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Abstract— Technological solutions for obstacle detection

systems have been proposed to prevent accidents in safety

transport applications. In order to avoid the limits of these

proposed technologies, an obstacle detection system utilizing

stereo cameras is proposed to detect and localize multiple

objects at level crossings. Background subtraction is first

performed using the Color Independent Component Analysis

technique, which has proved its performance against other

well-known object detection methods. The main contribution

is the development of a robust stereo matching algorithm

which reliably localizes in 3D each segmented object. A

standard stereo dataset and real-world images are used

to test and evaluate the performances of the proposed

algorithm to prove the efficiency and the robustness of the

proposed video surveillance system.

Keywords: Level Crossing, Stereo Matching, Confidence Mea-

sure, Hierarchical Belief Propoagation, Color ICA.

1. Introduction
In recent years, public security has been facing an in-

creasing demand from the general public as well as from

governments. An important part of the efforts to prevent

the threats to security is the ever-increasing use of video

surveillance cameras throughout the network, in order to

monitor and detect incidents without delay. Existing surveil-

lance systems rely on human observation of video streams

for high-level classification and recognition. The typically

large number of cameras makes this solution inefficient

and in many cases unfeasible. Although the basic imaging

technologies for simple surveillance are available today, the

reliable deployment of them in a large network is still

ongoing research.

In the context of railway transport, one of the major

issues is the monitoring of linear infrastructures such as

railway tracks and level crossings (LC) which represent an

interaction between a road and a railway track. The latter

represents what is called extended perimeters. Numerous

acts of malevolence occur in those areas. One can refer in

particular to: objects hanging from catenaries, objects that

may explode under the ballast and obstacles at LC. Trans-

portation network could be interrupted aiming at causing

economical damage or damaging a symbolic landmark.

The advanced surveillance system we intend to present

here after relates to problems of safety and security at LC.

For some years, road and railways operators have shown

growing interest in improving the safety and security of level

crossings (LCs). They have been identified as a particular

weak point in the safety of road and railway infrastructures.

Road and highway safety professionals from several coun-

tries have dealt with the same subject: providing safer LCs.

Recently, the EU’s FP6 SELCAT project [1] (Safer European

Level Crossing Appraisal and Technology), has provided

recommendations for actions and evaluation of technological

solutions to improve the safety at LCs. A new French project

entitled PanSafer [2] aims at proposing such technologies,

building upon the results provided by SELCAT. The present

work is developed as part of PanSafer.

High technology systems are developed so as to avoid

collisions between trains and road vehicles. Nevertheless,

high safety requirements may mean a costly systems which

will hinder their actual use. Systems which have unaccept-

able levels of false/missed detection have adverse effects

and should not be implemented either. Some conventional

object detection systems have been tested at level crossings,

and provide more or less significant information. Referring

to the literature, little research has focused on passive

vision to solve the problems at LCs. Among the existing

systems, two of them based on CCTV cameras are to be

distinguished: a system using a single camera [3]. It uses a

single CCD camera placed on a high pole in a corner of the

LC, classifying objects as cars, bikes, trucks, pedestrians,

dogs, papers, etc., and localizing them according to the

camera calibration, assuming a planar model of the road and
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railroad. This system is prone to false and missed alarms

caused by fast illumination changes or shadows. A system

using stereo cameras [4], with a stereo matching algorithm

and 3D background removal. This system more or less

detects vehicles and pedestrians by day and night under usual

weather conditions, but it is extremely sensitive to adverse

weather conditions, like heavy rain, fog or snow.

This paper is organized as follows: after an introduction

covering the problem, we describe the requirements of the

LC’s application in Section 2 and our proposed system in

Section 3. We present in Section 4 the background subtrac-

tion technique to highlight the moving objects in the scene.

Section 5 is dedicated to outlining a robust approach for 3D

localization of the moving objects. Results are detailed in

Section 6. The conclusion is devoted to a discussion on the

obtained results, and perspectives are provided.

2. Requirements

The most reliable solution to decrease the risk and ac-

cident rate at level crossings is to eliminate unsafe railroad

crossings. This avoids any collisions between trains and road

users. Unfortunately, this is impossible in most cases, due

to location feasibility and cost that would be incurred. For

instance, almost 10 million Euros per year are earmarked

for the removal of the most dangerous level crossings in

France. To overcome these limits, the development of a new

obstacle detection system is required. Any proposed system

is not intended to replace the currently equipment installed

on each level crossing. The purpose of such a system is to

provide additional information to the human operator, it can

be considered as support system operations. This concerns

the detection and localization of any kind of objects, such as

pedestrians, people on two-wheeled vehicle, wheelchairs and

car drivers. Presently, sensors are evaluated relying on their

false object detection alert among other. This may increase

the risk related to level crossing users. It is important to

be noted that risks associated with the use of technology

systems are becoming increasingly important in our society.

Risk involves notions of failure and consequences of failure.

