
HAL Id: hal-00854899
https://hal.science/hal-00854899v1

Preprint submitted on 28 Aug 2013 (v1), last revised 29 Aug 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DISCO: Distributed Multi-domain SDN Controllers
Kévin Phemius, Mathieu Bouet, Jérémie Leguay

To cite this version:
Kévin Phemius, Mathieu Bouet, Jérémie Leguay. DISCO: Distributed Multi-domain SDN Controllers.
2013. �hal-00854899v1�

https://hal.science/hal-00854899v1
https://hal.archives-ouvertes.fr


DISCO: Distributed Multi-domain SDN Controllers

Kévin Phemius, Mathieu Bouet and Jérémie Leguay
Thales Communications & Security

4 avenue des Louvresses, 92230 Gennevilliers, France
{kevin.phemius, mathieu.bouet, jeremie.leguay}@thalesgroup.com

Abstract—Modern multi-domain networks now span over
datacenter networks, enterprise networks, customer sites and
mobile entities. Such networks are critical and, thus, must
be resilient, scalable and easily extensible. The emergence of
Software-Defined Networking (SDN) protocols, which enables to
decouple the data plane from the control plane and dynamically
program the network, opens up new ways to architect such
networks. In this paper, we propose DISCO, an open and
extensible DIstributed SDN COntrol plane able to cope with the
distributed and heterogeneous nature of modern overlay networks
and wide area networks. DISCO controllers manage their own
network domain and communicate with each others to provide
end-to-end network services. This communication is based on
a unique lightweight and highly manageable control channel
used by agents to self-adaptively share aggregated network-wide
information. We implemented DISCO on top of the Floodlight
OpenFlow controller and the AMQP protocol. We demonstrated
how DISCO’s control plane dynamically adapts to heterogeneous
network topologies while being resilient enough to survive to
disruptions and attacks and providing classic functionalities such
as end-point migration and network-wide traffic engineering. The
experimentation results we present are organized around three
use cases: inter-domain topology disruption, end-to-end priority
service request and virtual machine migration.

I. INTRODUCTION

Resilient, scalable and extensible networks are critical to
interconnect datacenters, enterprise networks and even, po-
tentially deployable, access networks. The Software Defined
Networking (SDN) paradigm has emerged from the need
to overcome the primary limitations of today’s networks:
complexity, lack of scalability and vendor dependence. It is
based on three main principles: separation of software and
physical layers, centralized control of information and network
programmability. The ability to program networks, interact
with network elements and manage a unified multi-vendor
multi-technology environment enables service providers and
network operators to innovate faster and to reduce operational
and capital expenditures. SDN was first massively used in
datacenters, network management being thus integrated to
cloud platforms. It is now envisioned for multi-datacenter
environments and multi-domain networks [1].
The SDN paradigm has emerged over the past few years
through several initiatives and standards, FORCES [2] being
one example. The leading SDN protocol in the industry is the
OpenFlow protocol. It is specified by the Open Networking
Foundation (ONF) [3], which regroups the major network
service providers and network manufacturers. The majority
of current SDN architectures, OpenFlow-based or vendor-
specific, relies on a single or master/slave controllers, that
is a physically centralized control plane. This centraliza-
tion, adapted for datacenters, is not suitable for wide multi-
technology multi-domain networks. In addition, the centralized

Fig. 1. Typical deployment of the multi-domain SDN control plane DISCO.

SDN controller represents a Single Point Of Failure (SPOF),
which makes SDN architectures highly vulnerable to disrup-
tions and attacks [4].
Recently, proposals have been made to physically distribute the
SDN control plane, either with a hierarchical organization [5]
or with a flat organization [6]. These approaches avoid having
a SPOF and enable to scale up sharing load among several con-
trollers. However, these distributed SDN control planes have
been designed for datacenters, where controller instances share
huge amount of information to ensure fine-grained network-
wide consistency.
In this paper, we address multi-domain SDN networks, like the
one presented in Fig. 1, which can be deployed to interconnect
datacenters, enterprise networks, customer sites and mobile
entities. They are generally decomposed into administrative
or geographical domains interconnected with a large variety
of network technologies from high-capacity leased lines to
limited-bandwidth satellite links, or from costly but highly
secured links to cheap but unsecured ones. The distributed
and heterogeneous nature of these environments call for a
distributed multi-domain network control plane which should
be lightweight, adaptable to user or network requirements,
and robust to failures. Current state of the art distributed
SDN solutions are not suitable, as they do not provide a fine
grain mean to control and adapt inter-controller information
exchanges.
We propose DISCO, an open DIstributed SDN COntrol plane

