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SUMMARY: 
Buildings are made up of beams and plates which are much stiffer in tension-compression than in bending. Thus, 
the vertical modes of a building (governed by the tension-compression of the walls at the macroscopic scale) can 
appear in the same frequency range as the bending modes of the floors. In the absence of bending resonance, the 
vertical vibrations are described at the macroscopic scale by the usual equation for beams in tension-
compression. When there is resonance, the form of the equation is unchanged but the real mass of the structure is 
replaced by an effective mass which depends on the frequency. This induces abnormal response in the 
neighbourhood of the natural frequencies of the floors. By considering idealized buildings made up of the 
periodic repetition of frames, this phenomenon is evidenced theoretically thanks to the homogenization method 
of periodic discrete media and numerically.  
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1. INTRODUCTION 
 
Structures with attached resonators are known to exhibit atypical dynamic behaviours. In particular, 
the vibrations of the main structure are reduced close to the resonance frequencies of the attachments 
due to energy exchange. An application of this phenomenon is the use of tuned mass dampers in 
buildings to mitigate wind and earthquake effects. Another example is given by a class of composite 
materials called metamaterials. Their main feature is the existence of a high rigidity contrast between 
the constituents (Auriault and Bonnet, 1985). As a result, the softer components act as distributed 
resonators which can completely block mechanical waves of certain frequencies (Liu, et al., 2000). At 
the macroscopic scale, metamaterials have effective properties which depend on the frequency. This 
applies to the mass leading to the generalization of the Newtonian mechanics (Milton and Willis, 
2007). 
 
In this paper, we show that buildings can behave as metamaterials. In fact, they are made up of beams 
and plates which present a high contrast between the tension-compression and bending rigidities. 
Therefore, the bending modes of the floors can appear in the same frequency range as the vertical 
modes of the building which are governed by the tension-compression of the walls at the global scale. 
The consequences of the resonance of the floors are investigated by considering periodic frame 
structures representing idealised buildings. A macroscopic description of the vertical dynamics is 
obtained thanks to the homogenization method of periodic discrete media (HPDM). This method, 
elaborated by Caillerie, Trompette and Verna (1989), has been extended to situations with local 
resonance. Its main advantage is that the macroscopic behaviour is derived rigorously from the 
properties of the basic frame. Moreover the analytic formulation enables to understand the role of each 
parameter. This method has already given interesting results on the horizontal dynamics of frame 
structures and buildings (Hans and Boutin, 2008; Chesnais, Boutin and Hans, 2011; Hans et al., 2012). 
 
The principles of the HPDM method and the studied structures are described in section 2. Section 3 



presents the two possible macroscopic behaviours: without and with local resonance. In section 4, 
emphasis is put on the consequences of the local resonance on the modal analysis and the transfer 
function of the structure. The results are confirmed by finite element simulations. 
 
 
2. STUDIED STRUCTURES AND OVERVIEW OF THE HPDM METHOD 
 

   
 

Figure 2.1. Left: class of studied structures, right: vertical kinematics 
 
The studied structures are constituted by a pile of a large number N of identical unbraced frames called 
cells and made of a floor supported by two walls (see Fig. 2.1.). The walls and the floors are plates 
which behave as Euler-Bernoulli beams in out-of-plane motion. The parameters of floors (i = f) and 
walls (i = w) are: length ℓi, thickness ai, cross-section area Ai, second moment of area Ii = ai

3h/12 in 
direction e3, density ρi, elastic modulus Ei, Poisson ratio νi. As the connections are assumed perfectly 
rigid, the motions of each endpoint connected to the same node are identical and define the discrete 
nodal kinematic variables of the system. 
 
The analysis of such a periodic lattice of interconnected beams with the homogenization method of 
periodic discrete media (HPDM) is performed in two steps (Tollenaere and Caillerie, 1998): first, the 
discretisation of the balance of the structure under harmonic vibrations; second, the homogenization, 
leading to a continuous model elaborated from the discrete description. As the studied structures are 
symmetric, a change of variables is added to uncouple the horizontal and vertical kinematics. An 
outline of this method is given hereafter with an emphasis on its adaptation to situations with local 
resonance. 
 
