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Abstract. We investigate unification problems related to the Cipher Block Chaining
(CBC) mode of encryption. We first model chaining in terms of a simple, convergent,
rewrite system over a signature with two disjoint sorts: list and element. By interpreting
a particular symbol of this signature suitably, the rewrite system can model several practi-
cal situations of interest. An inference procedure is presented for deciding the unification
problem modulo this rewrite system. The procedure is modular in the following sense:
any given problem is handled by a system of ‘list-inferences’, and the set of equations thus
derived between the element-terms of the problem is then handed over to any (‘black-box’)
procedure which is complete for solving these element-equations. An example of applica-
tion of this unification procedure is given, as attack detection on a Needham-Schroeder
like protocol, employing the CBC encryption mode based on the associative-commutative
(AC) operator XOR. The 2-sorted convergent rewrite system is then extended into one that
fully captures a block chaining encryption-decryption mode at an abstract level, using no
AC-symbols; and unification modulo this extended system is also shown to be decidable.

1. Introduction

The technique of chaining is applicable in many situations. A simple case is e.g., when
we want to calculate the partial sums (resp. products) of a (not necessarily bounded) list
of integers, with a given ‘base’ integer; such a list of partial sums (resp. products) can be
calculated, incrementally, with the help of the following two equations:

bc(nil, z) = nil, bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))
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where nil is the empty list, z is the given base integer, x is an integer variable, and Y is the
given list of integers. The partial sums (resp. products) are returned as a list, by evaluating
the function bc, when h(x, z) is interpreted as the sum (resp. product) of x with the given
base integer z.

A more sophisticated example is the Cipher Block Chaining encryption mode (CBC, in
short), employed in cryptography, a mode which uses the AC-operator exclusive-or (XOR)
for ‘chaining the ciphers across the message blocks’; here is how this is done: Let ⊕ stand
for XOR (which we let distribute over block concatenation), and let M = p1 . . . pn be a
message given as a list of n ‘plaintext’ message subblocks. Then the encryption of M ,
with any given public key k and an initialization vector v, is defined as the list c1 . . . cn
of ciphertext message subblocks, where: c1 = ek(p1 ⊕ v), and ci = ek(pi ⊕ ci−1), for any
1 < i ≤ n. (Note: It is usual in Cryptography to see a message as a sequence of “records”,
each record being decomposed into a sequence of blocks of the same size; what we refer to as
‘message’ in this paper, would then correspond to a ‘record’ in the sense of cryptography.)
The above set of equations also models this CBC encryption mode: for this, we interpret
the function h(x, y) as the encryption ek(x⊕y) of any single block message x, XOR-ed with
the initialization vector y, using the given public key k. Under such a vision, a message M
is decomposed as the concatenation of its first message block m with the rest of the message
list M ′, i.e., we write M = m ·M ′; then, the encryption of M with any given public key k,
with x taken as initialization vector (IV), is derived by bc(M,x) = h(m,x) · bc(M ′, h(m,x)).

Actually, our interest in the equational theory defined by the above two equations was
motivated by the possibility of such a modeling for Cipher Block Chaining, and the fact
that rewrite as well as unification techniques are often employable, with success, for the
formal analysis of cryptographic protocols (cf. e.g., [1, 3, 7, 8, 9], and also the concluding
section).

This paper is organized as follows. In Section 2 we introduce our notation and the basic
notions used in the sequel; we shall observe, in particular, that the two equations above can
be turned into rewrite rules and form a convergent rewrite system over a 2-sorted signature:
lists and elements. Our concern in Section 3 is the unification problem modulo this rewrite
system, that we denote by BC; we present a 2-level inference system (corresponding, in a
way, to the two sorts of the signature) for solving this problem. Although our main aim is
to investigate the unification problem for the case where h is an interpreted function symbol
(as in the two situations illustrated above), we shall also be considering the case where h is
a free uninterpreted symbol. The soundness and completeness of our inference procedure
are established in Section 4. While the complexity of the unification problem is polynomial
over the size of the problem when h is uninterpreted, it turns out to be NP-complete when
h is interpreted so that the rewrite system models CBC encryption. We then present, in
Section 5, a 2-sorted convergent system DBC that fully models at an abstract level, a block
chaining cipher-decipher mode without using any AC-operators; this is done by adding a
couple of equations to the above two: one for specifying a left-inverse g for h (g does the
deciphering), and the other for specifying the block chaining mode for deciphering. A 2-level
inference procedure extending the one given in Section 3 is presented, and is shown to be
sound and complete for unification modulo this extended system DBC; unification modulo
DBC also turns out to be NP-complete. In the concluding section we briefly evoke possible
lines of future work over these systems BC and DBC.
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Note: The first part of this paper, devoted to unification modulo BC, is a more detailed
version of the work we presented at LATA 2012 ([2]).

2. Notation and Preliminaries

We consider a ranked signature Σ, with two disjoint sorts: τe and τl, consisting of binary
functions bc, cons, h, and a constant nil, and typed as follows:

bc : τl × τe → τl , cons : τe × τl → τl , h : τe × τe → τe , nil : τl.

We also assume given a set X of countably many variables; the objects of our study are
the (well-typed) terms of the algebra T (Σ,X ); terms of the type τe will be referred to as
elements; and those of the type τl as lists. It is assumed that the only constant of type list is
nil; the other constants, if any, will all be of the type element. For better readability, the set
of variables X will be divided into two subsets: those to which ‘lists’ can get assigned will
be denoted with upper-case letters as: X,Y,Z,U, V,W, . . . , with possible suffixes or primes;
these will be said to be variables of type τl; variables to which ‘elements’ can get assigned will
be denoted with lower-case letters, as: x, y, z, u, v, w, . . . , with possible suffixes or primes;
these will be said to be variables of type τe. The theory we shall be studying first in this
paper is defined by the two axioms (equations) already mentioned in the Introduction:

bc(nil, z) = nil, bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)) )

It is easy to see that these axioms can both be oriented left-to-right under a suitable
lexicographic path ordering (lpo) (cf. e.g., [10]), and that they form then a convergent —
i.e., confluent and terminating — 2-sorted rewrite system.

As mentioned in the previous section, we consider two theories that contain the above
two axioms. The first is where these are the only axioms; we call that theory BC0. The
other theory is where h is interpreted as for CBC, i.e., where h(x, y) = ek(x ⊕ y) where
⊕ is exclusive-or and ek is encryption using some (fixed) given key k. This theory will be
referred to as BC1. We use the phrases “BC-unification” and “unification modulo BC” to
refer to unification problems modulo both the theories, collectively.

Note that in the case where h is a free uninterpreted symbol (i.e., BC0) h is fully
cancellative in the sense that for any terms s1, t1, s2, t2, h(s1, t1) ≈BC

h(s2, t2) if and only if
s1 ≈

BC
s2 and t1 ≈

BC
t2. But when h is interpreted for CBC, this is no longer true; in such

a case, h will be only semi-cancellative, in the sense that for all terms s1, s2, t, the following
holds:

h is right-cancellative: h(s1, t) ≈BC
h(s2, t) if and only if s1 ≈

BC
s2, and

h is also left-cancellative: h(t, s1) ≈BC
h(t, s2) if and only if s1 ≈

BC
s2.