Therefore, it requires an assessment of dependability; this

might be expressed, for example, as probability of failure

upon demand, rate of occurrence of failures, probability of

mission failure, and so on. Each level crossing is equipped

with various sensors for timely detection of potentially

hazardous situations. To be reliable, the related information

must be shared and transmitted to the train dispatching

center, stations, train drivers and road users. Generally, most

level crossings are fitted with standard equipments such as

lights, automatic full or half barriers, notices. This equipment

warns and prevents all users of the level crossing if a train

is approaching the dangerous area.

3. Overview of the System

Our research aims at developing an Automatic Video-

Surveillance (AVS) system using the passive stereo vision

principle. The proposed imaging system uses two cameras

to detect and localize any kind of object lying on a

railway level crossing. The system supervises and estimates

automatically the critical situations by detecting objects in

the hazardous zone defined as the crossing zone of a railway

line by a road or path. The AVS system is used to monitor

dynamic scenes where interactions take place among objects

of interest (people or vehicles). After a classical image

grabbing and digitizing step, this architecture is composed

of the two following modules:

– Motion detection module: the first step consists

in separating the motion regions from the background.

It is performed using Independent Component Analysis

(ICA) technique for high-quality motion detection. The

color information is introduced in the ICA algorithm that

models the background and the foreground as statistically

independent signals in space and time. Although many

relatively effective motion estimation methods exist, ICA is

retained for two reasons: first, it is less sensitive to noise

caused by the continuously environment changes over time,

such as swaying branches, sensor noise, and illumination

changes. Second, this method provides clear-cut separation

of the objects from the background, and can detect objects

that remain motionless for a long period. Foreground

extraction is performed separately on both cameras. The

motion detection step allows focusing on the areas of

interest, in which 3-D localization module is applied.

– 3-D localization module: this process applies a specific

stereo matching algorithm to obtain a 3D localization of the

detected objects. In order to deal with poor quality images, a

selective stereo matching algorithm is developed and applied

to the moving regions. First, a disparity map is computed

for all moving pixels according to a dissimilarity function

entitled Weighted Average Color Difference (WACD) [5].

An unsupervised classification technique is then applied to

the initial set of matching pixels. This allows to automati-

cally choose only well-matched pixels. A pixel is considered

as well-matched if its correspondant which is obtained

thanks to a given stereo matching algorithm, is the true

correspondant. However, all true correspondants are given by

the ground truth which allows to verify the accuracy of the

applied matching algorithm. The classification is performed

applying the Confidence Measure technique detailed in [6].

It consists in evaluating the result of the likelihood func-

tion, based on the "winner-take-all" strategy. However, the

pixels constituting each object are then estimated applying a

hierarchical belief propagation technique detailed in Section

5.3.
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4. Background Subtraction by Indepen-

dent Component Analysis

4.1 Related work

Real environments are much more complex than indoor

environments and require advanced tools to deal, for in-

stance, with sharp brightness variations. Another aspect

that must be dealt with is the motion in the background,

such as swaying branches, illumination changes, clouds,

shadows, and sensor noise. Background subtraction is one

of the motion detection methods introduced to extract the

foreground objects from a reference background in an image

sequence. In recent years, another set of techniques has

emerged to cope with the problem of foreground estimation.

The Independent Component Analysis (ICA) technique is

getting much attention in video processing. It was introduced

in the 1980s [7] in the context of neural network modeling.

The purpose of ICA is to restore statistically independent

source signals, given only observed output signals without

knowing the mixing matrix of the sources. Zhang and Chen

[8] have introduced the spatiotemporal ICA method to model

a video sequence for background subtraction. Their scheme

tries to extract a set of mutually independent components

from a given mixture of two signals representing respectively

a background and an image containing an arbitrary object.

Recently, Tsai and Lai [9] have proposed an improved

ICA scheme for background subtraction without background

updating in indoor environment, but this method proves

its effectiveness with a stationary monochrome camera.

Their work is limited to an indoor environment with small

environmental changes, and only uses monochrome image

sequences.

4.2 Motion detection by Independent Compo-

nent Analysis

ICA can be defined as a statistical and computational

technique for revealing hidden factors that underlie sets of

random variables, measurements or signals. It is a special

case of blind source separation. ICA defines a generative

model for separating the observed multivariate data that are

mixtures of unknown sources without any previous knowl-

edge. Its aim is to find the source signals from observation

data. In the model, the data variables are assumed to be linear

mixtures of some unknown latent variables, and the mixing

system is also unknown. The latent variables are assumed to

be non-Gaussian and mutually independent; they are called

the independent components of the observed data. These

independent components, also called sources or factors, can

be found using ICA as shown in Figure 1:

An ICA algorithm can be seen as a convolution between

two signals. More the signals are similar, smaller are the

result values. In Figure 1, the intensity of pixels of the white

lines on the road in the two images are very similar. The

difference between these two signals gives a small value.

����

��� ��

Fig. 1: Principle of the background subtraction using Inde-

pendent Component Analysis. The input data is a combina-

tion of a reference signal, i.e. background image (top left

image), and a given signal, i.e. an image from the sequence

(bottom left image). ICA algorithm allows separating the

input data into two independent signals: The one corresponds

to the background model (top right image), the other cor-

responds to the estimated foreground without any details of

the background (bottom right image).

The smaller the value, the darker the corresponding pixel.