for multi-domain SDN networks. It relies on a per domain
organization, where each DISCO controller is in charge of
an SDN domain, and provides a unique lightweight and



highly manageable control channel used by agents that can
be dynamically plugged into the different domain controllers.
The agents that we have developed share between the do-
mains aggregated network-wide information and hence provide
end-to-end network services. We demonstrate how DISCO’s
control plane dynamically adapts to heterogeneous network
topologies while providing classic functionalities such as end-
point migration and network-wide traffic engineering and being
resilient enough to survive to disruptions and attacks. Contrary
to state of the art distributed SDN control planes, DISCO
well discriminates heterogeneous inter-domain links such as
high-capacity MPLS tunnels and SATCOM interconnections
with poor bandwidth and latency. We implemented DISCO
on top of the Floodlight [7] OpenFlow controller and the
AMQP [8] protocol. To evaluate its performance, we show
an evaluation of its functionalities on an emulated software
defined network according to three use cases: inter-domain
topology disruption, end-to-end priority service request and
virtual machine migration.
The rest of this paper is organized as follows. First, Sec. II
analyzes related work. Then, Sec. III presents DISCO archi-
tecture composed of an intra-domain part and an inter-domain
part. Our implementation of DISCO is explained in Sec. IV.
The different use cases we considered and their evaluation are
tackled in Sec. V. Finally, Sec. VI concludes this paper.

II. RELATED WORK

Parallel open source initiatives such as NOX [9], Bea-
con [10], Floodlight [7], Ryu [11] etc. Researchers mainly
focused on improving the performance of a specific controller
like Maestro [12] and NOX [13] or demonstrating the improve-
ment offered by OpenFlow against a classic L2 paradigm [14].
Several attempts have been done to tackle the problem of
scaling SDNs. A first class of solutions, such as DIFANE [15]
and DevoFlow [16], address this problem by extending data
plane mechanisms of switches with the objective of reducing
the load towards the controller. DIFANE tries to partly offload
forwarding decisions from the controller to special switches,
called authority switches. Using this approach, network oper-
ators can reduce the load on the controller and the latencies of
rule installation. DevoFlow, similarly, introduces new mecha-
nisms in switches to dispatch far fewer ‘important’ events to
the control plane.
A second class of solutions proposes to distribute controllers.
HyperFlow [6], Onix [17], and Devolved controllers [18] try
to distribute the control plane while maintaining a logically
centralized using a distributed file system, a distributed hash
table and a pre-computation of all possible combinations
respectively. These approaches, despite their ability to dis-
tribute the SDN control plane, impose a strong requirement:
a consistent network-wide view in all the controllers. On the
contrary, Kandoo [5] proposes a hierarchical distribution of the
controllers based on two layers of controllers: (i) the bottom
layer, a group of controllers with no interconnection, and no
knowledge of the network-wide state, and (ii) the top layer,
a logically centralized controller that maintains the network-
wide state.
In addition, [19] analyzes the trade-off between centralized and
distributed control states in SDN, while [20] proposes a method
to optimally place a single controller in an SDN network.
Recently, Google has presented their experience with B4 [1], a

global SDN deployment interconnecting their datacenters. In
B4, each site hosts a set of master/slave controllers that are
managed by a gateway. The different gateways communicate
with a logically centralized Traffic Engineering (TE) service
to decide on path computations. While BGP is used between
border network elements to exchange routes, possibly with
external service providers or operators, proprietary APIs and
protocols are used between all the software pieces (gateways,
controller, TE engine).
DISCO differs from state of the art solutions as it provides
an open distributed control plane for multi-domain networks
based on a unique message-oriented communication bus. In-
deed, state of the art distributed control planes are not adapt-
able to heterogeneous network deployments. Most of them
impose a consistent network-wide state in all controllers and
thus generate large control traffic. On the contrary, DISCO
separates intra-domain and inter-domain specific information.
Furthermore, it currently features agents for adaptive moni-
toring with regards to security restrictions and low bandwidth
interconnections, and agents for end-to-end QoS and mobility
management.

III. DISCO ARCHITECTURE

In this section, we present DISCO’s controller architecture,
detailing both intra and inter-domain modules.