Thus, in the sequel, when we look for the unifiability of any set of element equations
modulo BC0 (resp. modulo BC1) the cancellativity of h (resp. the semi-cancellativity of h)
will be used as needed, in general without any explicit mention.

Our concern in this section, and the one following, is the equational unification problems
modulo BC0 and BC1. We assume without loss of generality (wlog) that any given BC-
unification problem P is in standard form, i.e., P is given as a set of equations EQ, each
having one of the following forms:

U =? V, U =? bc(V, y), U =? cons(v,W ), U =? nil,
u =? v, v =? h(w, x), u =? const
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where const stands for any ground constant of sort τe. The first four kinds of equations —
the ones with a list-variable on the left-hand side — are called list-equations, and the rest
(those which have an element-variable on the left-hand side) are called element-equations.
For any problem P in standard form, L(P) will denote the subset formed of its list-equations,
and E(P) the subset of element-equations. A set of element-equations is said to be in
dag-solved form (or d-solved form) ([14]) if and only if they can be arranged as a list
x1 =

? t1, . . . , xn =? tn, such that:

∀ 1 ≤ i < j ≤ n: xi and xj are distinct variables, and xi does not occur in ti nor in any tj .

Such a notion is naturally extended to sets of list-equations as well. In the next section
we give an inference system for solving any BC-unification problem in standard form. For
any given problem P, its rules will transform L(P) into one in d-solved form. The element-
equations at that point can be passed on to an algorithm for solving them — thus in the
case of BC1 what we need is an algorithm for solving the general unification problem modulo
the theory of exclusive-or.

Any development presented below — without further precision on h — is meant as one
which will be valid for both BC0 and BC1.

3. Inference System for BC-Unification

The inference rules have to consider two kinds of equations: the rules for the list-
equations in P, i.e., equations whose left-hand sides (lhs) are variables of type τl, and the
rules for the element-equations, i.e., equations whose lhs are variables of type τe. Our
method of solving any given unification problem will be ‘modular’ on these two sets of
equations: The list-inference rules will be shown to terminate under suitable conditions,
and then all we will need to do is to solve the resulting set of element-equations for h.

A few technical points need to be mentioned before we formulate our inference rules.
Note first that it is not hard to see that cons is cancellative; by this we mean that
cons(s1, T1) ≈BC

cons(s2, T2), for terms s1, s2, T1, T2, if and only if s1 ≈BC
s2 and T1 ≈BC

T2.
On the other hand, it can be shown by structural induction (and the semi-cancellativity of
h) that bc is conditionally semi-cancellative, depending on whether its first argument is nil
or not; for details, see Appendix-1. This property of bc will be assumed in the sequel.

The inference rules given below will have to account for cases where an ‘occur-check’
succeeds on some list-variable, and the problem will be unsolvable. The simplest among
such cases is when we have an equation of the form U =? cons(z, U) in the problem. But one
could have more complex unsolvable cases, where the equations involve both cons and bc;
e.g., when P contains equations of the form: U =? cons(x, V ), U =? bc(V, y); the problem
will be unsolvable in such a case: indeed, from the axioms of BC, one deduces that V
must be of the form V =? cons(v, V ′), for some v and V ′, then x must be of the form
x =? h(v, y), and subsequently V =? bc(V ′, x), and we are back to a set of equations of the
same format. We need to infer failure in all such cases. With that purpose, we define the
following relations on the list-variables of the equations in P:

• U >cons V iff U =? cons(z, V ), for some z.
• U >bc V iff there is an equation U =? bc(V, x)
• U ∼bc V iff U =? bc(V,w), or V =? bc(U,w), for some w.
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Note that ∼bc is the symmetric closure of the relation >bc; its reflexive, symmetric and

transitive closure is denoted as ∼∗
bc. The transitive closure of >bc is denoted as >+

bc; and its
reflexive transitive closure as >∗

bc.

Note, on the other hand, that U =? bc(U, x) is solvable by the substitution {U := nil};
in fact this equation forces U to be nil, as would also a set of equations of the form
U =? bc(V, y), V =? bc(U, x). Such cycles (as well as some others) have to be checked to
determine whether a list-variable is forced to be nil. This can be effectively done with the
help of the relations defined above on the type τl variables. We define, recursively, a set
nonnil of the list-variables of P that cannot be nil for any unifying substitution, as follows:

• if U =? cons(x, V ) is an equation in P, then U ∈ nonnil.
• if U =? bc(V, x) is an equation in P, then U ∈ nonnil if and only if V ∈ nonnil.

We have then the following obvious result:

Lemma 3.1. A variable U ∈ nonnil if and only if there are variables V and W such that
U ∼∗

bc V and V >cons W .

Some of the inference rules below will refer to a graph whose nodes are the list-variables
of the given problem P, ‘considered equivalent up to equality’; more formally: for any list-
variable U of P, we denote by [U ] the equivalence class of list-variables that get equated to
U in P, in the following sense:

[U ] = {V | U =? V ∈ P or V =? U ∈ P}.

Any relation R defined over the list-variables of P is then extended naturally to these equi-
valence classes, by setting: R([U1], . . . , [Un]) iff ∃V1 ∈ [U1] . . . ∃Vn ∈ [Un] : R(V1, . . . , Vn).

Definition 3.2. Let Gl = Gl(P) be the graph whose nodes are the equivalence classes on
the list-variables of P, with arcs defined as follows: From a node [U ] on Gl there is a directed
arc to a (not necessarily different) node [V ] on Gl if and only if:

• Either U >cons V : in which case the arc is labeled with >cons

• U >bc V : in which case the arc is labeled with >bc.

In the latter case, Gl will also have a two-sided (undirected) edge between [U ] and [V ], which
is labeled with ∼bc. The graph Gl is called the propagation graph for P.

A node [U ] on Gl is said to be a bc/bc-peak if P contains two different equations of the
form U =? bc(V, x), U =? bc(W,y); the node [U ] is said to be a cons/bc-peak if P has two
different equations of the form U =? cons(x, V1), U =? bc(V, z).

On the set of nodes of Gl, we define a partial relation ≻l by setting: [U ] ≻l [V ] iff there
is a path on Gl from [U ] to [V ], at least one arc of which has label >cons. In other words,

≻l = ∼∗
bc ◦ >cons ◦ (∼bc ∪ >cons)

∗

A list-variable U of P is said to violate occur-check iff [U ] ≻l [U ] on Gl. For instance, the
variable U violates occur-check in the problem:

U =? bc(W, z), W =? cons(x,U),

as well as in the problem:

U =? bc(V, z), V =? bc(W,a),W =? cons(a, L), L =? bc(U, b)

It can be checked that both the problems are unsatisfiable.
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3.1. Inference System INF l for List-Equations.

