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Introduction

Self-similar random fields are required to model persistent phenomena in internet traffic, hydrology, geophysics or financial markets, e.g. [START_REF] Abry | Lois d'échelle, fractales et ondelettes[END_REF][START_REF] Willinger | Self-similarity and heavy tails: Structural modeling of network traffic[END_REF]. The fractional Brownian motion ( [START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF][START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF]) provides the most famous self-similar model. Nevertheless, in image modeling, in finance or in biology for example, the phenomena under study are rarely Gaussian. Then, α-stable random processes have been proposed as an alternative to Gaussian modeling, since they allow to model data with heavy tails, such as in internet traffic [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF]. The linear fractional stable motion, which has been proposed in [START_REF] Taqqu | Infinite variance self-similar processes subordinate to a Poisson measure[END_REF][START_REF] Maejima | On a class of self-similar processes[END_REF], is one of the numerous stable extensions of the fractional Brownian motion. Let us recall how this self-similar random motion can be defined through a stochastic integral representation. To this way, let us consider H 1 ∈ (0, 1), α 1 ∈ (0, 2) and M α 1 a real-valued symmetric α 1 -stable random measure with Lebesgue control measure (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling[END_REF] p.281 for details on such measures). Then, a linear fractional stable motion is defined by

X α 1 ,H 1 (t) = R f + (α 1 , H 1 , t, ξ)M α 1 (dξ), t ∈ R (1.1)
where f + is defined by

f + (α 1 , H 1 , t, ξ) = (t -ξ) H 1 -1/α 1 + -(-ξ) H 1 -1/α 1 + (1.2)
1 with for c ∈ R,

(x) c + = x c if x > 0 0 if x ≤ 0.
Since the self-similarity property is a global property which can be too restrictive for applications, a multifractional generalization X α 1 ,h of this process has also been introduced by [START_REF] Stoev | Stochastic properties of the linear multifractional stable motion[END_REF] to model internet traffic, by replacing H 1 by a real function h with values on (0, 1). Some necessary and sufficient conditions for the stochastic continuity of the linear multifractional stable motion X α 1 ,h have been given in [START_REF] Stoev | Stochastic properties of the linear multifractional stable motion[END_REF] and its Hölder sample path regularity has been studied in [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]. The Hölder sample path properties have also been improved in [START_REF] Ayache | Linear Multifractional Stable Motion: fine path properties[END_REF] by establishing upper and lower bounds for the modulus of continuity. In the following, we will improve the upper bound, using the results we established in [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF]. Let us mention that in the case where h ≡ H 1 is constant, that is when X α 1 ,h is a linear fractional stable motion, sample path regularity properties have previously been studied in [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling[END_REF][START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF]. Moreover, the framework of [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] allows to study X α 1 ,h as well as some multistable generalizations for which the stability index α 1 is also allowed to vary with t. Multistable processes have been defined in [START_REF] Falconer | Multifractional, multistable, and other processes with prescribed local form[END_REF] using sums over Poisson processes or in [START_REF] Falconer | Localizable moving average symmetric stable and multistable processes[END_REF] using a Klass-Ferguson LePage series.

In this paper we consider a random field S m defined using a Lepage series representation of the linear fractional α 1 -stable motion and such that S m (α(t), h(t), t), t ∈ R is a linear multifractional multistable motion. This auxiliary random field S m allows to study the variations due to the functions α, h and to the position t separately. Then, to study sample path regularity of linear multistable motions, our first step is to establish an upper bound for the modulus of continuity of the field S m considering a conditionnally sub-Gaussian representation and applying [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF]. The main property of sub-Gaussian random variables, which have been introduced by [START_REF] Kahane | Local properties of functions in terms of random fourier series[END_REF], is that their tail distributions decrease exponentially as the Gaussian ones. This property is one of the main tool used in [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] to study the sample path regularity property of conditionnally sub-Gaussian random series.