A. Overall architecture

DISCO is a distributed multi-domain SDN control plane
which enables the delivery of end-to-end network services.
A DISCO controller is in charge of a network domain and
communicates with neighbor domains to exchange aggregated
network-wide information for end-to-end flow management
purposes.
Fig. 2 presents the architecture. It is composed of two parts:
an intra-domain part, which gathers the main functionalities
of the controller, and an inter-domain part, which manages
the communication with other DISCO controllers (reservation,
topology state modifications, disruptions, . . . ). In addition to
this east-west interface, a controller has at least one southbound
SDN interface used to push policies to the network elements
and retrieve their status. Finally, a northbound interface enables
to push management policies to the controller (e.g., service and
user priorities), to manage SLAs and report network service
status. A controller is composed of several modules managed
by the Core component. It enables to start, stop, update the
modules and provides them with a communication bus. Our
architecture leverage from classical off-the-shelf modules that
SDN controllers provide [7] such as an OpenFlow driver to
implement the OpenFlow protocol, a switch manager and host
manager to keep track of the different network elements, and
link discovery implementing LLDP (Link Layer Discovery
Protocol). In the rest of this section, we present the modules
that we have specifically developed for intra-domain and inter-
domain flow management.

B. Intra-domain functionalities

The intra-domain modules enable to monitor the network
and manage flow prioritization so that the controller can
compute the routes of priority flows based on the state of
the different network parameters. The modules also enable to



Fig. 2. DISCO Controller Architecture.

dynamically react to network issues (broken link, high latency,
bandwidth cap exceeded, . . . ) by redirecting and/or stopping
traffic according to the criticality of the flow. This work
extends our previous work [21] demonstrated in a centralized
architecture or intra-domain context.
The Extended Database is a central component in which each
controller stores all the intra-domain and inter-domain knowl-
edge on network topology, monitoring and ongoing flows. All
the modules and agents presented in the rest of this section
either enrich or use this information, with the ultimate goals
of taking actions on flows. This database and its associated
model resemble to what the recent IETF group Interface to
the Routing System (I2RS) [22] is trying to standardize.
The Monitor Manager module gathers information such as
the flow throughput on the switches using the appropriate
messages described in the OpenFlow protocol specification
(STATISTICS REQUEST and REPLY) [3]. In addition, this
module measures the one-way latency and packet loss rate
on intra-domain links by sending at a given source node
specially crafted Ethernet frames including a time-stamp, and
retrieving them at a given destination node to measure the
elapsed time. This method has been described in [23]. By
doing these operations periodically, the controller maintains an
up-to-date view of link and network devices performances in
the Extended database. For peering links with other domains,
a simple Ping is used to estimate the round trip delay and
packet losses.
The Events Processing module keeps tracks of variations or
saturation events. By setting up ceiling values, the controller
can immediately react if a value goes out of bound. Events can
work with absolute values (e.g.,the total amount of dropped
packets on a port) or relative values (e.g., the number of lost
packets in the last second).
The Path Computation module computes routes for flows
from source to destination using a variation of the Dijkstra
algorithm, that is with QoS metrics and taking into account
existing reservations. If a link on the route is considered
impaired (by consulting the Events Processor module), a
new route is computed and flow pre-emption mechanisms are
applied if necessary. This module uses the Extended Database
to retrieve information about flow descriptions (e.g., priority,
bandwidth and latency constraints), network topology (e.g.,
capacity, routing preferences) and monitoring information.

The Service Manager module is responsible for the manage-
ment of network SLAs inside its domain. Upon reception of a
service request and all along the network lifetime, it verifies,
using other modules, the feasibility and respect of SLAs. It can
receive requests from the northbound API or from neighboring
domains for end-to-end service provisioning.
On top of these modules, a GUI through the Visual Manager
module allows the visualization of the network and the inter-
action between the user and the modules. It gather information
from many other modules of the controller to display relevant
information to the network operator and provides parameteriza-
tion capabilities (e.g., flow priorities, new events, new routes).

C. Inter-domain functionalities

A DISCO controller communicates with neighbor domain
controllers to exchange aggregated network-wide information.
They are composed of two key elements: (i) a Messenger
module which discovers neighboring controllers and maintain a
distributed publish/subscribe communication channel, and (ii)
different agents that use this channel to exchange network-
wide information with intra-domain modules. This way Path
Computation can learn for instance to which neighbor domain
a packet has to be routed to reach a given host.