(L1) Variable Elimination:
{U =? V } ⊎ EQ

{U =? V } ∪ [V/U ](EQ)
if U occurs in EQ

(L2) Cancellation on cons:
EQ ⊎ {U =? cons(v,W ), U =? cons(x, V )}

EQ ∪ {U =? cons(x, V ), v =? x, W =? V }

(L3.a) Nil solution-1:
EQ ⊎ {U =? bc(V, x), U =? nil}

EQ ∪ {U =? nil, V =? nil}

(L3.b) Nil solution-2:
EQ ⊎ {U =? bc(V, x), V =? nil}

EQ ∪ {U =? nil, V =? nil}

(L3.c) Nil solution-3:
EQ ⊎ {U =? bc(V, x)}

EQ ∪ {U =? nil, V =? nil}
if V >∗

bc U

(L4.a) Semi-Cancellation on bc, at a bc/bc-peak:
EQ ⊎ {U =? bc(V, x), U =? bc(W,x)}

EQ ∪ {U =? bc(V, x), W =? V }

(L4.b) Push bc below cons, at a nonnil bc/bc-peak:
EQ ⊎ {U =? bc(V, x), U =? bc(W,y)}

EQ ∪ {V =? cons(v, Z), W =? cons(w,Z), U =? cons(u,U ′),

U ′ =? bc(Z, u), u =? h(v, x), u =? h(w, y)}
if U ∈ nonnil

(L5) Splitting, at a cons/bc-peak:
EQ ⊎ {U =? cons(x,U1), U =? bc(V, z)}

EQ ∪ {U =? cons(x,U1), V =? cons(y, V1), x =? h(y, z), U1 =
? bc(V1, x)}

(L6) Occur-Check Violation:
EQ

FAIL
if U occurs in P, , and [U ] ≻l [U ] on the graph Gl

(L7) Size Conflict:
EQ ⊎ {U =? cons(v,W ), U =? nil}

FAIL
The symbol ‘⊎’ in the premises of the above inference rules stands for disjoint set union

(and ‘∪’ for usual set union). The role of the Variable Elimination inference rule (L1) is
to keep the propagation graph of P irredundant: each variable has a unique representative
node on Gl(P), up to variable equality. This rule is applied most eagerly. Rules (L2),
(L3.a)–(L3.c) and (L4.a) come next in priority, and then (L4.b). The Splitting rule (L5) is
applied in the “laziest” fashion, i.e., (L5) is applied only when no other rule is applicable.
The above inference rules are all “don’t-care” nondeterministic. (The priority notions just
mentioned serve essentially for optimizing the inference procedure.)
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The validity of the rule (L4.b) (‘Pushing bc below cons’) results from the cancellativity
of cons and the semi-cancellativity of bc (Appendix-1). Note that the variables Z, U ′, and
u in the ‘inferred part’ of this rule (L4.b) might need to be fresh; the same is true also
for the variables y and V2 in the inferred part of the Splitting rule; but, in either case
this is not obligatory, if the equations already present can be used for applying these rules.
Type-inference failure is assumed to be checked implicitly; no explicit rule is given.

The following point should be kept in mind: Any given problem P naturally ‘evolves’
under the inference rules; and new variables might get added in the process, if rule (L5)
or rule (L4.b) is applied; but none of the variables initially present in P can disappear in
the process; not even under the Variable Elimination rule (L1). Thus, although the graph
Gl referred to in the Occur-Check Violation rule (L6) is the graph of the ‘current problem’,
the node it refers to might still be one corresponding to an initial variable.

We show now that such an introduction of fresh variables cannot go for ever, and that
the above “don’t-care” nondeterministic rules suffice, essentially, for deciding unifiability
modulo the axioms of BC.

Proposition 3.3. Let P be any BC-unification problem, given in standard form. The system
INF l of list-inference rules, given above, terminates on P in polynomially many steps.

Proof. Assume given a problem P in standard form, for which the inference process does
not lead to failure on Occur-Check (L6) or Size-Conflict (L7). If INF l is non-terminating
on such a P, at least one of the rules of INF l must have been applied infinitely often along
some inference chain; we show that this cannot be true for any of the rules in INF l.

Note first that an equation of the form U =? V in P is never handled in ‘both directions’
by the variable elimination rule (L1); an application of this rule means: every occurrence of
the variable U in the problem is replaced by the variable V . It is easy to check then, that for
this reason, (L1) cannot give rise to non-termination. On the other hand, the list-inference
rules (L2) through (L4.a) eliminate a (directed) outgoing arc from some node of Gl; so their
termination is easy to check. It should be clear, that for these three rules, termination is
polynomial (even linear). Thus, to show the termination of the entire inference process in
polynomially many steps, we have to look at how the problem evolves under the rule (L5)
(Splitting) and the rule (L4.b) (Pushing bc below cons). We show that if occur-check violation
(L6) does not occur, then the applications of the rule (L5) or of the rule (L4.b) cannot go
on forever.

For proving this, we shall be using an equivalence relation denoted as ∼β , on the list-

variables of the given problem. It is defined as the smallest equivalence relation1 satisfying
the following conditions, on the list-variables of P:

- If U ∼∗
bc V then U ∼β V .

- Let U >cons U ′ and V >cons V ′; then U ∼β V implies U ′ ∼β V
′.

Observe now that the number of bc-equations, i.e., list-equations of the form U =?

bc(V, z), never increases. This number decreases in most cases, except for (L1), (L2)
and (L5). The splitting rule (L5) does not decrease the number of bc-equations and may

1The relation ∼β can be viewed as a combination of the unification closure, a notion defined by Kanellakis
and Revesz [15], and the congruence closure of ∼∗

bc. The difference is that here we are working with a typed
system.
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introduce new variables, but the number of ∼β-equivalence classes of nodes (on the cur-

rent graph) does not increase: Indeed, applying the splitting rule (L5) on a list-equation
U =? bc(V, z) removes that equation, and creates a list-equation of the form U1 =

? bc(V1, x)
for some list-variables U1 and V1, such that V ∼bc U >cons U1 ∼bc V1; we have: V1 ∼β U1,
since V ∼β U .

Suppose now that applying the splitting rule does not terminate. Then, at some stage,
the derived problem will have a sequence of variables of the form U0 >cons U1 >cons

· · · >cons Un, such that the length of the sequence n strictly exceeds the initial number
of ∼β-equivalence classes — which cannot increase under splitting, as we just observed
above. So there must exist indices 0 ≤ i < j ≤ n such that Ui ∼β Uj .

Let j ≤ n be the smallest integer for which there exists an i, 0 ≤ i < j, such that
Ui ∼β Uj. Then, by the definition of ∼β, we must have Ui ∼

∗
bc Uj . Consequently, we would

then also have [Ui] ≻l [Ui]; and that would have caused the inference process to terminate
with FAIL, as soon as both the variables Ui and Uj appear in the problem derived under
the inferences.