The paper is organized as follows. Section 2 introduces LePage series random fields under study. An upper bound of their modulus of continuity and a rate of convergence are stated in Section 3. Section 4 focuses on linear multifractional multistable motions. Some technical proofs are postponed to the appendix for reader convenience.

LePage series models

In order to define LePage series, let us introduce some notation. Hypothesis 2.1 Let (g n ) n≥1 , (ξ n ) n≥1 and (T n ) n≥1 be three independent sequences of random variables satisfying the following conditions. 

S m,N (α, H, t) = N n=1 T -1/α n f + (α, H, t, ξ n )m(ξ n ) -1/α g n , N ≥ 1 (2.4)
converges almost surely and its limit is denoted by

S m (α, H, t) := +∞ n=1 T -1/α n f + (α, H, t, ξ n )m(ξ n ) -1/α g n . (2.5) 
Proof. Let (α, H, t) ∈ (0, 2) × (0, 1) × R. Then, since Hypothesis 2.1 holds, the variables

W n := f + (α, H, t, ξ n )m(ξ n ) -1/α g n , n ≥ 1, are i.i.d.
, symmetric and such that

E(|W 1 | α ) = E(|g 1 | α ) R |f + (α, H, t, ξ)| α dξ < +∞,
since g 1 and ξ 1 are independent (see e.g. [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling[END_REF]). Therefore, by Theorem 5.1 of [START_REF] Ledoux | Probability in Banach spaces, Isoperimetry and processes[END_REF], the sequence

N n=1 T -1/α n W n N ≥1
converges almost surely as N → +∞, that is (S m,N (α, H, t)) N ≥1 converges almost surely.

Let us conclude this section by some remarks. 

Remark 2.2 When α = α 1 ∈ (0, 2) is fixed, (S m (α 1 , H, t)) (H,t)∈(0,1)
×R is an α 1 -stable symmetric random field, which can also be represented as an integral under an α 1 -stable random measure M α 1 with Lebesgue control measure. More precisely, for every α 1 ∈ (0, 2),

(S m (α 1 , H, t)) (H,t)∈(0,1)×R f dd = d α 1 (Y α 1 (H, t)) (H,t)∈(0,1)×R (2.6)
where

f dd
= means equality of finite distributions and

Y α 1 (H, t) := R f + (α 1 , H, t, ξ)M α 1 (dξ), (H, t) ∈ (0, 1) × R, (2.7) 
for M α 1 a real-valued symmetric α 1 -stable random measure with Lebesgue control measure and

d α 1 := E(|g 1 | α 1 ) 1/α 1 +∞ 0 sin x x α 1 dx 1/α 1 . (2.8)
One can check Equation (2.6) following the proof of Proposition 5.1 of [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] or Proposition 4.2 of [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF], which is a consequence of Lemma 4.1 of [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF].

Sample path properties

Several papers [START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Stoev | Stochastic properties of the linear multifractional stable motion[END_REF][START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF][START_REF] Ayache | Linear Multifractional Stable Motion: fine path properties[END_REF] have already investigated sample path properties of the linear fractional stable motion X α 1 ,H 1 defined by Equation (1.1) or of its multifractional generalization X α 1 ,h defined on R by

X α 1 ,h (t) := Y α 1 (h(t), t), t ∈ R (3.9)
where α 1 ∈ (0, 2), Y α 1 is given by (2.7) and h is a function with values in (0, 1). In the following, we improve the upper bound of the global modulus of continuity of X α 1 ,h stated in [START_REF] Ayache | Linear Multifractional Stable Motion: fine path properties[END_REF]. Our first step is to establish an upper bound for the global modulus of continuity of the field S m defined by (2.5) on a compact set K of (0, 2) × (0, 1) × R. To obtain our upper bound, we use the results we established in [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] on conditionally sub-Gaussian random series.