1) Messenger: This module implements a unique control
channel between neighboring domains. It should support group
and direct communications to exchange status information
(link state, host presence) and request actions (e.g., reser-
vations) from other controllers. The usual communication
patterns used by IETF protocols such as Open Shortest Path
First (OSPF) protocol, Resource Reservation Protocol (RSVP)
and Border Gateway Protocol (BGP) should be supported,
namely step-by-step diffusion (e.g.,distance vectors), network-
wide flooding (e.g., link states), uncased queries (e.g., reser-
vation requests), and publish/subscribe messages (e.g., route
updates).
To meet these requirements, we have chosen the Advanced
Message Queuing Protocol (AMQP) [8] as a base for the
implementation of Messenger. AMQP is an open standard
and a thin application layer protocol for message-oriented
middleware. It offers built-in features for message orientation,
queuing with priority, routing (including point-to-point and
publish-and-subscribe), reliable delivery and security. Due to
the convergence of network and IT systems such as cloud man-
agement, AMQP is an interesting solution being lightweight,
highly controllable and software-oriented. It is, for instance,
used in OpenStack [24] for loosely coupled communication
between the different components.
AMQP is generally used in client-server mode. This means
that Messenger executes a server and uses clients to connect
to the different servers of neighboring controllers. In this
mode, Messenger only help local agents to exchange infor-
mation with agents of neighbor domains, but does not provide
communication support for network-wide exchanges. For this,
it could relay the information for one domain to another
by implementing its own broadcast or message forwarding
mechanism. The downside of this solution is that it makes
the implementation of Messenger more complex.
Although AMQP is generally used in client-server mode,
implementations, such as RabbitMQ [25], propose a federation
mode in which servers can be networked. In this mode,
subscriptions are relayed to all the nodes in the federation and



publications are routed to the right servers hosting subscribers.
RabbitMQ takes care of all these operations. This means that
we do not finely master the exchanges between the different
AMQP brokers, which can be problematic in very constrained
networks. Indeed, a message sent by a domain will be routed
to every other domain interested. Eventually, the message
will reach its destination but several copies will also arrive
following different routes. The network footprint will thus
increase, especially in a large interconnected network. Our
current implementation of Messenger uses the federation mode
for simplicity reasons, but we plan to extend it with more
efficient broadcast capabilities based, for instance, on a simple
spanning tree.
Messenger provides an open communication bus on top of
which any agents can be plugged dynamically. It can subscribe
to topics published by other agents and start publishing on any
topic. Note that security mechanisms could be added to secure
communication on a given set of topics or to filter publications
from modules that have not been authorized.

2) Agents: To support QoS routing and reservation func-
tionalities at inter-domain level, we have defined and imple-
mented four main agents. The Connectivity agent is in charge
of sharing with all the other domains the presence of peering
links with neighboring domains. This agent works in an event-
driven fashion as it sends information only if a new domain
is discovered or a peering link changes. This information is
extracted and filled up from and into the Extended Database of
each controller, like any other information received by agents.
This connectivity information will lately be specifically used
by Path Computation to locally take routing decisions. The
Monitoring agent periodically sends information on available
bandwidth and latency between all the pairs of peering points
to inform about the capability to support transit traffic in
the domain. The Reachability agent advertizes on an event
basis the presence of hosts in domains so that they be-
come reachable. This service can be conceptually seen as an
implementation of the Locator/Identifier Separation Protocol
(LISP) [26] as it maintains at each controller a mapping
between hosts and domains. The Reservation agent takes care,
like RSVP, of inter-domain flow setup, teardown and update
request including application capability requirement such as
QoS, bandwidth, latency, etc. All these requests are locally
handled in each domain by the Service Manager. Reservation
agent uses direct communications with neighbor domains
along the paths that need to be created or maintained.
Each agent publishes and consumes messages on a required
subset of topics that they manage to ensure the consistency in
the system. The exchanged information concern reachability (a
list of reachable hosts in agent’s domain), connectivity (a list
of peering domains), and monitoring (the status of peering
transit paths in terms of latency, bandwidth,...). This way,
each domain controller is able to build a view of the inter-
domain network and have capabilities to perform routing, path
reservation and manage SLAs.

D. Interoperability issues

The SDN domains managed by DISCO may communicate
with other domains using classical IETF technologies. To
ensure this interoperability, like in the Google deployment B4,
border nodes may have to send BGP messages to exchange
connectivity information. To manage this, an additional BGP

agent should be added to the current architecture.
DISCO is agnostic from the SDN protocol and switches used.
Despite the fact that our current implementation is OpenFlow-
based, it could be integrated, for instance, with OnePK to
manage CISCO equipment.