Termination of (L4.b) can now be proved as follows: The number of ∼∗
bc-equivalence

classes may increase by 1 with each application of (L4.b), but the number of ∼β-equivalence
classes remains the same, for the same reason as above. Let m be the number of bc-equations
in the input problem and let n be the number of variables in the input problem. We then
show that the total number of applications of (L4.b) and (L5) cannot exceed mn: Indeed,
whenever one of (L4.b) or (L5) is applied, some number of bc-equations are removed and
an equal or lesser number are added, whose variables belong to ∼β-equivalence classes at
a ‘lower level’ as explained above, i.e., below some cons steps. There are at most n such
equivalence classes, since the number of ∼β equivalence classes does not increase (and there
cannot be more than n such equivalence classes, to start with). So a bc-equation cannot
be “pushed down” more than n times. Since there are initially m bc-equations, the total
number of applications of (L4.b) and (L5) cannot exceed mn.

A set of equations will be said to be L-reduced if none of the above inference rules (L1)
through (L7) is applicable. (Note: such a problem may not be in d-solved form: an easy
example is given a couple of paragraphs below.)

Unification modulo BC: The rules (L1) through (L7) are not enough to show the existence
of a unifier modulo BC. The subset of element-equations, E(P), may not be solvable; for
example, the presence of an element-equation of the form {x =? h(x, z)} should lead to
failure. However, we have the following:

Proposition 3.4. If L(P) is in L-reduced form, then P is unifiable modulo BC if and only
if the set E(P) of its element-equations is solvable.

Proof. If L(P) is L-reduced, then setting every list-variable that is not in nonnil to nil will
lead to a unifier for L(P), modulo BC, provided E(P) is solvable.

Recall that BC0 is the theory defined by BC when h is uninterpreted.

Proposition 3.5. Let P be any BC0-unification problem, given in standard form. Unifia-
bility of P modulo BC0 is decidable in polynomial time (wrt the size of P).

Proof. If the inferences of INF l applied to P lead to failure, then P is not unifiable modulo
BC; so assume that this is not the case, and replace P by an equivalent problem which is
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L-reduced, deduced in polynomially many steps by Proposition 3.3. By Proposition 3.4,
the unifiability modulo BC of such a P amounts to checking if the set E(P) of its element-
equations is solvable. We are in the case where h is uninterpreted, so to solve E(P) we apply
the rules for standard unification, and check for their termination without failure; this can
be done in polynomial time [5]. (In this case, h is fully cancellative.)

It can be seen that while termination of the above inference rules guarantees the exis-
tence of a unifier (provided the element equations are syntactically solvable), the resulting
L-reduced system may not lead directly to a unifier. For instance, the L-reduced system of
list-equations {U =? bc(V, x), U =? bc(V, y)} is unifiable, with the following two incompa-
rable unifiers:

{x := y, U := bc(V, y)} and {U := nil, V := nil}

To get a complete set of unifiers we need three more inference rules, which are “don’t-
know” nondeterministic, to be applied only to L-reduced systems:

(L8) Nil-solution-Branch for bc, at a bc/bc-peak:
EQ ⊎ {U =? bc(V, x), U =? bc(W,y)}

EQ ∪ {U =? nil, V =? nil, W =? nil}

(L9) Guess a non-Nil branch for bc, at a bc/bc-peak:
EQ ⊎ {U =? bc(V, x), U =? bc(W,y)}

EQ ∪ {V =? cons(v, Z), W =? cons(w,Z), U =? cons(u,U ′),

U ′ =? bc(Z, u), u =? h(v, x), u =? h(w, y)}

(L10) Standard Unification on bc:
EQ ⊎ {U =? bc(V, x), U =? bc(W,y)}

EQ ∪ {U =? bc(W,y), V =? W, x =? y}

Rule (L9) nondeterministically ‘guesses’ U to be in nonnil; in other words, it applies
rule (L4.b) ‘unconditionally’. The inference system thus extended will be referred to as
INF ′

l. By the same reasonings as developed above, INF ′
l also terminates, in polynomially

many steps, on any problem given in standard form. We establish now a technical result,
valid whether or not h is interpreted:

Proposition 3.6. Let P be any BC-unification problem in standard form, to which none
of the inferences of INF ′

l is applicable. Then its set of list-equations is in d-solved form.

Proof. If none of the equations in P involve bc or cons (i.e., all equations are equalities
between list-variables), then the proposition is proved by rule (L1) (Variable Elimination).

Observe first that if INF l is inapplicable to P, then, on the propagation graph Gl for
P, there is at most one outgoing directed arc of Gl at any node U : Otherwise, suppose there
are two distinct outgoing arcs at some node U on Gl; if both directed arcs bear the label
>cons, then rule (L2) of INF l would apply; if both bear the label >bc, then one of (L4.a),
(L4.b), (L9), (L10) would apply; the only remaining case is where one of the outgoing arcs
is labeled with >cons and the other has label >bc, but then the splitting rule (L5) would
apply.

Consider now any given connected component Γ of Gl. There can be no directed cycle
from any node U on Γ to itself: otherwise the Occur-Check-Violation rule (L6) would have
applied. It follows, from this observation and the preceding one, that there is a unique
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end-node U0 on Γ, i.e., a node from which there is no directed outgoing arc; and also that
for any given node U on Γ, there is a unique well-defined directed path leading from U to
that end-node U0.

It follows easily from these, that the list-variables on the left hand sides of the equations
in P (on the different connected components of Gl) can be ordered suitably, so as to satisfy
the condition for P to be in a d-solved form.

Example 3.7. The following BC0-unification problem is in standard form:

U =? cons(x,W ), U =? bc(V, y), W =? bc(V2, y), x =? h(z, y), y =? a

We apply (L5) (Splitting) and write V =? cons(v1, V1), with v1, V1 fresh; this, followed by
an application of rule (L2) (Cancellation on cons) leads to:

U =? cons(x,W ), V =? cons(v1, V1), W =? bc(V1, x), W =? bc(V2, y),
x =? h(v1, y), x =? h(z, y), y =? a

We apply cancellativity of h (valid for BC0), and an element-variable elimination; the prob-
lem thus derived is the following:

U =? cons(x,W ), V =? cons(z, V1), W =? bc(V1, x), W =? bc(V2, y),
x =? h(v1, y), z =? v1, y =? a

(i) No rule of INF l is applicable: in particular, (L4.b) doesn’t apply since W is not in
nonnil; but the rule (L8) (Nil-solution Branch for bc) can be nondeterministically applied:

U =? cons(x,W ), W =? nil, V1 =
? nil, V2 =

? nil, V =? cons(z, V1),
x =? h(v1, y), z =? v1, y =? a

These equations, in d-solved form, give a solution to the original problem.

(ii) For the sake of completeness, we could also try the rule (L9) (Guess a non-Nil branch)
nondeterministically, successively on the two equations for W in the problem derived above;
so we write V1 =

? cons(v2, V
′
2) and V2 =

? cons(v3, V
′
3). These applications of (L9), followed

by applications of Variable elimination, Cancellation on cons, and the cancellativity of h
(valid for the theory BC0), will lead us to:

U =? cons(y,W ), V =? cons(v1, V1), V1 =
? cons(v3, V

′
3),

V2 =
? V1, V

′
2 =? V ′

3 , W =? bc(V1, x),
x =? y, y =? h(v1, y), v2 =

? v3, z =? v1, y =? a

The list-equations are in d-solved form, but the element-equations being unsatisfiable we
are led to failure.