The discretisation consists in integrating the dynamic balance (in harmonic regime) of the beams, the 
unknown displacements and rotations at their extremities being taken as boundary conditions. Forces 
applied by an element on its extremities are then expressed as functions of the nodal kinematic 
variables. The balance of each element being satisfied, it remains to express the balance of forces 
applied to the nodes. Thus, the balance of the whole structure is rigorously reduced to the balance of 
the nodes. 
 
The kinematics is characterized at any level n by the motions of the two nodes in the plane (e1, e2), i.e.,  
the displacements in the two directions and the rotation (u1, u2, θ). These six variables can be replaced 
by (see Fig. 2.1.): 

 Three variables associated to the rigid body motion of the level n: the mean displacements, 
U(n) along e1 and V(n) along e2, and the global rotation α(n) (differential vertical nodal motion 
divided by ℓf), 

 Three variables corresponding to its deformation: the mean and differential rotations of the 
nodes, θ(n) and Φ(n), and  the transverse dilatation Δ(n). 



As mentioned before, the horizontal and vertical kinematics, respectively governed  by (U, α, θ) and 
(V, Φ, Δ), are uncoupled. This paper focuses on the vertical vibrations. The study of the horizontal 
vibrations can be found in (Boutin and Hans, 2003; Hans and Boutin, 2008; Chesnais, Boutin and 
Hans, 2011). 
 
Then the principles of homogenization are used to derive the differential equation describing the 
behaviour of the equivalent beam. The key assumption is that the cell size in the direction of 
periodicity ℓw is small compared to the characteristic size L of the vibrations of the structure. Thus, the 
scale ratio is small: ε = ℓw/L << 1. The condition of scale separation implies that the method is limited 
to the first modes of vibration which have wavelengths that are much larger than the cell size. The 
existence of a macroscopic scale is expressed by means of macroscopic space variable x. The 
unknowns are continuous functions of x coinciding with the discrete variables at any level, e.g. 
Vε(x = xn) = V(level n). These quantities, assumed to converge when ε approaches zero, are expanded 
in powers of ε: Vε(x) = V0(x) + ε V1(x) + ε2 V2(x) + .... Similarly, all other unknowns, including the 
modal frequency, are expanded in powers of ε. As ℓw = ε.L is a small increment with respect to x, the 
variations of the variables between neighbouring nodes are expressed using Taylor's series; this in turn 
introduces the macroscopic derivatives. 
 
To account properly for the local physics, the geometrical and mechanical characteristics of the 
elements are scaled according to the powers of ε. As for the modal frequency, scaling is imposed by 
the balance of elastic and inertia forces at the macroscopic level. This scaling insures that each 
mechanical effect appears at the same order whatever the ε value is. Therefore, the same physics is 
kept when ε approaches zero, i.e. for the homogenized model. Finally, the expansions in ε powers are 
introduced in the nodal balances. Those relations, valid for any small ε, lead for each ε-order to 
balance equations which describe the macroscopic behaviour. 
 
In general the scale separation requires wavelengths of the compression and bending vibrations 
generated in each local element to be much longer than the element length at the modal frequency of 
the global system. In that case the nodal forces can be expanded in Taylor's series with respect to ε. 
This situation corresponds to a quasi-static state at the local scale. Nevertheless, at higher frequencies, 
it may occur that only the compression wavelength is much longer than the length of the elements 
while local resonance in bending appears. The expansion of the shear force and the bending moment is 
no longer possible. However, the homogenization remains possible through the expansion of the 
compression forces and leads to atypical descriptions with inner dynamics. Above this frequency 
range, the local resonance in both compression and bending makes impossible the homogenization 
process. 
 
 
3. VERTICAL VIBRATIONS  
 
3.1. Quasi-static state at the local scale 
 
We first illustrate the classical homogenization by considering a structure as in Fig. 2.1. with thick 
enough elements to have a quasi-static state at the local scale. The walls and the floors are made of the 
same material. Their geometrical characteristics and the order of magnitude of the circular frequency 
ω corresponding to the vertical vibrations are given below. 
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In that case, the leading order equations obtained by homogenization are: 
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Eqn. 3.2a expresses the balance of vertical forces while Eqn. 3.2b and 3.2c come from the balance of 
differential moments and of differential horizontal forces. The macroscopic behaviour is given by 
Eqn 3.2a which corresponds to the classical description of a beam in tension-compression with the 
compression modulus of the two walls 2 EwAw and the linear density Λ. Once the mean vertical 
displacement V is known, the "hidden" variables Φ and Δ are determined thanks to Eqn. 3.2b and 3.2c 
which describe the inner equilibrium of the cell. Note that Φ and Δ depend on the rigidity of the 
elements in bending Kw and Kf, . 
 
