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Abstract

This paper presents an overview of recent experimental and numerical investigations on industrial
railway brakes. The goal of the present study is to discuss the relevance of the mechanical modeling
strategy for squeal prediction. Specific experimental set-ups based on transient and controlled braking tests
are designed for this purpose. Measurements are performed on it to investigate the dynamic behavior of
TGV squeal noise and its squeal characterization through experiments. It will be demonstrated that it is
possible to build consistent and efficient finite element models to simulate squeal events in TGV brake
systems. The numerical strategy will be presented, including not only the modeling of the TGV brake
system and the stability analysis, but also the transient nonlinear dynamic and computational process
based on efficient reduced basis. This complete numerical strategy allows us to perform relevance squeal
prediction on industrial railway brakes. This study comes within the scope of a research program AcouFren
that is supported by ADEME (Agence De l’Environnement et de la Maîtrise de l’Energie) concerning the
reduction of the squeal noise generated by high power railway disc brakes.

1 Introduction

Friction-induced vibration and noise emanating from railway disc brakes is a source of considerable discomfort
and leads to dissatisfaction for the passengers both inside and outside the trains in stations. Research for
predicting and removing squeal noise has been regularly performed for many years on industrial railway
brakes. This is the case in particular for TGV brake system for which a refined mechanical modeling of the
phenomenon was carried out in order to understand the mechanism of squeal generation [1–3]. Despite great
progress in the understanding and modeling of brake squeal, there is still considerable progress to provide
in order to achieve a comprehensive strategy based on experimental and numerical approaches for squeal
prediction on industrial railway brakes.

In the automotive and aeronautic industries the phenomenon of brake squeal is well known because of
the noise and vibration produced. Although it has been the subject of many investigations over recent
decades [4–7], friction-induced instabilities are still an active field of research in dynamics. Solving poten-
tial friction-induced vibration problems requires experimental and theoretical approaches to obtain a better
understanding of the phenomenon. A result often discussed is the difficulty in obtaining repeatable experi-
mental tests and correlations with phenomenological lumped parameter models or more sophisticated finite
element models. For example, Oberst and Lai proposed to enhance understanding of friction-related noise
phenomena by classifying brake squeal mechanisms [8]. They also highlighted the nonlinear character of
brake squeal and proposed the use of nonlinear statistical analysis tools to better analyze disc brake squeal
in automotive industry [9]. Similarly Sinou et al. [7, 10] studied the nonlinear vibration induced by friction
in aircraft brakes based on experimental and numerical approaches. Their work showed that the dispersions
of the coefficient of friction and of the damping allow the faithful simulation of the dynamical behavior
obtained in experimental tests [11]. The studies of Butlin and Woodhouse [12–14] proposed also a discussion
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to quantify the repeatability and uncertainties of experimental results to provide inputs for the error-bound
analysis in the numerical squeal prediction.

For industrial system, it is not trivial to reproduce consistently the dynamic behavior of brake systems due
to the complexity of the brake components and the difficulty of validating a finite element model. To avoid
the difficulty arising from the complexity of experiments on real industrial brake systems, many research
groups working on this subject conducted their investigations by combining theory and experiments on
simplified experimental rigs [13,15–19]. They demonstrated that disc brake squeal characterization through
simplified experimental set-ups is consistent and allows the possibility to build robust models to simulate
squeal noise and to undertake a complete understanding of the squeal mechanism and the physics behind
squeal phenomena. For example, Akay et al. [15] deservedly explained that the first step is to be able
to provide a model and numerical results consistent with experiments obtained from simplified test rigs.
Otherwise numerical models would not be adequate for real industrial brake.

The goal of this study is to present an experimental and numerical analysis of the squeal vibration and
prediction on industrial railway brakes. This first part of the paper gives a brief description of the TGV
disc brake system and the analysis of experimental data coming from tests on bench in laboratory SNCF.
Secondly, the paper focuses on the numerical results provided by a finite element model of the brake including
unilateral contact and Coulomb friction at multiple interfaces between disc and pads. A stability analysis of
the sliding equilibrium is investigated by performing a complex eigenvalue analysis of the linearized equations
(i.e. complex eigenvalue problem). Then a complete dynamic transient analysis (i.e. nonlinear self-excited
vibration due to instabilities) is undertaken. More particularly, comparisons with experimental results will
be performed in order to judge the relevance of the mechanical modeling strategy for squeal prediction on
industrial railway brakes.

2 Experimental approaches

2.1 Motivations

Experimental investigation of squeal noise for TGV industrial railway systems is nontrivial due to the high
complexity of the brakes and the possibility of dispersion of data during experimental tests. As a consequence,
it is generally difficult to perform repeatable measurements. Since the squeal problem is not yet completely
understood, many studies start by conducting experiments on simplified test rigs [13, 15, 17]. To avoid the
difficulty arising from a realistic braking test (i.e. transient braking test with decrease of the rotational speed
of the disc), they proposed to conduct “controlled squeal tests” (i.e. braking test with a constant controlled
rotational speed of the disc) to investigate the dynamic behavior of a mechanical system during sliding
contact. This choice is based on the assumption that simplifying the experimental protocol is necessary in
order to obtain reliable data during experiments of squeal noise. Moreover, this choice of constant speed tests
is commonly based on the idea that squeal behavior changes on a much faster time-scale than sliding speed
changes. Finally, a common argument against more realistic experiments is that important aspects that can
lead to squeal noise are neglected from a modeling point of view. Indeed it is quite difficult to create a finite
element model of the brake system with a consistent and significant control of the key parameters such as the
pressure distribution between disc and pads, modal damping of the components, contact stiffness, evolution
of the friction coefficient, evolution of the rotating speed of the disc, etc.