For background subtraction, the Color ICA model outputs

three channels, each linked to a color component of the

processed image: Red, Green or Blue. The channel with

the highest signal/noise ratio is used to perform the motion-

based segmentation process. The foreground segmentation is

based on a threshold calculated from the histogram of the

considered output channel. The threshold is estimated using

the following procedure: each pixel in the output channel

belongs to a class representing a color level. The color value

corresponding to the class with the highest number of entries

is taken as threshold (the entries of a class represent the

number of pixels with a color corresponding to this class).

Therefore, the foreground object can be easily extracted from

the estimated source according to its Gaussian distribution.

In order to cope with outdoor environments, our frame-

work aims at developing a novel Color-based Independent

Component Analysis (CICA) model for motion detection

in a color image sequence. Initially, the ICA algorithm

is performed in order to initialize the de-mixing matrix.

The data matrix can be formed by both a random back-

ground image, and another image containing the foreground

objects, if any. The estimated source image corresponds

to the modeled background and foreground images: one

represents only the background source and the other contains

the foreground object, without the detailed contents of the

reference background. Figure 2 illustrates the synoptic of the

algorithm. In our case, an image containing a foreground

object is naturally independent, in time and space, from the

background. The two color images taken as an input to CICA

are coupled in a matrix termed data matrix. CICA aims

at separating the mixed signal into six separated signals:

three channels per image, each channel representing a color
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Fig. 2: Global scheme of the CICA model for the object

detection module.

component, for the foreground and background images.

The inverse of the mixing matrix, called de-mixing matrix,

is estimated by the FastICA algorithm [10]. The estimated

source images contain only the foreground object in a uni-

form region without the detailed contents of the background.

The FastICA algorithm is based on a fixed-point iteration

scheme maximizing non-Gaussianity as a measure of statis-

tical independence. It attempts to find a set of independent

components by estimating the maximum negentropy. The

FastICA algorithm uses an approximation of the Newton

method, tailored to the ICA problem, and provides fast

convergence with little computation per iteration. In order

to make this estimate, the algorithm iteratively searches for

the weight set matrix of a neural network from a data

set that properly separates the data signal mixtures into

independent components. Let E{X.XT } be the covariance

matrix of the data matrix X . The nth iteration of the search

loop makes an estimate of the nth weight vector. Note that

an intuitive interpretation of the contrast functions is that

they are measures of non-normality. However, the estimated

source signals are termed independent components. The

iterative algorithm finds the direction for the weight matrix

W maximizing the non-Gaussianity of the projection WTX
for the data matrix X . The FastICA algorithm is described

in Algorithm 1.

The observed mixture signal X is a linear combination of

an unknown independent source signal S and an unknown

Algorithm 1 FastICA Algorithm.

1. Take a random initial guess for the weights associated with component
Wi,0 of norm 1.

2. Find Wi,n = E{x.g(WT
i,n−1

.x)} − E{g
′

.Wi,n−1}.Wi,n−1, where

x is an observation from X an g is a contrast function(see discussion
of the choice of g function in [10]).

3. Divide wn by its norm.

4. If |WT
n .Wn−1| is not close enough to one, then increment n and

repeat starting at step 2.
5. Repeat, starting at step 1, until all weights are found.

de-mixing matrix W . It can be expressed as:

S = W.X (1)

Let the sample image Ix,y,k be of size (3, h.w), where

x = 1...w, y = 1...h, k = {r, g, b}, h and w are the height

and the width of the image respectively. Each channel k is

organized as a row vector of l = (h.w) elements. Let Xk
bg =

[xk
bg,1, ..., x

k
bg,l] be the signal corresponding to channel k

of the background image, and Xk
fg = [xk

fg,1, ..., x
k
fg,l]

the signal corresponding to channel k of the background

containing an arbitrary object. Let data matrix X be of size

(6, h.w), and defined as:

X =






xk
bg,1 · · · xk

bg,l

...
. . .

...

xk
fg,1 · · · xk

fg,l




 (2)

The de-mixing matrix W is of size 6x6. Each row is a

weight vector that enables maximizing the independence be-

tween the different color channels. The foreground detection

process is performed using CICA which is divided into two

steps: noise modeling over a training period, and moving

object detection. An example of an estimated background

and noise models is shown in Figure 3. As mentioned

previously, FastICA algorithm allows estimating independent

signals from a mixture of these signals. The output signals

corresponds to the difference between the input signals.

In our case, it corresponds to the variation of intensities

of pixels between two consecutive images. In the noise

modeling module, a set of background images is selected

manually to initialize the CICA model. The input data

signal to the CICA, i.e. the data matrix, is formed by two

consecutive frames providing, after performing the FastICA

algorithm, a noise model. This operation is carried out during

the training set. At the end of the training step, all elementary

noise models are combined into only one model. For each

incoming image from the sequence, a consecutive set of

background images is selected automatically for noise model

updating. An image is considered as a background if no

motion is detected. The noise model will be used in the

detection stage to de-noise the output signal for a better

detection. In the detection stage, the mixed signal is formed

by two images: a background image and a scene image
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containing a foreground object. The noise model is updated

during the detection period when the scene does not contain

any moving object.