A systematic study in which the properties of the elements vary shows that the longitudinal vibrations 
with a quasi-static state at the local scale are always described by Eqn. 3.2a (Boutin and Hans, 2003). 
 
3.2. Local resonance 
 
To investigate the effects of the bending resonance of the floors, we now consider a structure with 
floors thinner than walls. 
 













w

w

f

w

w

f

w

w E

L
OOO

a
O

a


 1

;)1(;)(;)(





 (3.3) 

 
As the order of magnitude of aw / af is not a whole power of ε, the unknowns should now be expanded 
in powers of ε1/2. Moreover, because of the local resonance, the shear force and the bending moment in 
the floors cannot be expanded in Taylor's series. Then the homogenization provides the following 
equations for the first two significant orders of the balance of vertical forces. The main difference with 
section 3.1. is the multiplication of Λf by a function f depending on the frequency. 
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Because of the thickness contrast between the walls and the floors, Λf is negligible compared to Λw. 
This is the reason why we obtain a degenerate equation at the leading order. At most of the 
frequencies f(ω0) = O(1) and Eqn. 3.4a is sufficient for the description of the macroscopic behaviour. 
However, we will see that f(ω0) can become infinite. In that case, the inertial term related to the floors 
is no longer negligible. To build a macroscopic description valid for the whole frequency range of the 
vertical vibrations we take V = V0 + ε1/2 V1/2, ω = ω0 + ε1/2 ω1/2 and we sum the Eqn. 3.4. 
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Eqn. 3.5a looks like Eqn. 3.2a but differs fundamentally by the effective mass Λ(ω) which depends on 
the frequency. The HPDM method provides an analytical expression of the function f. Its variations 
according to the frequency are plotted in Fig. 3.1. It shows that f(ω) → 1 when ω → 0 as expected and 
that │f(ω)│→ + ∞ when ω → ωf(2k - 1) where ωf(2k - 1)  are the circular frequencies of the odd normal 
modes of the floors with two fixed ends in bending. At most of the circular frequencies higher than 
ωf1, we have f(ω) < 1, which means that the structure seems lighter thanks to the local resonance. Note 
also that f(ω) can be negative. 
 

2 4 6 8

−2

−1

1

2

 
 

Figure 3.1. Variations of the function f according to the nondimensional frequency ω/ωf1. As the resonance 
frequencies of the Euler-Bernoulli beams are proportional to the sequence of the squares of the odd integers, the 

modes of the floors correspond to the following abscissas: ωf1/ωf1 = 32/32 = 1, ωf2/ωf1 = 52/32 ≈ 2.78, 
ωf3/ωf1 = 72/32 ≈ 5.44, etc. 

 
The effective mass differs so much from the real mass because the points of the cell are in relative 
motion. According to the definition of the macroscopic variables, V describes the mean vertical 
displacement of the nodes. At low frequencies, the whole cell undergoes the same translational 
motion. Consequently, the sum of inertia forces acting on the whole frame equals the real mass of the 
frame multiplied by the acceleration of the nodes. When bending resonance occurs, the motion of the 
points of the floors can strongly differ from the one of the nodes and some points can even be in 
antiphase. In these conditions, the sum of inertia forces acting on the basic frame is modified.  
 
This analysis of the physical origin of the effective mass is confirmed by the consistency between the 
deformation of the floors and the variations of the function f. As ω approaches ωf1, the deflection is 
getting larger and larger because of the resonance. It is in-phase with the nodes when ω is below ωf1 
and in antiphase when ω is above ωf1. At the frequency of the second bending mode ωf2, the in-phase 
motion of the two walls does not cause the resonance of the floors. Nevertheless, the motion is not 
uniform, which induces an effective mass smaller than the real mass.  
 
The previous study focuses on the macroscopic description but the inner equilibrium of the cell is also 
affected by the local resonance. These equations contain inertial terms and they depend on the rigidity 
in bending of the elements. For the floors, the effective mass and the effective rigidity become infinite 
for the frequencies of the odd bending modes. If the walls are in resonance, their effective mass 



becomes infinite for the frequencies of the odd bending modes but the rigidity becomes infinite for the 
frequencies of the even bending modes. The modes of the whole cell can also be excited. In the 
neighbourhood of all these frequencies, the structure is likely to behave atypically. 
 