So the motivation and the goal of this section “Experimental approaches” is to present a complete exper-
imental procedure in order to propose brake squeal characterization and understanding of squeal noise on
a real TGV industrial railway brake systems with realistic braking tests (i.e. experimental set-ups with a
decrease of the rotational speed of the disc). The main findings obtained through experimental investigations
are presented and discussed to provide a complete and rigorous view of squeal noise in TGV brake system.
The ultimate goal is to validate, via comparisons of experimental tests with various operating conditions
(more particularly by taking into account the two possibilities of variable or constant rotating speed of the
disc), the possibility of simulating squeal events via a numerical analysis which takes into account only a
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(a) (b)

Figure 1: TGV brake system (a) TGV bogie (b) part of a brake pad

constant rotating speed of the disc. This fact will be explained and argued in detail in the Section 2.4.

2.2 Description of the TGV brake system and experimental set-up

The disc-brake system is composed of four discs on each wheels axle and sliding bodies that are constituted
of two symmetric lining plates with cylindrical pads (18 pad for each side), as illustrated in Figures 1. The
brakes are activated by the pneumatic system pressure and slow down rotation of the wheels by the friction
caused by pressing brake pads against brake discs.

The evaluation of the squeal prediction and the dynamical behavior of the TGV brake system under
working conditions are performed with the help of dynamic tests on bench that is located at SNCF Agence
d’Essai Ferroviaire. The spectrum of brake squeal and transient vibrations are obtained via the experimental
measurements. For this, the TGV brake system is fully instrumented with accelerometers on the stationary
part, as indicated in Figure 2. This experimental test rig corresponds to one of the four discs that have
been previously shown in Figure 1(a). Due to the fact that coupling between the four discs of the whole
disc-brake system is insignificant, this test rig is able to reproduce the squeal phenomena of TGV brake
system in service.

Vibration measurements of the normal velocity of the disc are performed by using a laser vibrometer.
Moreover, a microphone recording is mounted close to the disc as indicated in Figure 2. Operational pa-
rameters such as the normal load, the rotating speed of the disc, the ambient temperature close to each
component of the TGV brake system can be measured and controlled during experiments. This allows us to
attempt to explain or to correlate any sudden changes in squeal mechanisms and the dynamic behavior of
the TGV brake system that occurred with external or internal environmental factors.

To have a more precise estimation of the range and variability of vibration instabilities at the origin of
disc brake squeal, a series of tests with the fully instrumented TGV brake system are performed for different
operating conditions. Effects of the normal load, the rotational speed of the disc, the clockwise or anticlock-
wise directions for the disc running are investigated. Moreover, experimental tests are divided into two main
categories:

• experiments with an evolution of the rotational speed of the disc: these tests are called “transient brak-
ing tests” and correspond to real braking tests,

• experiments with a controlled steady rotational speed (i.e. dynamic fluctuations in rotational speed are
not significant): these tests are called “controlled braking tests”.
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In the present study, the Continuous Wavelet Transform (CWT) [20] is used to study the time-history
responses of the TGV brake system. So, a brief basic theory of the wavelet analysis that transforms a
signal into wavelets that are well localized both in frequency and time is presented in this part of the paper.
Considering a function f (t), the associated Continuous Wavelet Transform (CWT) corresponds to a wavelet
transform given by

W (a, b) =

∫ +∞

−∞
f (t)ψ∗

a,b (t) dt where ψa,b (t) =
1√
a
ψ

(

t− b

a

)

(1)

where a and b define the scale parameter and the time translation factor, respectively. The asterisk ψ∗
a,b

indicates the complex conjugate of ψa,b that are the daughter wavelets (i.e. the dilated and shifted versions
of the "‘mother"’ wavelet ψ that is continuous in both time and frequency). The mother wavelet must satisfy
an admissibility criterion in order to get a stably invertible transform.

The success of the reconstruction depends on the constant Cψ called the admissibility constant that can
be defined by

Cψ =

∫ +∞

−∞

|ψ̂ (ω) |2
|ω| dω (2)

where ψ̂ is the Fourier transform of ψ (i.e. ψ̂ =
∫ +∞
−∞ f (t) eiωtdt). For a successful inverse transform, the

following admissibility condition has to be satisfied 0 < Cψ < +∞. It can be shown that the admissibility

condition implies that ψ̂ (0) =
∫ +∞
−∞ ψ (t) dt = 0.

For a function f (t) represented by N sampled data points with uniform time step δt between each
point, the Continuous Wavelet Transform of equation (1) is a convolution of the data sequence f (n′) (with
n′ = 1, . . . , N) with a scaled and normalized wavelet

C (a, n) =

N−1
∑

n′=0

f
(

n′
)

√

δt

a
ψ∗
0

(

(n′ − n) δt

a

)

(3)

where δt and n correspond to the sampling interval and the localized time index.
Many types of wavelets have been developed. In this paper, the Morlet wavelet that is one of the most

widely used mother wavelets (quite well localized in both time and frequency space) is chosen. It is defined as

following in the time domain: ψ0 (η) = π−
1

4e
imη

e
− η

2

2 where m is the wavenumber and η is non-dimensional
time parameter. The wavelet function contains unit energy at every scale due to the normalization of the
mother wavelet. Then, the wavelet power is defined as |C (a, n) |2.

2.3 Transient braking tests

In this section, experiments with an evolution of the rotational speed of the disc (i.e. experimental tests
called “transient braking tests”) are presented and discussed. For the reader comprehension, we recall that
these tests correspond to the actual operating conditions of a TGV brake system in service: the TGV disc
is brought up to speed, and then pressure is introduced to activate the brake. The test ends when the TGV
disc stops.
More particularly, experiments are undertaken into six main categories:

• effects of the variation of the rotational speed before braking system: 25 km/h and 60km/h,
• effects of the rotational direction of the disc: clockwise or anticlockwise directions defined by Rot+ and

Rot-, respectively,
• effects of the compression force (8kN and 15kN).