Fig. 3: Noise modeling using ICA: (left) The n background

images taken as input for ICA model (right) The two outputs

of the model are the background model and the noise model.

Indeed, this technique leads to the detection of any

kind of objects such as pedestrians, cars or arbitrary

objects. Furthermore, one can highlight the advantages

of this technique. First, the very small objects can be

detected easily. Second, unlike other foreground detection

techniques, CICA does not absorb a stationary object

into the background. Therefore, the period during which

an object is motionless does not affect the detection

performances.

Unlike the existing methods based on a background sub-

traction scheme, the proposed CICA is less dependent on

the background model. All swaying branches and illumina-

tion changes causes an uniform noise in the independent

component obtained from the CICA which corresponds to

the foreground signal. This uniform noise can easily be

removed by filtering the foreground image with a gaussian

filter for instance. For a qualitative evaluation of the CICA

model, a set of real world image sequences are used. The

most challenging dataset is the one containing swaying

branches and clouds. This dataset is collected in a parking in

Lausanne, switzerland. Figure 4 shows a white car in motion

in difficult weather conditions. The CICA is compared to two

well known methods which are Mixture of Gaussian [11],

and Codebook [12]. In Figure 4(f), the foreground signal of

our proposed method is not binarized in order to visually

highlight the quality of results. For the other methods (d)

and (e), the choice of the threshold is a real challenge: the

bigger the threshold, the fewer the foreground pixels, and

vice versa. In our case, the background of the estimated

foreground is uniform. This allows to easily extract the real

foreground.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Example of foreground detection in a parking of the

EPFL in Switzerland. (a) Background image that contains

no object in motion, (b) image from the sequence con-

taining a moving white car with the presence of swaying

branches (c) ground truth highlighting moving objects only

(d) foreground objects obtained by Codebook technique (e)

foreground objects obtained by MOG method (f) foreground

objects obtained by our proposed CICA method.

An additional axamples of foreground extraction are given

by the Figure 5. The first line corresponds to a pedestrian

crssiong a LC in France in sunny weather. The second and

the third line corresponds to a level crossing in "Pontet" in

Switzerland in cloudy weather.

5. Stereo matching for robust 3D local-

ization

The two-frame stereo matching approaches allow comput-

ing disparities and detecting occlusions, assuming that each

pixel in the input image corresponds to a unique depth value.

The stereo algorithm described in this section stems from the

inference principle based on hierarchical belief propagation

and energy minimization.

It takes into account the advantages of local methods

for reducing the complexity of the Belief Propagation

method which leads to an improvement in the quality of

results. A Hierarchical Belief Propagation (HBP) based on

a Confidence Measure technique is proposed: first, the data

term (detailed in Section 5.1) is computed using Weighted

Average Color Difference dissimilarity function (WACD)

[5]. The obtained 3D volume allows initializing the Belief

Propagation graph by attributing a set of possible labels (i.e.

disparities) for each node (i.e. pixels). The originality is to

consider a subset of nodes among all the nodes to begin

the inference algorithm. This subset is obtained thanks to

a confidence measure computed at each node of a graph

of connected pixels. Second, the propagation of messages

between nodes is performed hierarchically from the nodes

having the highest confidence measure to those having the
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(a) (b) (c)

Fig. 5: Several objects at level crossings. (a) Original im-

ages containing pedestrians, cars and a stationary object

(b) Estimated signal corresponding to foreground signal (c)

Superimposition of the segmented moving objects into the

original image.

lowest one. A message is a vector of parameters (e.g. pos-

sible disparities, (x, y) coordinates, etc.) that describes the

state of a node. To begin with, the propagation is performed

within each homogeneous color region and then passed from

a region to another. The set of regions is obtained by a color-

based segmentation using the MeanShift method [13]. In

level crossings, the motion constraint is also employed in the

matching process in order to reduce both the matching error

rate and the processing time. However, the 3-D localization

step concerns only the pixels in motion. A summary of our

algorithm is given in Algorithm 2.

Algorithm 2 Hierarchical Belief Propagation.

1) Initialize the data cost for nodes in the graph using the method in [5].

2) Compute a Confidence Measure ψ(px→x′,y) for each node.
3) Repeat steps a, b, c and d for each node

a) Select node (i.e. pixel) Nodei, i being the node number, having
a data term lower than a confidence threshold ̺.

b) Select the k-nearest neighbor nodes within a cubic 3D support

window that have a ψ(px→x′,y) greater than ̺.
c) Update the label of the current node.
d) Update the weight of the current node.

4) Repeat step 3) until reaching minimal energy.

5.1 Global Energy Minimization

The global energy to minimize is composed of two

terms: data cost and smoothness constraint, noted f and f̂
respectively. The first one, f , allows to evaluate the local

matching for each node by attributing a label l to a given

node in a graph G. The second term, f̂ , allows to evaluate

the smoothness constraint by measuring how well label l

fits pixel p given the observed data. The smoothness term is

considered as the amount of difference between the disparity

of neighboring pixels [14] [15]. This can be seen as the cost

of assigning a label l
′

to a node during the inference step.