IV. DISCO IMPLEMENTATION

We have implemented DISCO on top of the open source
OpenFlow controller Floodlight [7]. The green hatched mod-
ules on Fig. 2 have been directly taken from Floodlight’s Java
source code. We have developed in Java the other software
modules, except the two SDN protocol drivers in yellow that
are currently empty, to manage intra-domain and inter-domain.
Second, agents located in the different domains use this control
channel to receive and announce states of peering links, device
locations, and path reservation requests.

A. Messenger implementation

Messenger is implemented like any other Floodlight ap-
plication. It subscribes to receive Packet IN messages from
the Core module, can write its own Packet OUT messages,
calls and stores information in the extended database and
reads the Floodlight configuration file at startup. It requires the
following configuration parameters: messaging server type,
messaging server listening port, and agents list. The mes-
saging server listening port specifies the port where the Mes-
senger instance can be reached. The messaging server type
determines which messaging driver to use, as our architecture
allows using different AMQP implementations such as Rab-
bitMQ or ActiveMQ. Our current implementation relies on a
RabbitMQ driver using AMQP in federation mode. Additional
optional parameters can also be specified. Messenger activates
agents from the list agents list. Agents are small classes that
handle inter-domain exchanges to and from modules managing
intra-domain flows.
Messenger implements an extended version of LLDP (Link
Layer Discovery Protocol), that we call Messenger-LLDP
(M-LLDP), to discover neighboring domain controllers. M-
LLDP messages are similar to regular LLDP messages but
contain an option for OpenFlow. An Organizationally Unique
Identifier (OUI) has been allocated to OpenFlow by IEEE.
Messenger sends these messages to announce its presence on
border links where other OpenFlow domains may be reached,
i.e., where switches that it manages have ports leading to
unknown equipment. When a reply to a discovery message
is received, Messenger establishes an AMQP connection with
its peer and stops sending discovery messages on the border
link. Otherwise, Messenger keeps sending periodically the
following M-LLDP messages with information on how to
reach him (a packet of 60 Bytes, which is a relatively low
network footprint):

0x7F (127 - LLDP’s Custom TLV type)
0x00 0x26 0xE1 (OpenFlow OUI)
0x17 (Messenger subtype)
0x02 (controller ID)
0x03 (switch ID)
0x04 (switch port)
0x05 (server IP)
0x06 (server port)
0x08 (server name)



Fig. 3. Multi-domain SDN Topology.

Messenger offers a publish/subscribe communication chan-
nel for inter-domain exchanges between agents. Messenger
uses two special topics for its basic operations. First, a
topic named ID.*.* is created, ID being the identifier of the
controller. This topic allows other controllers to directly send
messages to it. This is used, for instance, for bandwidth reser-
vation requests. Second, a topic named general.*.* enables to
communicate with all the other controllers in the federation.
For example, it is used when a controller wants to leave a
federation. This deletes the logical link between itself and the
other controller and warns the agents to stop sending messages
to this particular controller.
Messenger uses drivers to communicate with the implementa-
tion of AMQP running on the machine. Each AMQP driver
must support the following set of functions:

1) subscribe (topic) and unsubscribe topic (topic): add
and delete a topic from the topic list that the node is
interested to receive.

2) pair (neighbor controller ID) and unpair (neighbor
controller ID): create and delete a inter-domain con-
trol channel with a neighbor controller. This function
tunes the subscriptions so that a node receives or not
information from this neighbor controller.

3) send (topic, message): send a message on a specific
topic to the federation.

Messenger also uses Keep-Alive messages every 500ms to test
the presence of neighboring controllers. In case of a controller
failure, the absence of 3 successful contiguous Keep-Alive
responses will trigger a procedure to mitigate this failure.
The Messenger application has been conceived to be easily
extensible. Without altering the core classes of Floodlight,
a developer can improve it either by providing a driver for
a different implementation of AMQP extending the abstract
MessengerDriver class or add functionalities by adding another
agent. The topic format that we use is also highly flexible
as every agent can define its own topic. Furthermore, wild-
cards can be used to make subscriptions lighter and better
manageable by developers.

B. Agents implementation

Agents use Messenger to exchange information with
neighboring domains. We have implemented four agents:

Fig. 4. Experimental setup (top) and controller A’s GUI (bottom).