These configurations have been chosen due to the fact that they represent the operating conditions for the
specification of TGV brake system in regard to squeal noise. The upper figures 3 illustrate the evolutions
of the rotational speed of the disc during braking tests for each initial operating conditions (25 km/h and
60km/h with the two compression forces 8kN or 15kN).
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(a) (b)

Figure 2: Dynamic tests for TGV brake squeal (a) test bench (b) instrumented TGV brake system

Figures 4 show the transient nonlinear responses (velocity of a normal point on the disc) and the wavelet
power spectrum for vibrometer’s measurement. The velocity response appears to be very complicated. First
of all, it can be seen that the velocity response increases between t = [2.5; 3.2]s. Secondly, a small decrease
is observed between t = [3.2; 3.8]s. Finally, a small increase of the velocity signal is shown for t = [3.8; 10]s.
The associated wavelet power spectrum during the transient oscillations is given in the bottom Figure 4.
Several frequency contributions are observed during all the transient oscillations. More details will be given
in the next paragraph of this section about the squeal signature and the vibrational frequency components
of squeal noise. Finally, this first observation illustrates the fact that the transient self-excited vibrations
have to be examined in detail in order to understand TGV squeal noise.

Then, experimental results (microphone measurement) for four operating conditions (15kN - 60km/h,
15kN - 25km/h, 8kN - 60km/h and 8kN - 25km/h with a positive rotation Rot+) are given in Figures 3.
The repeatability of experiments is investigated by performing three identical tests for each deterministic
operating condition. These three tests were performed consecutively respecting a certain time between each
test to afford to have the same operating conditions (such as temperature). For each test, the constant
compression force is applied during the time window of the plots. So the onset of squeal is triggered by
bringing the pads into contact.

Comparing Figures 4 and 3(b), it appears that many of the vibration frequencies that have been obtained
with the vibrometer measurement coincide with the noise frequencies that have been observed with the
microphone measurement. So it can be assumed that some audible squeal can be considered to result
from displacement normal to the disc. So, in the following part of the study (Section 3.3 “Nonlinear self-
excited vibrations and comparison with experiments”), the prediction of squeal noise will be performed by
comparing numerical tests and experiments on vibration measurements (velocity of a normal point on the
disc for example).

Table 1 gives the simultaneous presence of frequencies in a single squeal occurrence for each operating
condition. The symbol × indicates the presence of the frequency for a given test. Moreover, the variation
(i.e. ± bounds on the squeal frequencies) is within and between tests and the frequencies content is given
for the whole transient tests. It appears that the response of the TGV brake system and the associated
frequency content are similar between three tests when a series of deterministic tests is performed in the
same operating conditions. Tests allow identifying two main complex nonlinear phenomena for TGV brake
squeal. The first identified behavior is illustrated in Figures 3(a) and (b) (for 15kN- 60km/h and 15kN-
25km/h). The second one is given in Figures 3(c) and (d) (for 8kN- 60km/h and 8kN- 25km/h). Even if
the nonlinear transient response and the associated CWT are not identical, the frequency content of TGV
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(a) (b)

(c) (d)

Figure 3: Evolution of the rotating speed of the disc and Continuous Wavelet Transform of experimental
data with microphone measurement(a) 15kN-60km/h (b) 15kN-25km/h (c) 8kN-60km/h (d) 8kN-25km/h

brake squeal appears to be globally the same for the four operating conditions, as indicated in Table 1:
TGV brake squeal appears at low/middle frequency in the 0–10000 Hz range (with a predominant frequency
content in the 0–5000 Hz range). For the first identified behavior of TGV squeal (15kN- 60km/h and 15kN-
25km/h, see Figures 3(a) and (b)), only one characteristic dynamic behavior is identified. At the beginning
of transient vibrations, an evolution and increase of the squeal frequencies is observed (see Figures 3(a) and
(b) between t = [3; 4]s for 15kN- 60km/h, and t = [2.5; 5]s for 15kN- 25km/h). Moreover, it clearly appears
that all the transient nonlinear oscillations can become complex with the contribution of several frequencies.
For the second identified behavior of TGV squeal (8kN- 60km/h and 8kN- 25km/h, see Figures 3(c) and
(d)), two dynamic behaviors are observed: firstly, a “simple” behavior of the transient oscillations with only
frequency resonances around 1000-2000Hz (see Figures 3(c) and (d) between t = [2; 7]s for 8kN- 60km/h, and
t = [2; 11]s for 8kN- 25km/h); secondly, a “complex” nonlinear transient behavior with the appearances of new
contributions in the 2000-10000Hz range (see Figures 3(c) and (d) between t = [7; 39]s for 8kN- 60km/h, and
t = [11; 17]s for 8kN- 25km/h). As explained in [21], evolution of the transient vibrations and the frequency
content of the TGV brake squeal are governed by the modification of the sliding nonlinear equilibrium point
(i.e. initial sliding position due to the compression force) during self-excited vibration. This may lead to
new instabilities in the TGV brake system and induces a transition from one to the other behavior. For the
interested reader, occurrences of squeal frequencies from the microphone and accelerometers on the backplate
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Figure 4: Time plot and wavelet power spectrum of experimental data for vibrometer measurement (15kN-
25km/h)

of the TGV brake system are also characterize by specific frequencies ranging from 1000Hz to 5000Hz, the
most representative frequencies being located at 1200Hz, 1700Hz, 2150Hz, 2500Hz and 3400Hz.

2.4 Controlled braking tests: experiments with a controlled steady speed

The main purpose of this section is to correlate generation and characteristics of squeal noise via “controlled
braking tests”(i.e. experiments with a controlled steady rotational speed of the disc) with the previous general
observations made for transient braking tests.

Some of the results that will be presented in this section are now well known and established, but they
are determinant and particularly important to propose and argue a rigorous methodology for modeling the
squeal mechanism. In our case, we focus on the choice of whether or not to model the change in the rotating
speed of the disc for squeal prediction. One must keep in mind that achieving a modeling of squeal generation
for TGV brake system will be easier to implement and to solve if we can approximate the braking test by a
problem of friction-induced vibration with a constant rotational speed of the TGV disc. If this assumption
is not valid, it is not possible at present to make an accurate finite element model with computational
simulations for predicting squeal noise due to the fact that computation time and data storage will not be
possible if all the braking test must be simulated. Conversely, if we can simulate squeal noise by performing
calculations around a sliding equilibrium point with constant operating conditions (and on a small time
interval), the current capabilities of computers allow to conduct such studies.