The Global Energy Minimization function can be formulated

as follows (Equation 3):

E(G) = El∈L(f) + El
′
∈L

(f̂) (3)

The minimization of this energy is performed iteratively

by passing messages between all the neighboring nodes.

These messages are updated at each iteration, until

convergence. However, a node can be represented as a

pixel having a vector of parameters such as, typically, its

possible labels. Several studies [16] [17] [18] have proposed

ways to improve the processing time of the inference

process. However, reducing the complexity of the inference

algorithm leads in most cases to reduced matching quality.

Other algorithm variants can be derived from this basic

model by introducing additional parameters in the message

to be passed. A compromise must be found between the

reliability and the computational cost. One of the important

parameters is the spatio-colorimetric proximity between

nodes [19].

– The data term we propose can be defined as a local

evaluation of attributing a label l to a node. It is given by

Equation 4:

El∈L(f) =
∑

p

α φx→x′,y(z1) (4)

where L is the set of all the possible disparity values

for a pixel, and φx→x′,y(z1) is the cost obtained according

to the WACD likelihood function of the couple of pixels

(px,y, px′,y). z1 represents the first retained candidate having

the lower cost. Parameter α is a fuzzy value within the

[0,1] interval. It allows computing a confidence measure for

attributing a disparity value d to the pixel p. α is given by

Equation 5:

α =

{

ψ(px→x′,y) if ψ(px→x′,y) > ̺
0 otherwise

(5)

Whereψ(px→x′,y) is a confidence measure computed

for each pair (px,y, px′,y) of matched pixels and ̺ is a

confidence threshold. The way of computing the confidence

technique is detailed in section 5.2.

– The smoothness term is used to ensure that neighboring

pixels have similar disparities.

5.2 Confidence Measure Computation

Using the WACD dissimilarity function allows initializing

the set of labels. It represents a first estimate of the disparity

map which contains matching errors. Then, each pair of
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pixels is evaluated using the Confidence Measure method

described in [6]. The likelihood function used to initialize

the disparity set is applied to each pixel of the image.

Furthermore, for each matched pair of pixels a confidence

measure is computed. It is termed ψ(px,y
l , px′,y

r ) which

represents the level of certainty of considering a label l as the

best label for pixel p. px,y
l and px′,y

r represent the pixels in

the left and right image respectively, whose coordinates are

(x, y) and (x′, y). This confidence measure function depends

on several local parameters and is given by Equation 6:

ψ(px,y
l , px′,y

r ) = P (px′,y
r /px,y

l , ρ,min, σ, ω) (6)

The confidence measure with its parameters is given by

Equation 7:

ψ(px,y
l , px′,y

r ) =

(

1 − min

ω

)τ2log(σ)

(7)

Where

– Best Correlation Score (min): The output of the

dissimilarity function is a measure of the degree of

similarity between two pixels. Then, the candidate

pixels are ranked in increasing order according to their

corresponding scores. The couple of pixels that has

the minimum score is considered as the best-matched

pixels. The lower the score, the better the matching.

The nearer the minimum score to zero, the greater the

chance of the candidate pixel to be the actual correspondent.

– Number of Potential Candidate Pixels (τ ): This

parameter represents the number of potential candidate

pixels having similar scores. τ has a big influence because

it reflects the behavior of the dissimilarity function. A

high value of τ means that the first candidate pixel is

located in a uniform color region of the frame. The lower

the value of τ , the fewer the candidate pixels. If there

are few candidates, the chosen candidate pixel has a

greater chance of being the actual correspondent. Indeed,

the pixel to be matched belongs to a region with high

variation of color components. A very small value of τ
and a min score close to zero, means that the pixel to be

matched probably belongs to a region of high color variation.

– Disparity variation of the τ pixels (σ): A disparity

value is obtained for each candidate pixel. For the τ
potential candidate pixels, we compute the standard

deviation σ of the τ disparity values. A small σ means

that the τ candidate pixels are spatially neighbors. In this

case, the true candidate pixel should belong to a particular

region of the frame, such as an edge or a transition point.

Therefore, it increases the confidence measure. A large σ
means that the τ candidate pixels taken into account are

situated in a uniform color region.

– Gap value (ω): This parameter represents the

difference between the τ th and (τ + 1)th scores given with

the dissimilarity function used. It is introduced to adjust the

impact of the minimum score.

To ensure that function ψ has a value between 0 and

1, a few constraints are introduced. The min parameter

must not be higher than ω. If so, parameter ω is forced

to min + 1. Moreover, the log(σ) term is used instead of

σ, so as to reduce the impact of high value of σ and obtain

coherent confidence measures. The number τ of potential

candidate pixels is deduced from the L scores obtained

with the WACD likelihood function. The main idea is to

detect major differences between successive scores. These

major differences are called main gaps. Let φ denote a

discrete function which represents all the scores given by

the dissimilarity function in increasing order. We introduced

a second function denoted η, which represents the average

growth rate of the φ function. η can be seen as the ratio of

the difference between a given score and the first score, and

the difference between their ranks. This function is defined

in Equation 8:

η(φx′,y) =
φx′,y(zm) − φx′,y(z1)

zm − z1
m ∈ L (8)

where φx,y′

(zm) is the likelihood cost obtained for the

couple of pixels (px,y, px′,y), zm is the rank of the pixel

px′,y . η(φx′,y) is a discrete function that allows to highlight

the large gaps between scores. It is materialized using

Equation 9:

ξ(φx′,y) =

{

∇ηx
′
,y

m2 if ∇ηx′,y > 0
−1 otherwise

(9)

The previous function (Equation 7) is used to characterize

the major scores and is applied only in the case where the

gradient ∇ηx′,y has a positive sign. We have introduced

parameter m2 in order to penalize the candidate pixels

according to their rank. The number of candidate pixels is

given by Equation 10:

τ = arg max
m

ξ(φx′,y) (10)

Figure 6 shows the percentage of well-matched pixels

depending on the confidence measure parameter. The rate

of well-matched pixels varies depending on the complexity

of each pair of stereo images. A scene containing many tex-

tureless, uniform, or occluded regions decrease the number

of well-matched pixels, and vice versa. According to Figure

6, the number of well-matched pixels drops dramatically

with a high confidence threshold for Cones and Teddy stereo

images. In this case, the ambiguity of matching of most

pixels is expressed by a small confidence measure. This is

not the case for Venus and Tsukuba stereo images. For these
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latters, the ambiguity of matching decreases because of a

high local color variation of most of pixels.

(a) (b)

(c) (d)

Fig. 6: Percentage of well-matched pixels vs. confidence

measure threshold in non occluded regions (nonocc), all

regions (all) and depth-discontinuity regions (disc) for (a)

Cones, (b) Teddy, (c) Venus and (d) Tsukuba datasets.

5.3 Hierarchical Belief Propagation for dispar-

ity enhancement

All the matched pixels can be modeled as a set of nodes in

an undirected graph. Typically, the inference algorithm based

on a belief propagation method [20], [21] can be applied to

achieve the optimal solution that corresponds to the best

disparity set. A set of messages are iteratively transmitted

from a node to its neighbors until convergence. Referring to

this basic framework, all the nodes have the same weight,

meaning that a message is passed from a node to all its

neighbors. The main drawback is that several erroneous

messages might be passed across the graph, leading to an

increased number of iterations without guarantee of reaching

the best solution. Several works have tried to improve the

performances of the message passing step of the standard

belief propagation method. The proposed HBP technique

allows both improving the quality of results and speeding

up the inference step.

The messages are passed across the graph is as follows:

we consider a cubic support window centered on the node

to be updated. The latter receives messages only from

the k-nearest neighbors obtained according to both their

spatial proximity in the disparity space and their confidence

measure. However, the nodes having homogeneous disparity

values and a high confidence measure are activated. Let Ω
be the set of neighbor nodes which have a high confidence

measure within the cubic support window of edge β. The

subset of nodes, denoted by Ω∗ ⊂ Ω, is chosen according

to Equation 11.

Ω∗ :

{

pi/
1

N

N∑

k=1

∆(pi, pk)

︸ ︷︷ ︸

di

< Z

}

; i ∈ Ω and Z = β
√

3

(11)

The disparity of the central node of the support window

is updated according to Equation 12.

d̂ =
1

∑

i∈Ω∗ di

N∑

k=1

dispk.dk; i,N ∈ Ω∗ (12)

where ∆(pi, pk) is the Euclidian distance between node pi

and node pk in R
3, and Z is the diagonal of the cubic support

window of edge β. According to Equation 11, noisy nodes,

characterized by a high confidence measure and an outlying

disparity value, are eliminated. This reduces the errors in

the high level of the message passing step and enables to

decrease significantly the number of iteration, which leads

to reach the optimal solution quickly.

The main ideas of the HBP are detailed below:

– The confidence measure is used to assign a weight to

each node in the graph. At each iteration, messages are

passed hierarchically from nodes having a high confidence

measure (i.e. high weight) to nodes having a low confidence

measure (i.e. small weight). A high weight means a high

certainty of the message to be passed. The weights of the

nodes are updated after each iteration, so that a subset of

nodes is activated to be able to send messages in the next

iteration.

– The propagation is first performed inside a consistent

color region, and then passed to the neighboring regions.

The set of regions is obtained by a color-based segmentation

using the Mean Shift method [13].

– In our framework, the messages are passed differently

from the standard BP algorithm. Instead of considering the

4-connected nodes, the k-nearest neighboring nodes are

considered. These k-nearest neighboring nodes belong to

a cubic 3D support window. We assume that the labels of

nodes vary smoothly within a 3D support window centered

on the node to be updated.

6. Experimental Results

The effectiveness of the proposed system is evaluated on

both standard and real dataset. Each module is evaluated

separately due to the unavailability of a conventional ground
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(a) (b) (c)

Fig. 7: (a) Standard messages passing principle of the belief propagation technique (b) iteration i of the proposed Hierarchcal

Belief Propagation (HBP) based on the k-nearest neighbors having high confidence measure (c) iteration i+ 1 of the HBP.

The black square points denote pixels having a confidence measure higher than a fixed confidence threshold. The confidence

of a given pixel can be upadted at the ith iteration, and then can be used in the (i+ 1)th iteration.

truth for motion estimation and 3D localization at a Level

crossing.