Monitoring, Reachability, Connectivity and Reservation (see
Sec. III-C). They all publish on specific topics such as mon-
itoring.ID.bandwidth.2s that the monitoring agent located at
the controller with identifier ID advertizes every other second
the remaining bandwidth that it can offer to transit traffic.
Upon reception of information from agents in neighboring
domains, the local agents store them in the extended Floodlight
database. This information is then used by local modules to
take decisions on flows. These decisions are generally the
outgoing peering link to choose for a given flow.
The Reservation agents implements a RSVP-like reserva-
tion protocol to provision end-to-end resources. Agents thus
exchange reservation requests and responses with flow de-
scriptors. Messages can be directly sent to the next domain
controller on a path with the ID.*.*. topic.
Messenger and its dependencies (agents, drivers, . . . ) were
written with just over 2400 lines of Java code. There was
minimal intervention in the legacy code, except in the GUI
and the Extended Database to represent remote domains. The
intra-domain modules written beforehand to extend Floodlight
amount to almost 12,000 lines of code. While running, Mes-
senger only adds around 14MB to the total memory used by
Floodlight, which is about 100MB1.

V. EVALUATION

In this section, we present how we assessed the capabilities
of DISCO. In addition to classic functions such as QoS routing,
reservation and pre-emption, DISCO aims at being resilient to
disruptions both on the control plane (e.g., controller failure,
inter-controller communication failure) and on the data plane
(e.g., inter-domain link failure). We have thus define three use
cases that enable the evaluation of these features.

A. Testbed and setup

Fig. 3 presents the network topology considered in the
performance evaluation. Each network domain A, B and C is
managed by a local DISCO controller, which coordinates with
its neighbor DISCO controllers. This setup is representative
from a typical enterprise network where several sites (edge

1This value depends mainly on the heap size limit allocated to the JVM. It
can be as low as 64MB up to several hundred Megabytes.



networks or datacenters) are interconnected with different
WANs. The hosts connected to the network domains can be
either user terminals or virtual machines (VM).
The testbed is enclosed in a private cloud as shown in Fig. 4
(top). The network is emulated using Mininet [27], a tool used
to create rich topologies and instantiate Open vSwitch [28]
switches and virtual hosts. Mininet is hosted on a dedicated
VM and the controllers are hosted on separate VM. The
different link latencies and bandwidths are enforced using
Linux’s tc command. This setup allows us a fine control on
the network. Fig. 4 (bottom) also presents the graphical user
interface of controller A showing that it has the knowledge of
all the switches it manages, of all the other domains, namely
B and C, and of the different hosts, local and remote.

B. Use Case 1: Adaptive information exchange

In this scenario, we show how the exchanges in the
control plane can self-adapt to the network conditions. In
order to reduce the network footprint of control information
exchanged between domains, agents adopt a twofold strategy:
(1) they identify alternative routes to offload traffic from
weak outgoing interconnections (e.g., low-bandwidth satellite
connection, congested link), and (2) they reduce the frequency
of control messages for these links if they do not find an
alternative route. Each Monitoring agent usually sends in-
formation every 2s. This period increases to 10s for weak
interconnections. The Connectivity and Reachability agents
also send their information using alternative routes whenever
possible. However, contrary to the Monitoring agents, they
only exchange messages in a reactive manner, that is when
an event occurs.
Upon bootstrap and discovery, the three controllers reach the
situation described on top of Fig. 5. In this scenario, the
link between the domains A and C is congested. Its latency
equals ≥ 50ms. B is thus relaying control information for
A and C in order to offload the congested link. In case the

Fig. 5. Adaptable information exchange: (top) Congested situation: DISCO
controllers use high capacity inter-domain links to exchange information,
(bottom) Inter-domain link disruption: DISCO controllers adapt the content
and the frequency of their information exchanges.

inter-domain link between B and C fails, Monitoring agents
reconfigure themselves to the situation presented at the bottom
of Fig. 5 where monitoring traffic is passed through the weak
link A→ C, but at a lower frequency.
Fig. 6 presents the evaluation we have conducted to show
how the DISCO control plane adapts to the nominal situation
and when the inter-domain link between B and C fails. This
figure presents the link utilization in both directions right
after the controllers discover each other and start exchanging
AMQP messages. Each bar represents the TCP payload size
of received packets per category2. This experimental scenario
can be split up into three phases:

1) Network discovery till t = 9s where controllers
exchange their knowledge about hosts and the inter-
domain network topology. AMQP is particularly ac-
tive during this phase because the brokers have to
create the federations and subscribe to the different
topics. In this phase the monitoring has already
started but is not yet adapted to weak links.

2) Monitoring adaptation from t = 9s to t = 33s where
agents have discovered a weak link and adapt their
behavior accordingly. We observe on Fig. V-B and
Fig. V-B that monitoring is shot down after t = 10s
as the link C ↔ A is weak (congested), while
monitoring traffic increases on Fig. V-B and Fig. V-B.

