ

)
− g
(
β′, 0, ξ

)
since g(β′, 0, ξ) = (−ξ)β

′

+ − (−ξ)β
′

+ = 0. Hence, applying Equation (A.19)
with t = 0 and β′ = β,∣∣g(β′, t′, ξ)∣∣ ≤ 4A

∣∣t′∣∣β1hA,2(ξ, β2) ≤ 4Aβ1+1hA,2(ξ, β2),

which concludes the proof. �
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