Let us first recall (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance, Stochastic Modeling[END_REF] for example) that the α 1 -stable random process

X α 1 ,H 1 = (Y α 1 (H 1 , t))
t∈R is unbounded almost surely on each compact set with non-empty interior when H 1 < 1/α 1 . A similar result holds for S m as stated in the following proposition. 

Proposition 3.1 Assume that K = [α 1 , α 2 ] × [H 1 , H 2 ] × [a, b] ⊂ (0, 2) × (0, 1) × R with 0 < α 1 ≤ α 2 < 2, 0 < H 1 ≤ H 2 < 1 and a < b. 1. If H 1 < 1/α 1 ,
(S m (α 1 , H 1 , t)) t∈R f dd = d α 1 (X α 1 ,H 1 (t)) t∈R , (3.10) 
where Let us now assume that H 1 = 1/α 1 (which implies that α 1 > 1). Then,

d
X α 1 ,H 1 =(M α 1 ([0, t))1 t>0 + M α 1 ((t, 0])1 t<0 ) t∈R
is a Lévy α 1 -stable motion and by Equation (3.10), so is the process (S m (α 1 , H 1 , t)) t∈R . Since α 1 < 2, the stable motion (S m (α 1 , 1/α 1 , t)) t∈R is not a Brownian motion and then does not have almost surely continuous sample paths (see Exercice 2.7 p.64 of [START_REF] Kyprianou | Introductory lectures on fluctuations of Lévy processes with applications[END_REF] for instance). This concludes the proof.

Therefore, it remains to study the sample paths on a compact set

K = [α 1 , α 2 ] × [H 1 , H 2 ] × [-A, A] ⊂ (0, 2) × (0, 1) × R such that H 1 > 1/α 1 , which implies that α 1 ∈ (1, 2) and H 1 > 1/2.
The main result of this paper is the following theorem, which states an upper bound for the modulus of continuity of S m on K, and for some m a rate of uniform convergence on K for the series S m,N defined by (2.4). Theorem 3.1 Assume that Hypothesis 2.1 is fulfilled. Let S m,N and S m be defined by (2.4) and (2.5) and let us consider the compact set

K = [α 1 , α 2 ] × [H 1 , H 2 ] × [-A, A] ⊂ (1, 2) × (1/2, 1) × R with A > 0 and H 1 > 1/α 1 .
1. As N → +∞, the series (S m,N ) N ≥1 converges uniformly on K to S m and almost surely

sup x,x ∈K x =x |S m (x) -S m (x )| τ (x -x ) |log (τ (x -x ))| + 1 < +∞ with τ (z) = |α| + |H| + |t| H 1 -1/α 1 for z = (α, H, t) ∈ R 3 .
2. For η > 0, let us consider m = m η defined by

m η (ξ) = c η |ξ| -1 (1 + | log(|ξ|)|) -1-η , (3.11 
)

with c η > 0 such that R m η (ξ)dξ = 1. Then, almost surely sup N ≥1 N ε sup x∈K S mη,N (x) -S mη (x) < +∞ for any ε ∈ (0, 1/α 2 -1/2).
Proof. For all x = (α, H, t) ∈ (0, 2) × (0, 1) × R and all integer n ≥ 1, we consider

V m,n (x) := f + (α, H, t, ξ n )m(ξ n ) -1/α , (3.12) 
so that

S m,N (x) = N n=1 T -1/α n V m,n (x)g n and S m (x) = +∞ n=1 T -1/α n V m,n (x)g n .
Let us also remark that for all x = (α, H, t) ∈ (0, 2)