The “controlled braking tests” are conducted as follows: the TGV disc is set in motion to a constant
rotational speed with the disc and the pads out of contact. Then, all the pads are brought into contact with
the disc (on each side of the disc) by maintaining the contact force to the desired value. This process allows
to control better the conditions of occurrence of squeal and to avoid stick-slip occurring immediately if the
disc rotating starts whereas the disc and pads are already in contact. As in previous tests (Section 2.3),
care was taken to verify the repeatability of these controlled braking tests by performing three tests for each
controlled speed cases. Moreover, special attention was paid to maintain an initial given temperature for
each experiments.

These controlled braking tests will be performed for two compression forces (8kN and 15kN as previously
done for braking tests in Section 2.3) and two constant rotational speeds of the disc (7km/h and 14km/h).
These two rotational speed of the disc (7km/h and 14km/h) have been chosen to be small enough to avoid
a rapid degradation of the disc and pads during controlled braking tests while remaining realistic values to
allow comparisons with TGV transient braking tests.

Figures 5 show the time plot of the normal velocity of the disc measured by the vibrometer for two
operating conditions (8kN-7km/h and 15kN-14km/h). First of all, squeal occurs as soon as the disc and the
pads are in contact and is still present during the test. Moreover, the squeal event appears to be stationary.
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Tests n◦ Frequency (Hz)

1200 1700 2150 2500 3400 3900 4600 5800 7150 8500
±100 ±100 ±75 ±50 ±100 ±50 ±100 ±25

8 kN 1 × × × × × ×
25 km/h 2 × × × × × ×
Rot+ 3 × × × × × ×
8 kN 1 × × × × × × × ×
25 km/h 2 × × × × × × × ×
Rot- 3 × × × × ×
8 kN 1 × × × × × × × ×
60 km/h 2 × × × × × × × ×
Rot+ 3 × × × × ×
8 kN 1 × × × × ×
60 km/h 2 × × × × ×
Rot- 3 × × × × × ×
15 kN 1 × × × ×
25 km/h 2 × ×
Rot+ 3 × × × × ×
15 kN 1 × × × × × ×
25 km/h 2 × × × × × ×
Rot- 3 × × × × × ×
15 kN 1 × × × ×
60 km/h 2 × × × ×
Rot+ 3 × × ×
15 kN 1 × × ×
60 km/h 2 × × × × × × ×
Rot- 3 × × × × × ×
Occurrence (%) 100 100 79 54 92 33 38 8 21 8

Table 1: Experimental analysis of TGV brake system with occurrences of squeal frequencies (vibrometer)

For the two operating conditions, the squeal characterization in term of amplitudes and frequencies appears
to be very similar. In addition, these results appear very close to the previous transient braking tests
(see Figure 4). Amplitudes of the normal velocity are of the same order of magnitude: for the controlled
braking test given in Figure 5(b) (operating conditions: 15kN-14km/h), amplitudes of the normal velocity
are around 0.05ms−1; for the transient braking test given in Figure 4 (with the initial operating conditions:
15kN-25km/h), the amplitudes are around 0.04ms−1 at time t = 7s (this time has been chosen due to the
fact that it corresponds to the same rotational speed of the disc, 14km/h, than that of the controlled braking
test). Table 2 gives the frequency content for the two operating conditions. Comparing the transient and
controlled braking tests, the frequency content appears to be also very similar for both experiments (transient
braking tests given in Table 1 and controlled braking tests given in Table 2). Figure 6 gives a comparison of
the frequency spectrum of the two signals for both the “controlled braking test” and “transient braking test”.
First of all, slight differences may be noticed. Some amplitude peaks are higher for the “controlled braking
test” than for “transient braking test” (see for example peak magnitudes at 240Hz, 5700Hz, 7150Hz and
8500Hz). Then, additional small peaks are visible for the “controlled braking test” for all the frequency range
of interest. However, the peaks for the “transient braking test” are also found for the “controlled braking
test”. It should be noted that it is not trivial to reproduce exactly and consistently the magnitudes of squeal
noise for braking tests (and so to perform comparisons between “controlled braking tests” and “transient
braking tests”) due to the fact that the transient normal velocity of braking test fluctuates slowly during
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Figure 5: Time plot of experimental data for vibrometer measurement (upper figure: 8kN-7km/h, lower
figure:15kN-14km/h

time with decreasing of the rotational speed of the disc. For the interested reader, it can be noted that the
difference between the two cases (“controlled braking test” and “transient braking test”) in Figure 6 is larger
than the variation within a given test case.

Then frequency content for different operating conditions (15kN - 7km/h; 15kN - 14km/h; 8kN - 7km/h
and 8kN - 14km/h with a positive rotation Rot+) are given in Table 2. The symbol × indicates the presence
of the frequency. The variation (i.e. ± bounds on the squeal frequencies) is between tests (for different
operating conditions). Strong correlations between these controlled braking tests are observed: firstly, squeal
noise appears when the disc and the pads come in contact without any change during the experimental
tests. Then, squeal behavior is surprisingly repeatable and robust for various operating conditions: a proper
understanding of the TGV brake squeal characterization is possible. By comparison with the previous
“transient braking tests”, the squeal characterization appears to be very similar. As indicated in Tables 1
and 2, TGV squeal noise appears at low/middle frequencies in the 0–10000 Hz range with a finite number of
frequency peaks. The most repeatable frequency contributions are around 1700Hz, 2150Hz, 2500Hz, 3400Hz,
3900Hz and 4600Hz. It can also be noted that some extra frequencies (for example 240Hz and 5200Hz, see
Table 2) are indicated for the “controlled braking tests”: these frequencies are also present in the “transient
braking tests” (see Figure 6) but their contributions were small enough to be not reported in Table 1.
Moreover it is recalled that variations of the squeal behavior were observed during time for transient braking
tests (evolution of the squeal frequencies in Figure 3(a) for 15kN-60km/h and two separate characteristic
behaviors during time in Figures 3(c) and (d) for 8kN-60km/h and 8kN-25km/h). So the controlled braking
tests can not exactly reproduced the transient braking tests.