The proposed stereo matching algorithm is evaluated on

the Middlebury stereo benchmark [22], using the Tsukuba,

Venus, Teddy and Cones standard datasets and on real world

datasets. The evaluation concerns non occluded regions

(nonocc), all regions (all) and depth-discontinuity regions

(disc). In the first step of our algorithm, the WACD likeli-

hood function is performed on all the pixels. Applying the

“winner-take-all" strategy, a label corresponding to the best

estimated disparity is attributed to each pixel. The second

step consists in selecting a subset of pixels according to

their confidence measure. Indeed, the pixels having a low

confidence measure generally belong to either occluded or

textureless regions. However, the subset corresponding to

the well-matched pixels is taken as the starting point of

the hierarchical belief propagation module. We begin by

evaluating the selective approach of attributing a confidence

measure to each matched pair. Figure 6 shows the percentage

of well-matched pixels depending on the confidence measure

parameter. The higher the confidence measure, the greater

the rate of well-matched pixels.

The experimental results are obtained by using the set of

parameter settings summarized in Table 1. The likelihood

function has a single parameter Lsw, the size of the sup-

port window. Then, the hierarchical belief propagation is

performed by setting a confidence threshold ̺cm and the

k-nearest neighbors (knn) before the inference step. The

homogeneous color regions in which the propagation is per-

formed are obtained by the Mean Shift color segmentation

algorithm. It depends on the spatial bandwidth αms, the

color bandwidth βms, and the minimum region size γms

parameters.

A first qualitative evaluation is proposed. Our framework

compared to the efficient belief propagation detailed by

Felzenszwalb [14]. The latter is a technique for speeding up

the standard belief propagation combining three techniques:

Mean Shift WACD Hierarchical BP

αms βms γms Lsw knn ̺cm

7 7 15 7 6 0.6

Table 1: Parameter settings used in the experiments

the linear time message updates, the bipartite graph message

passing schedule by computing messages "in place", and

the multi-grid method for performing BP in a coarse-to-

fine manner. The evaluation is performed on the Middlebury

datasets. Figure 8 shows the disparity map obtained with

the WACD likelihood function, and the distribution of well-

matched pixels obtained with a confidence threshold of

60%. The disparity of the remaining pixels is estimated by

performing the HBP. This allows obtaining a dense disparity

map.

Quantitatively, our method has been compared to several

other methods from the literature. These methods are H-

Cut [23], max-product [14] and PhaseBased [24]. Table

2 provides quantitative comparison results between these

three methods and the proposed one. This table shows

the percentage of pixels incorrectly matched for the non-

occluded pixels (nonocc), the discontinuity pixels (disc),

and for all the matched pixels (all). More specifically, the

proposed method is better for Tsukuba in "all" and "disc"

pixels, in Venus for "disc" pixels and in Cones for "all"

pixels.

Figure 9 illustrates an example of two objects extracted

from the Cones and Teddy images, respectively. The face

extracted from Cones corresponds to an non-occluded region

while the teddy bear corresponds to a depth discontinuity

region. This proves that the propagation of disparities pre-

serves the discontinuity between regions and gives a good

accuracy in terms of matching pixels in the non-occluded

regions.

Several evaluations of our algorithms have been carried

out in real world situations. For this purpose, datasets have
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(a) (b) (c) (d) (e) (f)

Fig. 8: Dense disparity map obtained with our algorithm compared to the max-product algorithm [14] (a) Standard test sets.

Top to bottom: Cones, Teddy, Venus and Tsukuba (b) Ground truth for visual comparison. (c) Dense disparity map obtained

applying the WACD likelihood function (d) Well-matched pixels having a confidence measure greater than 60% (e) Dense

disparity map obtained from our algorithm (f) Dense disparity map obtained using the max-product formulation of the BP.

(a) (b) (c) (d) (e) (f)

Fig. 9: Different steps of our algorithm in different types of regions. (a) Left image for Cones and Teddy(b) Segmented

face and teddy bear extracted from the Cones and Teddy images, respectively, using Mean Shift (c) Dense disparity map

obtained using WACD (d) Sparse disparity map corresponding to the well-matched pixels, with 60% confidence threshold

(e) Dense disparity map after performing the HBP (f) Corresponding groud truth.

been acquired, composed of a hundred real scenarios of cars,

pedestrians, objects, etc., crossing different LCs in France

and Switzerland. These scenarios are either real events, or

played by actors in order to increase the number and variety
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Algorithm Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

H-Cut 2.85 4.86 14.4 1.73 3.14 20.2 10.7 19.5 25.8 5.46 15.6 15.7

Proposed 4.87 5.04 8.47 3.42 3.99 10.5 17.5 20.8 28.0 7.46 12.5 13.3

Max-Product 1.88 3.78 10.1 1.31 2.34 15.7 24.6 32.4 34.7 21.2 28.5 30.1

PhaseBased 4.26 6.53 15.4 6.71 8.16 26.4 14.5 23.1 25.5 10.8 20.5 21.2

Table 2: Algorithm evaluation on the Middlebury dataset

of cases, and allow evaluating in depth the accuracy of our

obstacle detection system in terms of objects extraction and

3D localization (cf. Figure 10).