× (0, 1) × R, E(|V m,n (x)| α ) = R |f + (α, H, t, ξ)| α dξ < +∞.
Note that if in Equation (2.3) the sub-Gaussian parameter s of g n is less than 1, Equation (2.3) also holds for s = 1. Moreover, if s is greater than 1 we may write V m,n (x)g n = (sV m,n (x)) g n /s so that g n /s is sub-Gaussian with parameter 1. Hence without loss of generality we may and will assume that s = 1. It follows that (g n ) n≥1 , (T n ) n≥1 and (V m,n ) n≥1 are three independent sequences that satisfy Assumption 4 in [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] on (0, 2) × (0, 1) × R. Then, by Theorem 4.2 of [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF], the result follows once we prove E |V m,1 (x 0 )| 2 < +∞ for some x 0 ∈ K and Equation ( 15) of [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] for p = 1, namely (in our setting) if there exists r > 0 such that

E       sup x,x ∈K 0< x-x ≤r |V m,1 (x) -V m,1 (x )| τ (x -x )    2    < +∞. (3.13)
The following proposition, whose proof is postponed to the appendix, allows to find some m satisfying such conditions.

Proposition 3.2 There exists a finite deterministic constant c 3,1 (K) > 0 such that a.s. for all x, x

∈ K = [α 1 , α 2 ] × [H 1 , H 2 ] × [-A, A], |V m,1 (x) -V m,1 (x )| ≤ c 3,1 (K)τ (x -x )h m,K (ξ 1 ),
with, for almost every ξ ∈ R,

h m,K (ξ) = max m(ξ) -1/α 1 , m(ξ) -1/α 2 (1 + |log m(ξ)|) (3.14) × 1 |ξ|≤e + |ξ| -1+H 2 -1/α 2 log |ξ|1 |ξ|>e .
Let us first consider m = m η given by (3.11) for some η > 0. In view of Proposition 3.2, since V mη,1 (α, H, 0) = 0 for all (α, H, 0) ∈ K, up to use a finite covering of K, it is enough to prove that there exists r > 0 with

E h mη,K (ξ 1 ) 2 < +∞, (3.15) for K = [α 1 , α 2 ] × [H 1 , H 2 ] × [-A, A] with α 2 -α 1 ≤ r. One has E(h mη,K (ξ 1 ) 2 ) = R h mη,K (ξ) 2 m η (ξ)dξ = |ξ|≤e + |ξ|>e := I 1 + I 2 .
On the one hand,

I 1 = |ξ|≤e m η (ξ) max(m η (ξ) -2/α 1 , m η (ξ) -2/α 2 )(1 + | log(m η (ξ))|) 2 dξ ≤ c 3,2 (η, K) |ξ|≤e |ξ| -1+2/α 2 (1 + | log(|ξ|)|) (1+η)(2/α 1 -1) (1 + | log(m η (ξ))|) 2 dξ,
with c 3,2 (η, K) a positive finite constant. It follows that I 1 < +∞ since α 2 > 0. On the other hand, 

I 2 = |ξ|>e m η (ξ) max(m η (ξ) -2/α 1 , m η (ξ) -2/α 2 )(1 + | log(m η (ξ))|) 2 |ξ| 2(H 2 -1/α 2 )-2 log(|ξ|) 2 dξ ≤ c 3,3 (η, K) |ξ|>e |ξ| 2(H 2 +1/α 1 -1/α 2 )-3 log(|ξ|) (1+η)(2/α 1 -1)+2 (1 + | log(m η (ξ))|) 2 dξ, with c 3,3 (η, K) a positive finite constant. Since α 1 > 1, note that α 2 -α 1 < 1-H 2 implies that H 2 +1/α 1 -1/α 2 < H 2 +α 2 -α 1 <

Linear multifractional multistable and stable motions

From now on let us consider α : R → (0, 2) and h : R → (0, 1) two continuous functions. Under Hypothesis 2.1, by Proposition 2.1, we may consider the linear multifractional multistable motion defined on R by

Sm (t) := S m (α(t), h(t), t), (4.16) 
with S m given by (2.5).

Regularity and rate of convergence

We may also define Sm,N (t) := S m,N (α(t), h(t), t), for all N ≥ 1. The following theorem is a direct consequence of Theorem 3.1.