In conclusion, the first obvious observation is that squeal can be the consequence of friction-induced
vibration with a constant rotational speed of the disc. Moreover, we note a correlation (amplitudes and
frequencies) between “transient braking tests” (experiments presented in Section 2.3) and “controlled braking
tests”(experiments presented in Section 2.4): the dynamic behavior of squeal noise in industrial TGV railway
brake system is characterize by specific frequencies ranging from 1000Hz to 5000Hz. Secondly, the sufficient
volume of data and the degree of repeatability of results allow us to consider these experimental results as
a reference for validating the theoretical model of squeal prediction that will be discussed and developed in
the next part of the paper.

9



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−120

−110

−100

−90

−80

−70

−60

Frequency (Hz)

|V
|

Figure 6: comparison of controlled braking test (15kN-14km/h) and transient braking test (15kN-25km/h)
at t = 7s for an equivalent rotating speed of 14km/h (in dB) (red lines = transient braking tests; dashed
black lines = controlled braking tests)

Tests Frequency (Hz)

240 1200 1700 2100 2600 3200 3900 4600 5200 5700 7100 8000
±50 ±150 ±50 ±100 ±100 ±100 ±50 ±100

8 kN− 7km/h × × × × × × × ×
8 kN− 14km/h × × × × × ×
15 kN− 7km/h × × × × × × × ×
15 kN− 14km/h × × × × × × × ×

Table 2: Experimental analysis of TGV brake system for squeal tests with constant speed

3 Numerical simulation and comparison with experiments

3.1 TGV braking system and formulation of the problem

The TGV brake system consists of one disc, outer and inner pads (18 pins applied on either sides of the
disc are taken into account) modeled using the finite element method, as illustrated in Figure 7. The finite
element model is composed of shell elements for the bell and quadratic volume elements for the disc and
linings. The backplates and the supporting structure are modeled as rigid bodies with three spring elements
taking into account the flexibility of the assembly. This simplification allows for containing the total number
of degrees of freedom which is a necessary condition to perform full transient computations. Finally, the
full finite element model has 72685 degrees of freedom (49473 degrees-of-freedom for the bell/disc system
and 23212 degrees-of-freedom for all the lining). For the damping, a Rayleigh model is used with different
coefficients for the disc and the pads. The non linear interface (i.e. the contact zone between the disc and
the 18 pins) includes 504 pairs of nodes which represents a total of 3024 degrees of freedom. A Coulomb law
with a constant friction coefficient µ is used. This formulation can be summarized as follow:

‖rt‖ ≤ −µrn
‖rt‖ = −µrn ⇒ ∃λ ∈ R

+, u̇t − vg = −λrt
‖rt‖ < −µrn ⇒ u̇t − vg = 0

(4)
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Figure 7: Finite element model of TGV brake system

where r is the contact reaction, u is the displacement field, vg is the Eulerian sliding speed. The subscripts
n and t correspond to the normal and tangential projections of a field on the contact interface, respectively.
Moreover, to deal with the unilateral contact, a non regularized Signorini law is chosen:

un − g ≤ 0 ; rn ≤ 0 ; (un − g) rn = 0 (5)

where g is the initial gap at the contact interface. The main advantage of the Signorini law results in the fact
that it represents zero-penetration between surfaces : this is an interesting theoretical limit case equivalent
to an infinite contact stiffness. In practice, it is assumed that the contact is sufficiently stiff so that the
penetration may be neglected.

By using classical finite element discretization of the problem with linear elements on the potential contact
zone leads, the nonlinear dynamics problem may be written in a discrete form as follows (see [22] for details):

Mü+Cu̇+Ku = f + rc (6)

where M, K and C are the classical mass, stiffness and damping matrices of the system. f and rc define
the generalized force and contact reaction respectively. The contact reaction rc, the displacement u and the
velocity u̇ verify the contact and friction laws defined in equations (4) and (5) at each mesh node. Classically,
a reformulation of these contact and friction laws can be rewritten in terms of projections on the negative
real set (projR−) and on the Coulomb cone (projKµ

) is used to facilitate the numerical implementation in
the treatment of the contact state [23]

rn = projR− (rn − ρun (un − g)) ,∀ρun > 0 where projR− (x) = min(x, 0) (7)

rt = projKµ
(r− ρt (u̇t − vg)) ,∀ρt > 0 with projKµ

(x) =

{

xt if ‖xt‖/|xn| ≤ µ

µ |xn|
‖xt‖

xt otherwise
(8)

where ρun and ρt are two arbitrary positive scalars called normal displacement augmentation parameter and
tangential augmentation parameter respectively. Considering equations (6-8), contact/no-contact and stick-
ing/sliding events at each mesh node of the frictional interface can be simulated during transient simulations.

Before performing stability studies and a complete nonlinear analysis, validation of the finite element
model for each component of the TGV brake system is performed by applying a classical modal analysis.
There are two stages: firstly, we characterize the dynamics of the separate subsystems (disc, pads,backplate,
support, etc) when the components are not in contact. This first configuration and these conditions are
classically called “uncoupled subsystems and conditions”. Then, characterization and validation of the finite
element model are performed on the assembled components of the TGV brake system (conditions classically
called “coupled system and conditions”). These first tests provide a reference behavior for the numerical
model in correlation with experimental data.
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3.2 Stability analysis of the TGV brake system

In order to predict the occurrence of self-excited vibrations, a classical stability analysis can be performed.
Complex eigenvalues and complex modes will be used to estimate the squeal propensity of the brake in a
given frequency range [3, 24]. This approach can be divided into two parts. The first step is the static
problem: the steady-state operating point for the full set of nonlinear equations is obtained by solving them
for the sliding equilibrium point. This sliding equilibrium point is obtained by solving the static equations
for a given net brake pressure. Then, one obtains the linearized equations of motion by introducing small
perturbations about the sliding equilibrium point into the nonlinear equations [3,21]. This leads to linearized
contact laws (bilateral contact and sliding friction) applying only at contact nodes in the equilibrium position
and given by :

un = 0

rt = −µrnt+ µ r
e
n

vg
(u̇ · b)b (9)

where t is the principal tangential direction given by the sliding velocity, b = n ∧ t is the second tangential
direction (radial) and ren is the static reaction force. Noting that the second term of the linearized friction
force is equivalent to a contact radial damping, the eigenvalue problem to be solved is given by [22]