4. SOME CONSEQUENCES OF THE LOCAL RESONANCE  
 
This section presents the consequences of the local resonance and the variations of the effective mass 
on the dynamic behaviour of a given structure by considering two problems frequently encountered in 
engineering: the modal analysis and the response to an imposed harmonic motion at the bottom. In the 
latter case, damping is introduced. The studied structure has been specially designed to highlight the 
effects of the local resonance. It is a frame structure as in Fig. 2.1. with N = 15 levels. The walls and 
the floors have the same length ℓw = ℓf = 3 m and the thickness to length ratios correspond to the 
orders of magnitude of section 3.2. Boutin and Hans (2003) have shown that, for the first macroscopic 
mode of a structure, the scale ratio can be estimated by ε ≈ π / (2N) . The walls are made of concrete 
but the density of the floors is increased in order to have Λf  ≈ Λw and to increase the influence of their 
resonance. The chosen characteristics are summarized in Eqn. 4.1. 
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The resonance frequencies of the floors are ff1 = 52.08 Hz, ff2 = 143.56 Hz, ff3 = 281.44 Hz. 
 
4.1. Modal analysis 
 
For a structure fixed at the bottom and free at the top, the solution of Eqn. 3.5a is written below. 
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Thus the resonance frequencies are given by Eqn. 4.3. 
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In the absence of local resonance, the effective mass is constant and there is only one solution ωk for 
each value of k. For the considered structure, this approach leads to the frequencies given in the 
second column of Tab. 4.1. As these frequencies are in the same range as the resonance frequencies of 
the floors, we cannot neglect the variations of the effective mass. Then Fig. 4.1. shows that it has two 
important consequences. First, the values of the resonance frequencies of the structure are modified. 
Second, there are several solutions ω for each value of k. This means that the structure has the same 
macroscopic modal shape for several frequencies. However, at the local scale, the deformation of the 
floors is different. Note also that, because of the great variations of the effective mass in the 
neighbourhood of the odd natural frequencies of the floors, there is a solution close to these 
frequencies for each value of k. Consequently there is a large number of modes in a small frequency 
range. Just after the resonance of the floors, the effective mass is negative and there is a frequency 
range with no vertical modes. Usually the condition of scale separation limits homogenization to low 
frequencies. Since several modes of the studied structure can have the same wavelength, some high 
frequency modes can be correctly described by homogenization. Here, the scale ratio ε does not 
monotonically increase with the frequency and there is an alternation of frequencies at which 
homogenization applies and frequencies at which homogenization does not apply.  
 



All these results are confirmed numerically with the finite element code CESAR-LCPC. The modes 
are determined for two structures.  For the first one, the elements behave as Euler-Bernoulli beams as 
in the HPDM method. For the second one, the elements behave as Timoshenko beams which is more 
realistic for the chosen thickness. The resonance frequencies calculated with the finite element method 
and Eqn. 4.3. are given in Tab. 4.1. There is an excellent agreement between the two approaches. The 
use of Timoshenko beams slightly modifies the frequencies but the modal shapes are identical. The 
modal shapes are presented in Fig. 4.2. and they are compared with Eqn. 4.2. in Fig. 4.3. 
 

50 100 150 200 250 300 350

50

100

150

 
 

Figure 4.1. The thin red line is obtained by replacing the effective mass by the real mass. The thick blue line 
takes into account the resonance of the floors. The horizontal dashed lines indicate the first values of (2k - 1)2. 

The resonance frequencies of the structure are the abscissas of the intersections of the continuous curves with the 
dashed lines. 

 
Table 4.1. Comparison of the resonance frequencies (Hz) of the structure estimated thanks to the homogenized 
models and with the finite element code CESAR-LCPC.  

k 
Resonance of the 
floors neglected 

(Eqn. 3.2a) 

Resonance of the floors 
taken into account 

(Eqn. 4.3.) 