Theorem 4.1 Let us consider α : R → (0, 2) and h : R → (0, 1) two continuous functions and two real numbers a < b. Then let us set

α 1 = min t∈[a,b] α(t), α 2 = max t∈[a,b] α(t) and H 1 = min t∈[a,b] h(t).
Assume that H 1 > 1/α 1 and that α and h are ( 

t =t Sm (t) -Sm (t ) |t -t | H 1 -1/α 1 |log |t -t || + 1 < +∞.
2. Moreover if m = m η is defined by (3.11) with η > 0, then, almost surely sup

N ≥1 N ε sup t∈[a,b] Smη,N (t) -Smη t < +∞ for any ε ∈ (0, 1/α 2 -1/2).
Note that one can use Smη,N to simulate Smη . The error of approximation is then given by N ε .

Stochastic integral and series representation

Assuming that α is a constant function equal to α 1 , we have already seen that Sm

f dd = d α 1 X α 1 ,h
where X α 1 ,h is the linear multifractional α 1 -stable motion defined by (3.9) and d α 1 is given by (2.8). Using the previous theorem we will prove the following one. Theorem 4.2 Let α 1 ∈ (0, 2) and h : R → (0, 1) be a continuous function. Let us also consider X α 1 ,h the linear multifractional α 1 -stable motion defined by (3.9) and two real numbers a < b.

If H 1 := min t∈[a,b] h(t) > 1/α 1 and if h is (H 1 -1/α 1 )-Hölder continuous on [a, b], then there exists a continuous modification X * α 1 ,h of X α 1 ,h such that almost surely sup t,t ∈[a,b] t =t X * α 1 ,h (t) -X * α 1 ,h (t ) |t -t | H 1 -1/α 1 |log |t -t || + 1 < +∞.
Proof. Let α : R → (0, 2) be the constant function equal to α 1 and let Sm be defined by (4.16). Since Sm

f dd = d α 1 X α 1 ,h with d α 1 =
0 defined by (2.8), by Theorem 4.1, we already know that a.s.

sup t,t ∈[a,b]∩D t =t |X α 1 ,h (t) -X α 1 ,h (t )| |t -t | H 1 -1/α 1 |log |t -t || + 1 < +∞,
where D is the dense set of dyadic real numbers. Moreover, since h is continuous with values in (0, 1), the stochastic continuity of the linear multifractional α 1 -stable motion X α 1 ,h has been established in [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]. This implies that there exists a modification

X * α 1 ,h of X α 1 ,h such that sup t,t ∈[a,b] t =t X * α 1 ,h (t) -X * α 1 ,h (t ) |t -t | H 1 -1/α 1 |log |t -t || + 1
< +∞, see e.g. Section D.2 of [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] for the construction of X * α 1 ,h . Then, the proof is complete.

In [START_REF] Ayache | Linear Multifractional Stable Motion: fine path properties[END_REF], using a wavelet series expansion, under our assumptions of Proposition 3.9, the authors obtained a continuous modification X * α 1 ,h satisfying a.s. for all η > 0, sup

t,t ∈[a,b] t =t X * α 1 ,h (t) -X * α 1 ,h (t ) |t -t | H 1 -1/α 1 (|log |t -t || + 1) 2/α 1 +η < +∞.
Since 1/2 < 2/α 1 , our result is sharper. Moreover it is quasi-optimal since, for η > 0, one can find h such that a.s.

sup t,t ∈[a,b] t =t X * α 1 ,h (t) -X * α 1 ,h (t ) |t -t | H 1 -1/α 1 (|log |t -t || + 1) -η = +∞,
by Theorem 6.1 of [START_REF] Ayache | Linear Multifractional Stable Motion: fine path properties[END_REF]. Let us also quote that following our method based on [START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF], one may obtain an upper bound for the global modulus of continuity of linear fractional stable sheets, which is sharper than the one given in [START_REF] Ayache | Linear fractional stable sheets: wavelet expansion and sample path properties[END_REF].