(

λ2M̃+ λC̃+ K̃

)

u0 = 0 (10)

with
M̃ = Tµ

T
MTn (11)

K̃ = Tµ
T
KTn (12)

C̃ = Tµ
T
(

C− µPb
T
DPb

)

Tn with Dii =
(ren)i
(vg)i

(13)

where M̃, C̃ and K̃ define the non-symmetric mass, damping and stiffness matrices. Tn and Tµ are the
bases of the fields orthogonal to the normal n to the equilibrium contact interfaces (i.e. un = 0 on the contact
interfaces) and orthogonal to the direction n−µt on the equilibrium contact interfaces (i.e. u·(n− µt) = 0 on
the contact interfaces). The first projection matrix Tn allows for a classical elimination of the displacements
constraints whereas the second projection matrix Tµ allows for an original elimination of the corresponding
reactions in such a non symmetric problem. In addition, (vg)i defines the norm of the sliding speed vg at
the ith node and Pb corresponds to the projection matrix on the second tangential direction b at contact
nodes. Then, stability consists on computing the complex modes and the complex eigenvalues associated to
the linearized problem in the frequency range of interest (for more details see [22]). Solving this problem
is achieved by using the Residual Iteration Method [25]. The complex eigenvalues λ provide information
about the local stability of the equilibrium point. The TGV brake system is stable if all the real part a of
the eigenvalues are negative, and unstable if there exist one or more eigenvalues having a positive real part.
The imaginary part of these eigenvalues represents frequencies of unstable complex modes that correspond
to squeal frequencies.

First of all, the steady sliding equilibrium of the TGV brake system is given in Figure 8(a) for a friction
coefficient of 0.35 : it is observed that this sliding position is not trivial with a more or less pronounced
compression of pads. Moreover, the effects of the rotational direction of the disc can also be seen.

Then, the stability analysis of this equilibrium point is given in Figure 8(b) (for a friction coefficient of
0.35). This value has been chosen based on measurement (estimation based on squeal experiments of the
previous sections). Nine unstable modes (with positive divergence rate) are detected. Figure 9 shows the
mode shapes of these 9 unstable modes. Table 3 gives the frequency and growth rate for each unstable mode.
The growth rate percentages is defined by real(λ)

imag(λ) where λ is the eigenvalue of interest. We can see that

the modes with the most important growth rate appear from pads modes (near 2050Hz and 2760Hz with a
growth rate of 9.47% and 6.44% respectively).
However, it is well known that computations via the complex eigenvalue problem (stability analysis) are not
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Figure 8: Stability analysis of the TGV brake system (a) Sliding equilibrium (b) Eigenvalues in the complex
plane (red=unstable modes; blue=stable modes)

Unstable Modes Frequency (Hz) Divergence rate (%)

1 1110 0.047
2 2050 9.47
3 2760 6.442
4 6580 0.006
5 6980 0.344
6 7530 0.403
7 9050 0.122
8 10410 0.0001
9 11480 0.03

Table 3: Frequency and growth rate of the unstable modes

sufficient to allow comparison between numerical tests and experiments. In fact, the stability considers only
small regular perturbations without contact’s break in the interface [21]. So frequencies of unstable complex
modes may not correspond to squeal frequencies that have been observed during squeal experiments. So a
complete nonlinear analysis of the transient and stationary nonlinear behaviors of the TGV brake system
has to be undertaken if the fully developed behavior during squeal is of interest.

3.3 Nonlinear self-excited vibrations

As previously explained in [10,21], the stability analysis may lead to an underestimation or an over-estimation
of the unstable modes observed in the nonlinear time simulation due to the fact that linear conditions (i.e.
the linearized stability around an initial equilibrium point with a defined contact state for each node) are not
valid during transient oscillations. So the nonlinear transient self-excited vibrations can become very complex
and include more or less unstable modes due to the nonlinear contact and loss of contact interactions at the
frictional interface. Therefore, a numerical resolution of the complete nonlinear system has to be performed
in addition to the stability analysis to estimate the nonlinear behaviour of the solution far from the sliding
equilibrium. Since the instability of the sliding equilibrium may lead to strongly nonlinear events with contact
and no-contact states but also sticking and slipping states at the different frictional interfaces between each
pad and the disc, a first-order θ-method time integration scheme is developed for the computation of the
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Figure 9: Mode shapes of the unstable modes (a) Mode 1, (b) Mode 2, (c) Mode 3, (d) Mode 4, (e) Mode 5,
(f) Mode 6, (g) Mode 7, (h) Mode 8 and (i) Mode 9

transient solution. For more details, the interested reader is referred to the paper of Loyer et al. [22].
This next section of the paper is set up as follows: firstly, due to the size of the system and the extensive

time of the nonlinear solving process, an efficient spatial model reduction is performed to estimate the nonlin-
ear behavior of the TGV brake system. Secondly, comparisons between numerical results and experimental
tests are investigated. The proposed reduction basis has been previously discussed and validated for the
case of an elastic layer with a frictional interface [22]. The chosen basis is a classical modal truncated basis
built from the real and imaginary parts of the complex stability modes (dynamic modes) with addition of
constrained boundary modes at the contact interface (static modes). In the paper of Loyer et al. [22], this
type of basis has been referred to as F sn where n is the number of modes included and s corresponds to the
inclusion of static modes in the reduction basis. In the present study, 1000 dynamic modes are kept in the
reduced basis (n = 1000, F s1000) : this represents almost all the stability modes in the [0− 15]kHz frequency
range. This is a large number of modes but the frequency range of interest is also large ([0 − 10]kHz) and
the modal density of the pads structure is rather high due to the number of pins. However, considering the
initial number of degrees of freedom (72685), the reduced basis is in any case advantageous.