3) Failure recovery starting right after we cut the link
between B and C at t = 33s. Information is trans-
mitted over the link between A and C, but with an
adapted frequency as shown in Fig. V-B and Fig. V-B.
Monitoring traffic sent over B → A decreases as
information about B ↔ C is no longer necessary.

We additionally tested what would happen if a controller
fails entirely. Messenger has a built-in feature whereupon if
a controller fails ‘gracefully’, it can warn its neighbors so
that they can prepare for the failure. Otherwise, the Keep-
alive system will warn a controller if its neighbor is no
longer reachable. In that case, the logical control plane links
are severed, no messages are carried any more toward this
controller and other failure mitigation processes occur (e.g.,
if the fallen domain was used to exchange messages between
two domain, they will reconnect by other path if available).

C. Use Case 2: Resource reservation and pre-emption

This scenario shows how DISCO manages resource reser-
vation thanks to the Service Manager and the Reservation
agent. An ongoing flow from host A1 to host C1 using
8 Mbits/s has already been set up on the link between A
and C (Fig. 7). The routing decision was made by the path
computation module of A considering the available inter-
domain capacity. At t = 25s a new flow with a higher priority
and a 8 Mbits/s bandwidth constraint from host A2 to host
C2 initiates a reservation with a strict latency constraint of
15 ms maximum. This reservation request is handled on the
fly when the first packet arrives. However, it could have been
requested through the northbound controller API in advance.
Fig. 7 depicts the flow of control messages involved in this

2In the current implementation, controllers exchange JSON messages for
ease of development and integration. However, compression is planned in
future releases.



(a) A → B (b) A → C (c) B → C

(d) B → A (e) C → A (f) C → B

Fig. 6. Adaptive monitoring information exchange traffic on the different links. Packets come from the different agents and AMQP itself. At t = 9s, the
bootstrap and discovery phases end. At t = 33s, the link B ↔ C is cut off.

reservation process. The Reservation agent, using the Path
Computation module finds out that the only suitable inter-
domain path for this priority request goes through the direct
link between A and C, that is the one already used by the
non-priority flow from A1 to C1. The agent thus initiates a
reservation to deviate the non-priority flow through domain B,
which is a longer path. Then, the resources on the direct link
between domain A and domain C having been released by this
operation, the agent triggers a reservation for the priority flow.
Fig. 8 presents the latency for both flows. The reservation

procedure took less than 500ms. We can observe that a
transitory impact occurs on the latency of the non-critical
flow. When the reservation is agreed and the low-priority flow
rerouted, the latency of this latter flow is significantly increased

Fig. 7. Pre-emption case where a service request on node A triggers a
resource reservation on link A ↔ C where a lower priority flow is already
established.

as a longer route is used.

D. Use Case 3: Virtual Machine migration

In this last scenario, a virtual machine is migrated from
one domain to another by a cloud management system. Upon
detection at layer 3 that a new IP appears in a domain,
the Reachability agent sends an update message to announce
that it now manages this new host. Other controllers update
the mapping that they maintain locally between hosts and
domains so that their path computation module can route flows
towards this new location. To speed up the convergence of the
handover, they also immediately update all the rules related
to this host in the switches that they manage if a flow going
toward this IP was already established. To test this case, we
launched a 10 Mbits/s UDP flow from a host located in domain

Fig. 8. Impact on flow latency when the link A ↔ C is pre-empted by a
higher priority flow.



A to another situated in C during 40s. According to the values
presented in Fig. 3, this flow is taking all of the available
bandwidth on the A↔ C link whose lantecy is equal to 10ms.
If the cloud management system moves the Virtual Machine
from domain C to B, C will announce that it is no longer
capable of reaching the VM while B reports that it is now
handling it following the migration. These messages, along
with the reconfiguration of the mapping between host and
domain, will allow A to dynamically reroute the flow to its
new destination.
Fig. 9 shows the performance in terms of service interruption
and network metrics. The VM is now reachable through the
A↔ B link which has a lower latency. We can see the latency
drops at the moment of the change in the flow’s path. We ran
this experiment ten times to get average values. The switch is
not instantaneous; it takes on average 117ms with some packet
losses (1.26% in average). In any case, this experiment shows
the adaptability of DISCO in a environment where end-hosts
can move between domain and their communication can be
seamlessly rerouted by the controllers.