A Proof of Proposition 3.2

Let us consider K = [α 1 , α 2 ] × [H 1 , H 2 ] × [-A, A] ⊂ (1, 2) × (1/2, 1) × R such that 1/α 1 < H 1 ≤ H 2 < 1.
Let us note that it is enough to prove Proposition 3.2 for A large enough. Then, in this proof, we assume, without loss of generality that A > e (so that log ξ > 1 for ξ > A).

For all x = (α, H, t) ∈ K, we set

β(x) = H -1/α ∈ (0, 1)
and remark that β(x) ∈ [β 1 , β 2 ] ⊂ (0, 1) with

β 1 = H 1 -1/α 1 and β 2 = H 2 -1/α 2 .
Moreover, for all x = (α, H, t) ∈ K and all ξ ∈ R, let us note that

f + (α, H, t, ξ) = g(β(x), t, ξ)
with g defined on (0, 1) × R × R by g(β, t, ξ) := (t -ξ) β + -(-ξ) β + . Let us now consider x = (α, H, t) ∈ K and x = (α , H , t ) ∈ K. Then, by (3.12),

V m,n (x)-V m,n x = g(β(x), t, ξ n )m(ξ n ) -1/α -g β(x ), t , ξ n m(ξ n ) -1/α .
Proposition 3.2 follows from the following lemma, which proof is given at the end of this section.

Lemma A.1 Let 0 < β 1 ≤ β 2 < 1 and A > e.

1. There exists a finite positive constant c 1 (A, β 1 , β 2 ) such that for all β, β ∈ [β 1 , β 2 ], all t, t ∈ [-A, A] and all ξ ∈ R,

g(β, t, ξ) -g β , t , ξ ≤ c 1 (A, β 1 , β 2 ) t -t β 1 + β -β h A,1 (ξ, β 2 ) with h A,1 (ξ, c) = 1 |ξ|≤2A + |ξ| c-1 log |ξ| 1 |ξ|>2A .
2. Moreover, there exists a finite positive constant c 2 (A,

β 1 ) such that for all β ∈ [β 1 , β 2 ] and t ∈ [-A, A], |g(β, t, ξ)| ≤ c 2 (A, β 1 )h A,2 (ξ, β 2 ) with h A,2 (ξ, c) = 1 |ξ|≤2A + |ξ| c-1 1 |ξ|>2A .
Setting for almost every ξ ∈ R

F 1 (x, x , ξ) := |g(β(x), t, ξ) -g(β(x ), t , ξ)|m(ξ) -1/α , F 2 (x, x , ξ) := |g(β(x ), t , ξ)| m(ξ) -1/α -m(ξ) -1/α ,
we then have

V m,1 (x) -V m,1 x ≤ F 1 x, x , ξ 1 + F 2 x, x , ξ 1 .
Before we apply Lemma A.1 to bound F 1 and F 2 , let us remark that for all ξ ∈ R,

h A,2 (ξ, β 2 ) ≤ h A,1 (ξ, β 2 ) ≤ c 3 (A, β 2 ) 1 |ξ|≤e + |ξ| β 2 -1 log |ξ|1 |ξ|>e (A.17)
with c 3 (A, β 2 ) a finite positive constant, which does not depend on ξ. Then, combining this remark with Lemma A.1, for almost every ξ ∈ R,

F 1 x, x , ξ ≤ c 1 (A, β 1 , β 2 )c 3 (A, β 2 ) t -t β 1 + β(x) -β(x ) h m,K (ξ) 
with h m,K defined by Equation (3.14). Since α 1 > 1, by definition of the function β, it follows that for almost every ξ ∈ R,

F 1 x, x , ξ ≤ c 1 (A, β 1 , β 2 )c 3 (A, β 2 )τ x -x h m,K (ξ), with τ (x -x ) = |t -t | β 1 + |H -H | + |α -α |.
Moreover, applying Assertion 2 of Lemma A.1, Equation (A.17) and the mean value theorem, for almost every ξ ∈ R,

F 2 x, x , ξ ≤ c 2 (A, β 1 )c 3 (A, β 2 ) α -α h m,K (ξ).
In view of the previous computations, we have: almost surely,

V m,1 (x) -V m,1 x ≤ c 3,1 (K)τ x -x h m,K (ξ 1 ) with c 3,1 (K) := c 3 (A, β 2 )(c 1 (A, β 1 , β 2 ) + c 2 (A, β 1 
)). This concludes the proof of Proposition 3.2.