(iii) For the following problem (almost same as (i) above, but for an element-equation):

U =? cons(x,W ), U =? bc(V, y), W =? bc(V2, y), y =? a

the reasonings as developed in (ii) above would have led us to a non-nil solution for W :

U =? cons(y,W ), V =? cons(v1, V1), V1 =
? cons(v2, V

′
3), V2 =

? V1, W =? bc(V1, x),
x =? y, y =? a

where V ′
3 is any arbitrary list, and v1, v2 are any arbitrary elements.
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We turn our attention in the following section to the unification problem modulo BC.
When h is uninterpreted, we saw that this unification is decidable in polynomial time. But
when h is interpreted so that BC models CBC, we shall see that unification modulo BC1 is
NP-complete.

4. Solving a BC-Unification problem

Let P be a BC-Unification problem, given in standard form. We assume that INF ′
l has

terminated without failure on P; we saw, in the preceding section (Proposition 3.6), that
P is then in d-solved form. We also assume that we have a sound and complete procedure
for solving the element-equations of P, that we shall denote as INFe. For the theory BC0

where h is uninterpreted, we know (Proposition 3.5) that INFe is standard unification,
with cancellation rules for h, and failure in case of ‘symbol clash’. For the theory BC1,
where h(x, y) is interpreted as ek(x⊕y) for some fixed key k, INFe will have rules for semi-
cancellation on h, besides the rules for unification modulo XOR in some fixed procedure;
such a procedure is assumed given once and for all.

In all cases, we shall consider INFe as a black-box that either returns most general
unifiers (mgu’s) for the element-equations of P, or a failure message when these are not
satisfiable. Note that INFe is unitary for BC0 and finitary for BC1. For any problem P in
d-solved form, satisfiable under the theory BC0, there is a unique mgu, as expressed by the
equations of P themselves (cf. also [14]), that we shall denote by θP . Under BC1 there could
be more than one (but finitely many) mgu’s; we shall agree to denote by θP any one among
them. The entire procedure for solving any BC-unification problem P, given in standard
form, can now be synthesized as a nondeterministic algorithm:

The Algorithm A: Given a BC-unification problem P, in standard form.
Gl = Propagation graph for P.
INF ′

l = Inference procedure given above for L(P).
INFe = Any given (complete) procedure for solving the equations of E(P).

(1) Compute a standard form for P, to which the “don’t-care” inferences of INF l are no
longer applicable. If this leads to failure, exit with FAIL. Otherwise, replace P by this
standard form.

(2) Apply the “don’t-know” nondeterministic rules (L8)–(L10), followed by the rules of
INF l as needed, until the equations no longer get modified by the inference rules
(L1)–(L10). If this leads to failure, exit with FAIL.

(3) Apply the procedure INFe for solving the residual set E(P) of element-equations; if
this leads to failure, exit with FAIL.

(4) Otherwise let σ be the substitution on the variables of P as expressed by the resulting
equations. Return σ as a solution to P.

Proposition 4.1. The algorithm A is sound and complete.

Proof. The soundness of A follows from the soundness (assumed) of INFe and that of
INF ′

l, which is easy to check: obviously, if P ′ is any problem derived from P by applying
any of these inference rules, then any solution for P ′ corresponds to a solution for P. The
completeness of A follows from the completeness (assumed) of INFe, and the completeness
of INF ′

l that we prove below.
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Lemma 4.2. If σ is a solution for a given BC-unification problem P in standard form,
then there is a sequence of INF ′

l-inference steps that transforms P into a problem P ′ in
d-solved form such that σ is an instance of θ

P ′ (modulo BC).

Proof. We know that the inference rules of INF ′
l terminate on P; let N be the maxi-

mum number of steps needed for this termination, including along all possible “don’t-know”
branches of the process. We prove the lemma by induction on N , and case analysis for the
possible branches.

Observe first that if P ′ is a problem derived from P under any inference rule of INF ′
l,

then the given substitution σ, on on the variables of P, extends naturally as a substitution
on the variables of P ′, satisfying the equations of P ′. (This needs to be checked only if
P ′ might involve new variables, such as when P ′ is derived from P under rule (L5) or rule
(L4.b); the reasoning is straightforward for either of these cases.)

If P ′ is derived from P by applying one of the “don’t-care” rules of INF l, then the
assertion of the lemma follows from the above observation and the induction hypothesis.
So we may assume wlog that the given problem P is already L-reduced (i.e., none of the
inferences of INF l is applicable). If such a P is already in d-solved form, then we are
done, since σ �BC θP , for some mgu θP . (If the theory is BC1, this means: there exists one
among the finitely many mgus, for which this holds.)

If P is not in d-solved form, then several cases are possible, depending on the possible
inference branches. It suffices to consider one such case – the reasoning being quite similar
for all the others. Suppose there are two equations U =? bc(Z, v) and U =? bc(Y,w) in P.
If σ(v) =

BC
σ(w), then we must have σ(Z) =

BC
σ(Y ), and σ is extendable as a solution

for the problem obtained by applying the rule (L10). If σ(v) 6=
BC

σ(w), then σ must be
extendable as a solution to the problem derived under rule (L8) or rule (L9). The induction
hypothesis (on the maximum number of inference steps needed for termination) completes
then the argument to prove the lemma, in all cases.

Proposition 4.3. Unification modulo BC is finitary.

Proof. Let P be a satisfiable BC-unification problem. We can assume without loss of gen-
erality that P is in standard form, because any unification problem can be converted to a
finite problem in standard form. Let S be the set of mgus for P. By lemma 4.2, for each
σ ∈ S, there is a sequence of INF ′

l-inference steps that leads to a problem P ′ in d-solved
form, and an mgu θP ′ such that σ is an instance of θP ′ . Let D be the set of all such derived
problems. Because all the inference rules in INF ′

l terminate, and because there are finitely
many inference rules, D contains finitely many problems.

In the uninterpreted case BC0, σ is θP ′ for some P ′ ∈ D, so there are finitely many
unifiers in S. For BC1, note that unification modulo XOR is finitary [16]. Therefore, there
are finitely many XOR-mgus for the element problem derived from P ′, so there are finitely
many unifiers in S that are instances of θP ′ . Since there are finitely many problems in D,
there are finitely many unifiers in S.

4.1. BC1-Unification is NP-Complete. Recall that BC0 is the theory defined by BC
when h is uninterpreted, and BC1 is the theory when h is interpreted so that BC models the
(XOR-based) cipher-block-chaining mode CBC.



UNIFICATION MODULO A 2-SORTED EQUATIONAL THEORY FOR CBC 13

Proposition 4.4. Unifiability modulo the theory BC1 is NP-complete.