3.3.1 Transient analysis of the TGV brake system

Figure 10(a) illustrates the nonlinear transient solution of the velocity in the case of µ = 0.35. A succession
of two phases is shown: the first one (for t < 0.01s) corresponds to a classical increase of the solution. The
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second one (for t = [0.01; 0.11]s) is characterized by a global saturation with oscillations. Comparing the
time-history computation and experiments that have been previously presented in Section 2 (see Figures 4
and 5), the level of stationary amplitudes is well reproduced.

In order to better analyze the evolution of the nonlinear transient behavior of the TGV brake system,
Figure 10(b) expands the numerical transient solution on the basis of the complex modes. For the interested
reader, the complex modal projection and formulation proposed in [2] are explained in detail by Loyer et
al. [22]. Following the evolution of the modal participations allow us to evaluate the energy contribution of
each mode during the transient response of the TGV brake system. This evolution of the modal participation
βj (t) for the jth mode can be expressed by [22]

βj (t) =
Ψ0j

T
ÃΓ (t)

Ψ0j
T
ÃΦ0j

with Ã =

[

C̃ M̃

M̃ 0

]

(14)

where Γ (t) is the transient perturbation written in state-space variables (i.e. Γ = [u u̇]T). Φ0j and Ψ0j

define the modes shapes in state space and the adjoint mode shapes (with the bi-orthogonality relation
∀i 6= j Ψ0i

T
ÃΦ0j = 0 and Ψ0i

T
ÃΦ0i 6= 0). As previously explained by Loyer et al. [22], this complex

modal projection allows detecting the contribution of one or more complex modes in the transient nonlinear
response. Moreover, the complex modal projection can be used to detect the appearance of limit cycles:
when the nonlinear stationary response is reached, contributions of all the complex modal projections are
constant or oscillate around an average value.

Showing the complex modal projection (see Figure 10(b)), the contribution of each unstable mode (that
have been previously computed through the stability analysis) during the nonlinear transient and stationary
solutions appears to be very clear. Two main zones are detected: for t = [0; 0.01]s, a transition phase is
observed with a fast increase of the contribution of modes 1, 2 and 3 (denoted M1, M2 and M3 respectively
in Figure 10(b)). For t > 0.02s the modal participation of all unstable modes fluctuates a little with a global
signal suggesting that we have reached an approximately steady state solution. So it clearly appears that the
modal participations of modes 4, 5, 6, 7, 8 and 9 remain a low level compared to the modal participations of
modes 1, 2 and 3. In conclusion, the nonlinear response is mainly composed of the evolution of three principal
modal participations. As previously explained in [22], the evolution of the system at the beginning of the
time interval is governed by the complex modes (complex mode shapes and eigenvalues) obtained by the
stability analysis computed around the sliding equilibrium point. Due to the fact that the “most unstable”
modes for the stability analysis are modes 2 and 3 (i.e. the complex modes with the most important growth
rates of 9.47% and 6.442% for modes 2 and 3, respectively), it is not surprising to find the modal participation
of modes 2 and 3 in the first part of the transient response. Moreover, an increase of the contribution of
mode 1 denoted M1 in Figure 10(b) can also be identified for t = [0; 0.01]s even if the stability analysis gives
an initial growth rate of 0.047% for this “unstable” mode. This point will be more discussed in Appendix
when evolutions of modal projections for the reduced model will be compared with those of the full original
model.

3.3.2 Nonlinear self-excited vibrations and comparison with experiments

A typical brake squeal spectrum obtained via numerical simulations with the reduced basis is presented
in Figure 11 and compared with measurements that have been discussed in Section 2.3 (see also Figure
4). While some features are recognizable there are also clearly some significant differences. First of all,
some differences are observed in the frequency range [0; 2500]Hz: even if it is conceivable to correlate some
experimental and numerical frequency peaks, it is clearly shown that the experimental frequency peaks are
more distinct. Some similarities are also visible: for example, it can be distinguished two peaks around
3200Hz and 4600Hz for both experiments and numerical simulations. However, comparison of the peak
amplitudes are not quite the same order of magnitude. Then, the global magnitudes and the frequency
content and peak magnitudes appear to be more coherent between [500; 10000]Hz. Even if a deviation of the
frequency peaks are visible (around 5700Hz, 6200Hz, 7100Hz, 7500Hz and 8500Hz) , an agreement between
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Figure 10: Transient analysis of the TGV brake system with reduced basis (a) Normal velocity and (b)
complex modal projection where “Mi” defines the ith unstable mode

experiment and numerical tests is found. So it may be concluded that comparisons show some similarities
but also significant differences.

Finally, Figure 11 shows some frequency peaks that corresponds to the frequency of ’unstable modes”
that have been previously predicted by the stability analysis: two peaks of significant magnitude around
1100Hz and 2100Hz, and small peak amplitudes around 2700Hz, 7000Hz, 7500Hz and 10000Hz. It is recalled
that it has been shown that the modal projection of the first three modes (i.e. 1100Hz, 2100Hz and 2700Hz)
is the most significant participations in the temporal signals (as indicated in Figure 10(b)). However, new
frequency peaks (not previously predicted by the stability analysis) can appear in the signals, and so nonlinear
transient amplitudes can become more complicated. For example, new resonance peaks are predicted near
3200Hz, 4200Hz and 5700Hz. They can correspond to the harmonic component or combination frequencies
of fundamental frequencies: by defining f1 = 1100Hz and f2 = 2100Hz (i.e. the fundamental frequencies
or the first and second unstable modes), the frequency 4200Hz can be considered as the second harmonic
component of the fundamental frequency f2 (i.e. 2f2 = 4200Hz). The frequency 3200Hz may correspond to
the harmonic combinations f1 + f2. These results clearly demonstrated the need to consider both stability
and nonlinear analysis for undertaking transient nonlinear dynamic analysis of disc brake squeal: squeal
events are composed of not only fundamental frequencies of unstable modes (i.e. eigenvalues via stability
analysis) but also harmonic components and combination frequencies of several fundamental frequencies
generally induced by nonlinear features of the vibrations. As previously explained in [21], these results
show that the stability analysis of an sliding equilibrium point (classically used as the first step for friction-
induced vibration problem) only gives information about the initial rate of increase of TGV brake system’s
amplitudes. Due to nonlinear phenomena (in this case contact/no-contact) at the frictional interfaces over
time, new frequencies can be added in the signals and so the nonlinear transient and stationary solutions
can become more complicated.