We conclude this section by the proof of Lemma A.1.

Proof. [Proof of Lemma

A.1] Let 0 < β 1 < β 2 < 1 and A > e. Let β, β ∈ [β 1 , β 2 ] ⊂ (0, 1) and t, t ∈ [-A, A]. Let us write for all ξ ∈ R, g(β, t, ξ) -g β , t , ξ ≤ g 1 β , t, t , ξ + g 2 β, β , t, ξ with g 1 (β , t, t , ξ) := |g(β , t , ξ) -g(β , t, ξ)| g 2 (β, β , t, ξ) := |g(β , t, ξ) -g(β, t, ξ)|.
Step 1: Control of g 1 . Let us note that if t = t , g 1 (β , t, t , ξ) = 0 for all ξ ∈ R. Then, in this step, we assume now, without loss of generality that t < t . This implies that Step 2: Control of g 2 . Let us recall that for all ξ ∈ R,

g 1 β , t, t , ξ =      0 if ξ ≥ t (t -ξ) β if t ≤ ξ < t (t -ξ) β -(t -ξ) β if ξ < t. Let ξ ∈ R
g 2 β, β , t, ξ = (t -ξ) β + -(t -ξ) β + + (-ξ) β + -(-ξ) β + .
Then, applying the mean value theorem, for all ξ ∈ R, g 2 β, β , t, ξ ≤ β -β sup Let us now assume that ξ < -2A. Then, ξ < t and g 2 β, β , t, ξ ≤ β -β sup 

Remark 2 . 1

 21 According to Proposition 5.1 of[START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF], the finite dimensional distributions of S m do not depend on m as soon as Condition 2 of Hypothesis 2.1 holds. Moreover, when studying the sample path regularity of S m , Proposition 5.1 of[START_REF] Biermé | Modulus of continuity of conditionally sub-Gaussian random series[END_REF] allows us to change m by a more convenient function m if necessary.

H 1 - 1 /α 1 )

 111 -Hölder continuous functions on [a, b]. 1. Then, as N → +∞, the series Sm,N N ≥1 converges uniformly on [a, b] to Sm and almost surely sup t,t ∈[a,b]

β 1 ≤c≤β 2 (

 2 t -ξ) c + log(t -ξ) + -(-ξ) c + log(-ξ) +where for c > 0,(x) c + log(x) + = x c log x if x > 0 0 if x ≤ 0. Let us first consider ξ ∈ [-2A, 2A]. Then, (-ξ) + ∈ [0, 2A] and (t -ξ) + ∈ [0, 3A] since t ∈ [-A, A]. Therefore, g 2 β, β , t, ξ ≤ c1 (A, β 1 , β 2 ) β -β (A.20) with c1 (A, β 1 , β 2 ) = 2 max β 1 ≤c≤β 2 max 0<u≤3A u c |log u| = 2 max 1 eβ 1 ,(3A) β 2 log(3A) < +∞.

β 1 ≤c≤β 2 |

 2 (t -ξ) c log(t -ξ) -(-ξ) c log(-ξ)| with t -ξ > 0 and -ξ > 0. Let us remark that -ξ ∈ (-ξ/2, -3ξ/2) since -ξ > 0 and that -ξ/2 < -A -ξ ≤ t -ξ ≤ A -ξ < -3ξ/2since t ∈ [-A, A] and ξ < -2A. Then, for each c ∈ [β 1 , β 2 ] ⊂ (0, 1), by the mean value theorem,|(t -ξ) c log(t -ξ) -(-ξ) c log(-ξ)| ≤ |u t,ξ,c | c-1 (c|log u t,ξ,c | + 1)

  then the random field S m is almost surely unbounded on K.