Proof. NP-hardness follows from the fact that general unification modulo XOR is NP-
complete [12]. We deduce the NP-upper bound from the following facts:

a) For any given BC-unification problem, computing a standard form is in polynomial time,
wrt the size of the problem.

b) Given a standard form, the propagation graph can be constructed in polynomial time
(wrt its number of variables).

c) Applying (L1)-(L10) till termination takes only polynomially many steps.
d) Extracting the set of element-equations from the resulting set of equations is in P.
e) Solving the element-equations, with the procedure INFe, using unification modulo

XOR, is in NP.

4.2. An Illustrative Example.

The following public key protocol is a slight variant of one that was studied in [11] –
the modification is that the namestamp of the sender of a message appears as the first block
of the encrypted message body, and not the second as was specified in [11]:

A → B : A, {A,m}kb
B → A : B, {B,m}ka

where A,B are the participants of the protocol session, m is a message that they intend
secret for others, and kb (resp. ka) is the public key of B (resp. A).

If the CBC encryption mode is assumed and the message blocks are all of the same
size, then this protocol becomes insecure; here is why. Let eZ(x) stand for the encryption
e(x, kz) with the public key kz of any principal Z. Under the CBC encryption mode, what
A sends to B is the following list, in the ML-notation:

A → B : [A, [ eB(A⊕ v), eB(m⊕ eB(A⊕ v)) ] ].
Here ⊕ stands for XOR and v is the initialization vector (IV ) agreed upon between A
and B. But then, some other agent I, entitled to open a session with B with initialization
vector w, can get hold of the first encrypted block (namely: eB(A⊕v)) as well as the second
encrypted block of what A sent to B, namely eB(m, eB(A ⊕ v)); (s)he can then send the
following as a ‘bona fide’ message to B:

I → B : [ I, [ eB(I ⊕w), eB(m⊕ eB(A⊕ v)) ] ];
upon which B will send back to I the following:

B → I : [B, [ eI(B ⊕ w), eI(m⊕ eB(A⊕ v)⊕ eB(I ⊕ w)⊕ eI(B ⊕ w) ) ] ].

It is clear now, that the intruder I can get hold of the message m intended to remain
secret for him/her: By decrypting the second block of the (encrypted part of the) message
received from B, (s)he first deduces: m⊕ eB(A⊕ v)⊕ eB(I ⊕w)⊕ eI(B ⊕w); by XOR-ing
this with the first block of the message, (s)he obtains: m ⊕ eB(A ⊕ v) ⊕ eB(I ⊕ w); from
which (s)he can deduce m by XOR-ing with eB(I ⊕ w) and eB(A ⊕ v), both of which are
known to him/her (the latter of these two terms is the first block of the message from A to
B, that (s)he has intercepted).

Example 4.5. The above attack (which exploits the properties of XOR: x⊕x = 0, x⊕0 =
x) can be modeled as solving a certain BC1-unification problem. We assume that the names
A,B, I, as well as the initialization vector w, are constants accessible to I. The message m
and the initialization vector v, that A and B have agreed upon, are constants intended to



14 S. ANANTHARAMAN, C. BOUCHARD, PALIATH NARENDRAN c, AND M. RUSINOWITCH

be secret for I. We shall interpret the function symbol h of BC in terms of encryption with
the public key of B: i.e., h(x, y) is eB(x⊕ y).

The protocol above can then be modeled as follows: We assume that the list of terms
A sends to B, namely [A, [h(A, v), h(m,h(A, v))] ], is seen by the latter as the list of terms
[A, bc([A,m], v) ]; (s)he first recovers the namestamp A of the sender, then checks that the
second argument under bc in what (s)he received is the IV agreed upon with A; subsequently
(s)he sends back the appropriate list of terms to A, acknowledging receipt of the message.

Now, due to our CBC-assumption, the ground terms h(A, v), h(m,h(A, v)) are both
accessible to the intruder I. So the attack by I, mentioned above, corresponds to the fact
that I can send to B the following list of terms: [ I, [h(I, w), h(m,h(A, v)) ] ]. That the
attack materializes follows from the fact that B can solve the BC1-unification problem:

bc([I, z], w) =? cons(h(I, w), [h(m,h(A, v))]),

for the element-variable z, i.e., B needs to solve the element-equation: h(z, h(I, w)) =?

h(m,h(A, v)); since h is interpreted here so that BC models CBC, (s)he can do so by
setting: z := m⊕ h(A, v) ⊕ h(I, w); and that precisely leads to the attack.

Remark 4.6. (i) The above analysis does not go through if the namestamp forms the
second block of the encrypted part of the messages sent. In such a case, the protocol is
‘leak-proof’ even under CBC, provided we assume that an IV for a message is a secret to
be shared only by the sender and the intended recipient of the message, and that it is not
transmitted – as clear text or encrypted – as an initial ‘block number zero’ of the message
body. Actually, by reasoning as above, one checks that the intruder I in such a case can
only get hold of m⊕v, where v is the (secret) IV that only A and B share. This in a sense is
in accordance with [11], where the protocol was ‘proved secure’ under such a specification.

(ii) The considerations above lead us to conclude, implicitly, that in cryptographic
protocols employing the CBC encryption mode, it is necessary to forbid free access to the IVs
of the ‘records’ of the ‘messages’ sent, if information leak is to be avoided. This fact has been
pointed out in the 90’s, by Bellare et al ([6]), and again, in some detail, by K. G. Paterson
et al in [19]; both point out that TLS 1.0 – with its predictable IVs – is inherently insecure.
For more on this point, and on the relative advantages of TLS 1.1, TLS 1.2 over TLS 1.0,
the reader can also consult, e.g., http://www.educatedguesswork.org/2011/09/

(Note: keeping IVs as shared secrets alone may not always be sufficient in general, as
is shown by Example 2 above.)

5. A generic Block Chained Cipher-Decipher Scheme

In this section we extend the 2-sorted equational theory BC0 studied above, into one
that fully models, in a simple manner and without using any AC-symbols, a ‘generic’ block
chaining encryption-decryption scheme. This theory, that we shall refer to as DBC, is
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defined by the following set of (2-sorted) equations:

bc(nil, z) = nil

bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))

g(h(x, y), y) = x

db(nil, z) = nil

db(cons(x, Y ), z) = cons(g(x, z), db(Y, x))

db(bc(X, y), y) = X

where g is typed as g : τe × τe → τe and db is typed as db : τl × τe → τl.

All these equations can be oriented from left to right under a suitable reduction ordering,
to form a convergent (2-sorted) rewrite system. The 6th equation says that db is a left-
inverse for bc; it is actually an inductive consequence of the first five: i.e., for any list-term
X and element-term y both in ground normal form, db(bc(X, y), y) reduces to X under the
first five, a fact that can be easily checked by structural induction, cf. Appendix-2. (Its
insertion as an equational axiom is for technical reasons, as will be explained in Remark
5.8(ii) below.)