4 Conclusion

First of all, this paper presents experimental analysis to understand the mechanism of TGV brake squeal.
Two main experimental configurations were performed based on transient braking tests (braking for TGV
industrial railway brakes by reducing the rotational speed of the disc) and controlled braking tests (i.e.
braking for TGV industrial railway brakes with a constant rotational speed). It was demonstrated that
experimental tests without decrease of the rotational speed of the disc is able to reproduce the major
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Figure 11: Comparisons of brake squeal spectrum via experimental and numerical approaches (in dB) (black
lines=experiments; dashed red lines=reduced basis)

dynamics over short time-scales. Then, even if the phenomenon of squeal can be complex, experiments
show that squeal can be clearly identified as the emergence of a finite number of frequencies regardless the
operating conditions.

Secondly, a complete finite element model of TGV brake system has been developed to model vibration
instabilities at the origin of disc brake squeal. Then, numerical methods dedicated to stability analysis,
transient computations and reduction basis for industrial models have been proposed. Numerical results are
in agreement with the experimental tests for the prediction of brake squeal.

Finally, it was demonstrated that not only the stability analysis but also the study of the transient-state
behavior have to be performed to better predict and understand TGV disc brake squeal.

Future work to be considered consists of calculating the acoustic levels from transient self-excited vibra-
tions and of defining new design of pads to reduce or eliminate self-excited vibrations on industrial railway
brakes.
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Appendix: Comparison between the full and reduced models

In this appendix, the efficiency and limitation of the reduced model will be investigated by comparing
evolution of the modal participations for the full model and the reduced basis.

First of all, Figure 12 shows velocity of the TGV brake system for the full model. We can see that the
proposed basis F s1000 gives good results comparing with the full model according to amplitudes of velocity.
The computation time for the full model is approximately 20 days. The reduced basis used allows dividing
by 6 times computation compared to the full model.

In order to validate the efficiency of the reduced basis, comparisons between the reduced and full models
are given in Figures 13 and 14(a) and (b) for the three most important modal participations (β1 (t), β2 (t)
and β3 (t)) and the others (β4 (t), β5 (t), β6 (t), β7 (t), β8 (t) and β9 (t)), respectively. It can be observed that
evolution of these modal participations βj (t) for the reduced model is also in agreement with the reference
solution (that is given by the full model): an increase of the modal contributions of modes 1, 2 and 3 are
observed in the first transient part of the solution (for t = [0; 0.01]s).

Showing Figure 13, it can be seen that during the first transition phase (for t = [0; 0.01]s), evolutions of
the modal participations β1, β2 and β3 are not exactly identical for the original full model and the reduced
basis. More specifically, for t = [0; 0.01]s, the initial growth rate of mode 1 (denoted |β1| in Figure 13)
is a little overestimated by the reduced model whereas the initial growth rate of mode 2 (denoted |β2| in
Figure 13) is a little underestimated. This alteration of the transient evolution of modal participations in
the temporal solution has been previously observed by Loyer et al. [22]. This fact may be due to an over
or under estimation of the growth rate instability with the reduced basis: reduction can lead to accelerating
or decelerating the evolution of the solution during the transient phase. For t > 0.01s, a good agreement
is observed between the reduced case and the reference: evolutions of the three modal participations β1,
β2 and β3 are of the same order of magnitude for both cases. Finally, the evolutions of the other modal
participations for the reduced case (β4 (t), β5 (t), β6 (t), β7 (t), β8 (t) and β9 (t)) are also in agreement with
those of the full model, as illustrated in Figure 14(a) and (b).

As previously explained in Section 3.3.1, the evolution of the system at the beginning of the time interval
is governed by the complex modes (complex mode shapes and eigenvalues) obtained by the stability analysis
computed around the sliding equilibrium point. So modes 2 and 3 that are the “most unstable” modes (i.e.
the complex modes with the most important growth rates) are predominant. The small increase of the
contribution of mode 1 is also consistent with the stability analysis: the slow rate can be due to the small
initial growth rate for mode 1 (i.e. 0.047%). This observation shows the limitation of the basis reduction:
even if the reduce base is adequate to reproduce the global nonlinear behavior of TGV brake system, some
differences in the evolution of the most important modal contributions remain.

Finally, Figure 15 gives the brake squeal spectrum obtained via numerical simulations (for both the full
model ) and a comparison with experimental results that have been discussed in Section 2.3. Even if some
similarities are shown (frequency peaks and amplitudes at 3200Hz, 4500Hz and 7400Hz but also around
7100Hz and 8500Hz with a slight deviation in frequency), some differences are still visible in the frequency
range [0; 2500]Hz.

These results show that we must remain cautious if full or reduced models are used for estimation of limit
cycles amplitudes. It also opens up future prospects for the construction of full or reduced bases even more
relevant to estimate not only the overall behavior but also the evolution in time of each modal participations.
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Figure 12: Normal velocity of the transient analysis for the full model
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Figure 13: Comparisons of the complex modal projections β1, β2 and β3 for the reference and the reduced
basis (black lines = reduced basis ; dashed red lines = reference)
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Figure 14: Comparison of the complex modal projection for the reference and the reduced basis (black lines
= reduced basis ; dashed red lines = reference)(a) β4 (t), β5 (t) and β6 (t) ; (b) β7 (t), β8 (t) and β9 (t)
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Figure 15: Comparisons of brake squeal spectrum via experimental and numerical approaches (in dB) (black
lines=experiments; dashed red lines=full model)
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