2. If H

1 = 1/α

1 , then S m does not have almost surely continuous sample paths on the compact set K. Proof. By Equation (2.6)

  1 and thus I 2 < +∞. Therefore choosing r ∈ (0, 1 -H 2 ), Equation (3.15) and then (3.13) hold for m = m η . By Theorem 4.2 of [5], (S mη,N ) N ≥1 and S mη satisfy 1. and 2. of the theorem. Since for almost every ξ ∈ R the map (α, H, t) → f + (α, H, t, ξ) is continuous on K, by Assertion 2. of Proposition 5.1 of [5], S m satisfies Assertion 1. whatever m is. Assertion 2. in Theorem 3.1 holds for any m satisfying Equation (3.15) instead of m η .

	Remark 3.1

  Moreover, since |ξ| > 2A c ξ,t,t -ξ ≥ |ξ| -c ξ,t,t ≥ |ξ| -A ≥ |ξ|/2 and then g 1 β , t, t , ξ ≤ 2 1-β t -t |ξ| β -1since β ∈ (0, 1). Therefore, for |ξ| > 2A,g 1 β , t, t , ξ ≤ 4A t -t β 1 |ξ| β 2 -1 (A.18) since |t -t | ≤ 2A, β ∈ [β 1 , β 2 ] ⊂ (0, 1) and 2A > 1. Now let ξ ∈ R with |ξ| ≤ 2A. Since 0 < β < 1, we have a β -b β ≤ |a -b| βfor all a, b ≥ 0. By definition of g, it follows thatg 1 β , t, t , ξ ≤ t -ξ + -(t -ξ) + 1 since -A ≤ t < t ≤ A, 0 < β 1 ≤ β < 1 and A > 1.From this last inequality and Equation (A.18), we deduce that for all ξ ∈ R,g 1 β , t, t , ξ ≤ 4A t -t β 1 h A,2 (ξ, β 2 ) (A.19) with h A,2 (ξ, β 2 ) = 1 |ξ|≤2A + |ξ| β 2 -1 1 |ξ|>2A .

with |ξ| > 2A. If ξ < 0 it follows that ξ < t < t . Since β > 0, applying the mean value theorem,

g 1 (β , t, t , ξ) ≤ β |t -t | c ξ,t,t -ξ β -1 with c ξ,t,t ∈ (t, t ) ⊂ [-A, A]. β ≤ t -t β ≤ 2A t -t β

Acknowledgments

This work has been supported by the grant ANR-09-BLAN-0029-01 and GDR CNRS 3475 Analyse Multifractale.

with u t,ξ,c ∈ (-ξ/2, -3ξ/2). Since u t,ξ,c ∈ (-ξ/2, -3ξ/2) and -ξ/2 > A > e, we get

. Hence, for ξ < -2A,

Note that this last inequality still holds for ξ > 2A since in this case, g 2 (β, β , t, ξ) = 0. Then, we have proved that for all ξ ∈ R,

Step 3: Proof of Assertion 1. It follows from Equations (A. [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]) and

Step 4: Proof of Assertion 2. Let us remark that g β , t , ξ = g β , t , ξ -g β , 0, ξ since g(β , 0, ξ) = (-ξ) β + -(-ξ) β + = 0. Hence, applying Equation (A. [START_REF] Stoev | Path properties of the linear multifractional stable motion[END_REF]) with t = 0 and β = β, g β , t , ξ ≤ 4A t β 1 h A,2 (ξ, β 2 ) ≤ 4A β 1 +1 h A,2 (ξ, β 2 ), which concludes the proof.