A few words, by way of intended semantics in the context of cryptographic protocols,
seem appropriate: h(x, y) would in such a context stand for the encryption with the public
key of an intended recipient B, of message x, ‘coupled’ in a sense to be defined, with y
as initialization vector (IV); and g(h(x, y), y) would be the decryption of h(x, y) with the
private key of B, to be then ‘decoupled’, again in a sense to be defined, with y. If an
agent A wants to send a list of terms cons(x, Y ) to recipient B, (s)he would send out
bc(cons(x, Y ), z) where z is the IV they have mutually agreed upon; and B would see it as
the list of terms cons(h(x, z), bc(Y, h(x, z))), from which (s)he can retrieve the individual
message terms by applying the last equation for db in the system DBC.

This generic block chained encryption-decryption scheme is a natural abstraction of the
usual (XOR-based) CBC: it suffices to interpret the roles of h and g suitably, and define
properly the meanings of ‘coupling’ and ‘decoupling’, to get the usual CBC mode; for that,
one would define the ‘coupling’ as well as ‘decoupling’ of x with y as x⊕ y; h(x, y) would
then stand for eB(x⊕y), and g(z, y) would stand for dB(z)⊕y, where dB is decryption with
the private key of B. If we go back to Example 4.5 based on the usual CBC, the encrypted
part of what A sends out to B (with the notation employed there) is the list of terms:
[h(A, v), h(m,h(A, v)) ], that corresponds to the term bc([A,m], v). By applying the fifth
equation in DBC to this list of terms, under the assignments: z := v, x := h(A, v), Y :=
[h(m,h(A, v)], B would then derive the following list:

[ g(h(A, v), v), db([h(m,h(A, v))], h(A, v)) ];

i.e., the list [A,m]. In other words, the usual XOR-based CBC is indeed an ‘instance’ of
the theory DBC.

Remark 5.1. Other ‘concrete’ cipher-decipher block chaining modes can also be seen as
instances of DBC; one among them is the Cipher FeedBack encryption mode (CFB), which
is defined as follows:
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Let M = p1 . . . pn be a message given as a list of n ‘plaintext’ message subblocks. Then
the encryption of M with any given key k and initialization vector v is defined as the list
c1 . . . cn, of ciphertext message subblocks, where:

c1 = p1 ⊕ ek(v), and ci = pi ⊕ ek(ci−1), for any 1 < i ≤ n

This encryption mode (also using XOR) is very similar to CBC, but works in the reverse
direction (cf. e.g., http://en.wikipedia.org/wiki/Block cipher modes of operation).
It is an instance of DBC, if the ‘coupling’ and the ‘decoupling’ operations of DBC, namely
h(x, y) and g(x, y), are both defined as x⊕ ek(y).

The theory DBC thus appears, indeed, as a high level equational abstraction of the
block chained encryption-decryption mode; it employs no AC-symbols for this abstraction.
It is easy to see, on the other hand, that the equations of DBC can all be oriented left-to-
right under a suitable reduction ordering, to give a convergent rewrite system. We shall be
showing below that unification modulo DBC is NP-decidable; it turns out to be actually
NP-complete, due to the presence of a left-inverse for h (namely g).

Remark 5.2. : It is important to note that the function g is not semi-cancellative:
g(h(g(t, u), u), u) =

DBC
g(t, u), but h(g(t, u), u) and t need not be equivalent modulo DBC.

However, it is easy to show that g is left-cancellative; see Appendix-1 for the details.

5.1. Unification modulo DBC.

We assume without loss of generality that any DBC-unification problem P is given in
a standard form, i.e., as a set of equations EQ, each having one of the following forms:

U =? V, U =? bc(V, y), U =? db(V, y), U =? cons(v,W ), U =? nil,
u =? v, u =? g(w, y), v =? h(w, x), u =? const

We have to extend some of the notions and notation of Section 3.1, in order to take db
into account. These extensions concern the propagation graph Gl of the problem and
nonnil, the set of variables which cannot be nil.

(i) If U =? db(V, y) is in P, then write U >db V ; in which case, insert a directed arc on
Gl from [U ] to [V ] and label it with >db. The graph Gl will also have then a two-sided
(undirected) edge between [U ] and [V ], labeled with ∼db.

(ii) The set of variables nonnil, defined earlier, is extended as follows:
If U =? db(V, y) is in P, then U is in nonnil if and only if V is in nonnil.

We define a new relation >c=>bc ∪ >db. Its symmetric closure is ∼c and its transitive,
reflexive, and symmetric closure is ∼∗

c . The relations >+
c , >

+
db, >

∗
db are then defined in the

usual manner. If U ∼c V , then U and V are related by ‘chaining’, i.e. by some number of
bc and db operations. We refine then the partial relation ≻l on the nodes of Gl as follows:

≻l = ∼∗
c ◦ >cons ◦ (∼c ∪ >cons)

∗

This relation can still continue to be read as: [U ] ≻l [V ] iff there is a directed path on Gl

from [U ] to [V ], at least one arc of which has label >cons.
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We extend now the inference system INF ′
l of Section 3.1 by adding the following list-

inferences; these additional rules are essentially the db-counterparts of the list-inferences
of INF ′

l which only needed to consider bc. (There are several reasons why we have not
worked with DBC right from the start – maybe the inference system would possibly have
been more concise, if we had done so. A first reason is, that would have been at the expense
of readability; a second reason is that BC-unification is of interest on its own, especially for
BC1, as is shown by Example 4.5 above; a third and conclusive reason is that the inference
system we present below for DBC-unification, actually reduces the problem to a problem of
BC-unification.) We first formulate the “don’t-care” nondeterministic inference rules.

(DB1.a) Nil solution-1 for db::

EQ ⊎ { U =? db(V, x), U =? nil }

EQ ∪ { U =? nil, V =? nil }

(DB1.b) Nil solution-2 for db::

EQ ⊎ { U =? db(V, x), V =? nil }

EQ ∪ { U =? nil, V =? nil }

(DB1.c) Nil solution-3 for db::

EQ ⊎ { U =? db(V, x) }

EQ ∪ { U =? nil, V =? nil }
if V >∗

db U

(DB2) Left-Cancellation on db::

EQ ⊎ { U =? db(V, x), U =? db(V, y) }

EQ ∪ { U =? db(V, y), x =? y }
if U ∈ nonnil

(DB3.a) Push db below cons, at a nonnil db/db-peak ::

EQ ⊎ { U =? db(V, x), U =? db(W,y) }

EQ ∪ { V =? cons(v, V ′), W =? cons(w,W ′), U =? cons(u,U ′),

U ′ =? db(V ′, v), U ′ =? db(W ′, w), u =? g(v, x), u =? g(w, y) }

if U ∈ nonnil

(DB3.b) Push bc and db below cons at a nonnil bc/db-peak ::

EQ ⊎ { U =? bc(V, x), U =? db(W,y) }

EQ ∪ { V =? cons(v, V ′), W =? cons(w,W ′), U =? cons(u,U ′),

U ′ =? bc(V ′, u), U ′ =? db(W ′, w), u =? h(v, x), w =? h(u, y) }

if U ∈ nonnil

(DB4) Splitting for db at a cons/db-peak::

EQ ⊎ { U =? cons(x,U1), U =? db(V, z) }

EQ ∪ { U =? cons(x,U1), x =? g(y, z), U1 =
? db(V1, y), V =? cons(y, V1) }

(DB5) Flip db to bc conditionally: :

EQ ⊎ {U =? db(V, x)}

EQ ∪ {V =? bc(U, x)}
if V >+

c U, and V ≯∗
db U
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Rules (DB3.a), (DB3.b), (DB4) and (DB5) have the lowest priority: they are to be
applied in the “laziest” fashion. The rule (DB3.b) (“Push bc and db below cons. . . if nonnil”)
is justified by the conditional left-cancellativity of db (cf. Lemma F, Appendix-2). Rule
(DB5) is actually a ‘narrowing’ step, justified by the fact that db ‘is a left-inverse’ for bc.