CESAR-LCPC with 
Euler-Bernoulli beams 

CESAR-LCPC with 
Timoshenko beams 

1 14.19 14.00 - 65.14 - 297.0 13.76 - 64.83 13.73 - 61.35 
2 42.56 36.73 - 74.35 - 297.5 35.99 - 74.22 35.12 - 71.71 
3 70.94 46.42 - 97.68 - 298.5 45.46 - 97.37 43.32 - 96.04 
4 99.31 49.36 - 127.8 - 300.4 48.28 - 127.0 45.66 - 125.5 
5 127.69 50.49 - 158.9 - 303.4 49.76 - 157.5 46.93 - 154.2 
 

k = 1 k = 2 k = 3 k = 4 k = 5 
13.76 64.83 35.99 74.22 45.46 97.37 48.28 127.0 49.76 157.5 

          
 

Figure 4.2. Modal shapes and resonance frequencies calculated with the finite element code CESAR-LCPC 
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Figure 4.3. Comparison of the vertical displacements estimated with the homogenized model (Eqn. 4.2.) and the 
finite element code CESAR-LCPC 

 
4.2. Harmonic motion at the bottom 
 
A harmonic vertical motion of amplitude V0 is now imposed at the bottom of the structure. We are 
interested in the evolution with the frequency of the amplitude of the displacement at the top. The 
solution of the homogenized model (Eqn. 3.5a) depends on the sign of the effective mass as indicated 
in Eqn. 4.4. 
 

 
)cos(

1)(
)()sin()tan()cos()(0)(

0
0 HV

HV
HxHxVxV


 

 (4.4a) 

 
)cosh(

1
)()sinh()tanh()cosh()(0)( 0 H

HxHxVxV


 

 (4.4b) 

with 
ww AE2

)( 2

2 



  



 
The variations of the transfer function H(ω) according to the frequency are plotted in Fig. 4.4. As 
expected, there are peaks at the natural frequencies of the structure determined in section 4.1. Just 
before the first resonance of the floors at 52 Hz, the peaks are very numerous because of the great 
variations of the effective mass. However, a lot of them does not correspond to real modes of the 
structure. The homogenization process replaces the structure by an equivalent beam which has an 
infinite number of degrees of freedom and therefore a infinite number of vertical modes. On the 
contrary, the studied structure has only 15 possible macroscopic modal shapes. Just after the resonance 
of the floors, the effective mass is negative and we observe a bandgap, that is to say a frequency range 
with no motion at the top of the structure. 
 
All these results are confirmed numerically. The transfer function computed with the finite element 
method is almost identical (Fig. 4.4.). As explained above, there are less peaks before the resonance of 
the floors and the bandgap begins at slightly lower frequencies. An example of the deformation of the 
structure inside the bandgap is also presented in Fig. 4.4. The first floors experience large 
deformations because of the resonance but the energy is not transferred to the upper storeys. From the 
fourth floor, there is no more vibration. 
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Figure 4.4. Left: transfer function of the studied structure. The continuous curve corresponds to the 
homogenized model (Eqn.4.4.) and the points to finite elements simulations. Right: deformation at 52 Hz.  

 
The introduction of damping does not modify fundamentally the results. We use a complex elastic 
modulus Ef = Ew = E eiη in the homogenized model (Eqn. 4.4.). The modulus of the transfer function is 
plotted in Fig. 4.5. for η = 2.10-2. The main difference with Fig. 4.4. is that the frequency bandgap is 
larger. As a result, the peaks of the transfer function before the resonance no longer exist. 
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Figure 4.5. Modulus of the transfer function of the studied structure with damping. 
 



 
5. CONCLUSION  
 
Because of the rigidity contrast between tension-compression and bending in the beams and plates that 
constitute buildings, the vertical modes of a structure can appear in the same frequency range as the 
bending modes of the floors. The extension of the HPDM method to these situations with local 
resonance shows that the real mass should be replaced by an effective mass which depends on the 
frequency. When the frequency approaches the odd natural frequencies of the floors in bending, the 
effective mass becomes infinite and it changes its sign. This phenomenon has two main consequences. 
First, several normal modes of the structure associated to different natural frequencies can have the 
same macroscopic modal shapes. Second, when the effective mass is negative, the vibrations do not 
propagate inside the structure and we have frequency bandgaps. 
 
These theoretical results are confirmed by finite elements simulations. The studied structure has been 
specially designed to highlight the effects of the local resonance. In particular, mass has been added to 
the floors. The increase of the length of the floors would have been another possibility. In real 
structures, the proportion of the mass affected by the resonance is probably smaller. In that case, the 
variations of the effective mass far from the resonance frequencies can be negligible. However, at the 
resonance, the effective mass is still considerable and the vibrations are attenuated. 
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