(a) (b)

(c) (d)

Fig. 10: (a) Left-hand image (b) Moving car extracted by

CICA (c) Disparity map obtained by WACD likelihood

function. The red pixels are false matches (f) Improved

disparity map using Confidence Measure.

The different steps described in the previous sections are

illustrated in Figure 10, showing a car crossing a LC in

Lausanne (Switzerland). CICA is applied to the left-hand

image. The segmentation results are used as motion con-

straints to the stereo matching process, yielding quite often

several disparity values for each detected foreground point.

The false matches corresponding to wrong disparity values

are detected automatically using the confidence measure

technique. However, the final disparity map obtained for

each object allows locating very precisely each object at

the LC. The foreground extraction method based on CICA

has already been evaluated in terms of Recall (95%) and

Precision (98%), on a set of 300 images with manually

elaborated ground truth.

The introduction of the confidence measure in the match-

ing process improves the accuracy of the disparity of each

segmented object. The disparity allows estimating the 3-

D position and spatial occupancy rate of each segmented

object. The transformation of an image plane point p =
{x, y} into a 3-D reference system point P = {X,Y, Z}
must be performed. The distance of an object point is

calculated by triangulation, assuming parallel optical axes:

Z =
b.f

d
(13)

Where

– Z is the depth, i.e. the distance between the sensor camera

and the object point along the Z axis,

– f is the focal length, i.e. the distance between the lens

and the sensor, supposed identical for both cameras,

– b is the baseline, i.e. the distance separating the cameras.

– d is the estimated disparity.

In complex images containing noise or complex structures,

even the above methods are prone to false matching causing

errors in the 3D localization. Figure 11 shows such a case,

in which high sensor noise and the low contrast texture of

the car yield a very noisy disparity map (cf. Figure 11).

The confidence measure is used to retain only the matched

pairs having a high confidence value, so as to increase

the robustness. Then, HBP is used to fill the homogenous

regions to which those matched pairs belong. This allows

eliminating the disparity noise caused by spurious matches,

while retaining the disparity gaps between adjacent regions

corresponding to objects at different distances. Occlusions

are thus dealt with in a satisfactory manner for the applica-

tion, instead of being mistakenly merged.

Figure 12 illustrates another important feature of the

combined CICA + stereo matching approach, which allows

in a first step to retain only the moving foreground of the

scene (b), which is then separated into different objects using

stereo vision (c, d). An interesting feature of the CICA

approach for foreground segmentation is that, unlike other

methods, it allows to retain an object that has moved into

the scene but then has remained stationary, even for a long

time. This is the case of the chessboard-like test card visible

in Figure 12, as well as cars stopped at or on the LC - a very

important feature in our application, since they are exactly

what we need to detect.
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(a) (b)

(c) (d)

Fig. 11: Results obtained using HBP based on confidence

measure (a) Left-hand image (b) Sparse disparity map

obtained using WACD in the moving regions (c) Well-

matched pixels estimated using the confidence measure with

a threshold of 80% (d) Final disparity map.

7. Conclusions and perspectives

In this paper we have proposed a processing chain

addressing safety at level crossings composed of a

foreground extraction based on CICA followed by a robust

3D localization. The latter proves it effectiveness compared

to stereo matching algorithms found in the literature. The

experimentations showed that the method is applicable

to real-world scenes in level crossing applications. The

foreground extraction method based on CICA has already

been evaluated in terms of Recall (95%) and Precision

(98%), on a set of 300 images with manually elaborated

ground truth. Real-world datasets have been shot at four

different level crossings including a hundred scenarios per

level crossing under different illumination and weather

conditions. The global chain including foreground extraction

and 3D localization still needs to be evaluated intensively

on the above dataset. According to the experimentations,

the localization of some objects may fail. However, the

localization of one among sixty objects fails, this is

due to the smaller number of pixels having confidence

measure larger than a fixed threshold. The starting point

of the belief propagation process highly depends on the

number and repartition of pixels, having hight confidence

measure, inside an object. This drawback can be handled

by introducing the temporal dependency in the belief

propagation process.

The main output of the proposed system is an accurate

localization of any object in, and around a level crossing.

(a) (b)

(c) (d)

Fig. 12: Segmentation results using CICA (a) Original

image (b) CICA segmentation result (c) Object localization

obtained by stereo matching (d) Final 3D object localization.

For safety purposes, the proposed system will be coupled

with already existing devices at level crossings. For instance,

the status of the traffic light and the barriers will be taken as

input in our vision-based system. The level of such an alarm

depends on the configuration of the different parameters.

For instance, the presence of an obstacle in the crossing

zone when the barriers are lowering is a dangerous situation

and the triggered alarm must be of high importance. A

Preliminary Risk Analysis (PRA) seems to be an interesting

way to categorize the level of alarms. In the frame of the

French project entitled PANSafer, these different parameters

will be studied. In particular, telecommunication systems

will be used to inform road users on the status of the level

crossing. Such informations could also be shared with train

driver and control room. The communication tool and the

nature of information to be transmitted are in study.
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