Fig. 9. Impact on flow latency and loss rate when the destination host 2 is
moved from domain C to B.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed DISCO, an open DIs-
tributed SDN COntrol plane for multi-domain networks. It
relies on a per domain organization where each DISCO
controller is in charge of an SDN domain and provides a
unique lightweight and highly manageable control channel
used by agents that can be dynamically plugged into the
different domain controllers. The agents that we have de-
veloped share between the domains aggregated network-wide
information and hence provide end-to-end network services.
We demonstrated how DISCO dynamically adapts to het-
erogeneous network topologies while being resilient enough
to survive to disruptions and attacks and providing classic
functionalities such as end-point migration and network-wide
traffic engineering. Contrary to state of the art distributed
SDN control planes, DISCO well discriminates heterogeneous
inter-domain links such as high-capacity MPLS tunnels and
SATCOM interconnections. We have implemented DISCO on
top of the Floodlight OpenFlow controller [7] and the AMQP
protocol [8]. We have evaluated its functionalities according to
three use cases: inter-domain topology disruption, end-to-end
priority service request and virtual machine migration.
Future work along these lines include the organization of the
controllers. In our current implementation, all the controllers

have equal role and can communicate with neighboring ones.
In case of high degree network topologies, one could choose
to silent some of the inter-controller links while keeping good
performances. Also of interests, controllers could dynamically
regroup in coherent clusters so that one of them can take deci-
sions in a centralized manner. This way, suboptimal allocations
such as the one found by a distributed RSVP-like protocol
would be avoided. Finally, we would like to enrich DISCO
with additional resilient and recovery mechanisms so that a
controller can on the fly take the control of switches from a
neighbor domain in case of failure.

REFERENCES

[1] S. Jain and al., “B4: Experience with a Globally-Deployed Software
Defined WAN,” in ACM SIGCOMM, 2013.

[2] L. Y. et al., “Forwarding and Control Element Separation (ForCES)
Framework,” RFC 3746, Apr. 2004.

[3] “Open Networking Foundation (ONF).” [Online]. Available:
http://www.opennetworking.org/

[4] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in HotSDN, 2013.

[5] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and
scalable offloading of control applications,” in HotSDN, 2012.

[6] A. Tootoonchian and Y. Ganjali, “Hyperflow: a distributed control plane
for openflow,” in INM/WREN, 2010.

[7] “Floodlight OpenFlow Controller.” [Online]. Available:
http://floodlight.openflowhub.org/

[8] “AMQP.” [Online]. Available: http://www.amqp.org
[9] “NOX OpenFlow Controller.” [Online]. Available:

http://http://www.noxrepo.org/
[10] “Beacon OpenFlow Controller.” [Online]. Available:

https://openflow.stanford.edu/display/Beacon/Home/
[11] “Ryu OpenFlow Controller.” [Online]. Available:

http://osrg.github.io/ryu/
[12] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A system for scalable

openflow control,” Structure, 2010.
[13] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,

and S. Shenker, “Nox: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, 2008.

[14] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “Openflow switching:
Data plane performance,” in IEEE ICC, 2010.

[15] M. Yu et al., “Scalable flow-based networking with difane,” in SIG-
COMM Comput. Commun. Rev. 40, 4, 2010.

[16] A. Curtis et al., “Scalable flow-based networking with difane,” in ACM
SIGCOMM, 2011.

[17] T. Koponen et al., “Onix: a distributed control platform for large-scale
production networks,” in OSDI, 2010.

[18] A.-W. Tam, K. Xi, and H. Chao, “Use of devolved controllers in data
center networks,” in IEEE INFOCOM workshops, 2011.

[19] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized?: state distribution trade-offs in software defined
networks,” in HotSDN, 2012.

[20] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in SIGCOMM Comput. Commun. Rev. 42, 2012.

[21] K. Phemius and M. Bouet, “Implementing OpenFlow-based resilient
network services,” in IEEE CLOUDNET, 2012.

[22] “Interface to the Routing System (I2RS) WG,” IETF, 2013.
[23] K. Phemius and M. Bouet, “OpenFlow: Why latency does matter,” in

IM, 2013.
[24] “OpenStack.” [Online]. Available: http://www.openstack.org
[25] “RabbitMQ.” [Online]. Available: http://www.rabbitmq.com
[26] F. et al., “Locator/ID separation protocol (LISP),” RFC 6830, Apr. 2010.
[27] “Mininet.” [Online]. Available: http://mininet.org
[28] “Open vSwitch.” [Online]. Available: http://openvswitch.org/