For the completeness of the procedure, we shall also need a few more list inference rules
which are “don’t-know” nondeterministic; namely, the rules (DB6.a)–(DB8) below:

(DB6.a) Guess a Nil-solution-Branch for db at a db/db-peak ::

EQ ⊎ {U =? db(V, x), U =? db(W,y)}

EQ ∪ {U =? nil, V =? nil, W =? nil}

(DB6.b) Guess a Nil-solution-Branch for bc and db at a bc/db-peak ::

EQ ⊎ {U =? bc(V, x), U =? db(W,y)}

EQ ∪ {U =? nil, V =? nil, W =? nil}

(DB7.a) Guess a Narrowing step for db at a db/db-peak ::

EQ ⊎ {U =? db(V, x), U =? db(W,y}

EQ ∪ {V =? bc(U, x), U =? db(W,y}}
if V ≯∗

db U

(DB7.b) Guess a Narrowing step for db at a bc/db-peak ::

EQ ⊎ {U =? bc(V, x), U =? db(W,y}

EQ ∪ {U =? bc(V, x), W =? bc(V, y}}
if W ≯∗

db U

(DB8) Standard Unification on db::

EQ ⊎ {U =? db(V, x), U =? db(W,y)}

EQ ∪ {U =? db(W,y), V =? W, x =? y}

We denote by INF ′′
l the inference system that extends INF ′

l with the list-inference
rules (DB1)–(DB8), given above. It is important to note that the Occur-Check Violation
rule (L6) is henceforth to be applied to DBC-unification problems in standard form, under
the partial relation ≻l as has been refined above.

Proposition 5.3. Let P be any DBC-unification problem, given in standard form. The
inference system INF ′′

l terminates on P in polynomially many steps.

Proof. This is an extension of Proposition 3.3, to the inference system INF ′′
l . The proof of

that earlier proposition can be carried over practically verbatim: we only have to show that
the new inferences that might introduce fresh variables, namely the three rules (DB3.a),
(DB3.b) and (DB4), cannot lead to a non-terminating chain of inferences. To ensure this,
a first observation is that the relation ∼β, which was used in the proof of Proposition 3.3,
has to be refined now so as to take also into account the relation ∼db, the symmetric closure
of >db, as follows:

- If U ∼∗
db V then U ∼β V .

- Let U >cons U ′ and V >cons V ′; then U ∼β V implies U ′ ∼β V
′.

A second observation is that these three rules which might introduce fresh variables remove a
∼db-edge at some node U , and introduce a new ∼db-edge at a node U ′ such that U >cons U

′;
but the number of ∼β-equivalence classes remains the same, by the same argument as
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developed in the proof of Proposition 3.3. The other details of that earlier proof carry over
verbatim.

Given any DBC-unification problem P in standard form, let A′′ denote the inference
procedure based on the rules of INF ′′

l , given above for its list-equations; we augment the
procedure A′′ with any given complete procedure for solving the residual set of element-
equations in the problem, when the list-inference rules of INF ′′

l are no longer applicable.
We have then the following result:

Proposition 5.4. The procedure A′′ is sound and complete for solving DBC-unification
problems given in standard form.

Proof. The proof uses the same lines of reasoning as for Proposition 4.1. The procedure
A′′ is sound, because to any solution of a problem derived under any of its inferences,
corresponds a solution for the initial problem. The completeness of A′′ is again proved, for
any given problem, by induction on the maximum number of inference steps needed for the
termination of the procedure A′′ on the problem; and using case analysis when necessary,
based on the “don’t-know” inference rules (DB6.a)–(DB8) above, for such an analysis. We
leave out the details, which are straightforward.

Proposition 5.5. Let P be a DBC-unification problem in standard form, to which none of
the inferences of INF ′′

l is applicable. Then its subset of list-equations with non-nil variables
on the left-hand side is in d-solved form.

Proof. This extends Proposition 3.6 to the inference system INF ′′
l . Note that we just need

to show the following: From any given node [U ] on any given connected component Γ of
the Propagation graph Gl, there is an unambiguous, cycle-free, directed path to a well-
determined end-node on Γ. Now, given that any directed arc on Gl is labeled with either
>cons, or >bc, or >db, there can be at most one outgoing arc from [U ]: otherwise one of
the inferences (DB2)–(DB8) would have been applicable; there can be no directed ≻l-cycle
either at [U ], otherwise the Occur-Check violation rule would have been applicable. Thus,
the proof of that earlier proposition carries over, essentially verbatim.

Proposition 5.6. Unification modulo the theory DBC is NP-complete.

Proof. Given any DBC-unification problem P, computing a standard form can be done in
polynomial time (wrt the number of variables of P); the same holds also for constructing the
propagation graph for the standard form. Applying then the inference rules of INF ′′

l till
termination, on this standard form, takes only polynomially many steps, by Proposition 5.3.
In case of non-failure, extracting the set of element-equations from the resulting problem
can obviously be done in polynomial time.

To show that solving P is in NP, it suffices therefore to show that the set of its element-
equations can be solved, modulo the theory defined by the single equation g(h(x, y), y) = x,
in nondeterministic polynomial time. But this is a collapsing convergent system, and the
unification problem for such theories is known to be decidable and finitary [13, 18]. In
particular, a decision procedure can be built by using basic normalized narrowing, e.g., as
given in [5]; cf. also [17]. We outline, briefly, such a procedure:

Procedure for Solving E(P): Note that every equation in E(P) is either a g-equation,
i.e., an equation of the form u =? g(x, v); or an h-equation, of the form u =? h(x, y).
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1. IF the set of element-equations is in d-solved form, then return that set;
ELSE if the set contains g-equations, then go to Step 2; ELSE go to Step 3.

2. Choose nondeterministically an equation in E(P) of the form u =? g(x, v); and replace
it by the h-equation x =? h(u, v).

3. If E(P) contains two different h-equations with the same lhs variable, apply standard
decomposition below h on these two; and suppress one of the two equations.

4. Apply (element-)Variable Elimination to the resulting set of element-equations, if needed.
5. Go to Step 1.

(Note that Step 2 is just narrowing.) It is easy to check that this procedure is in NP on the
size of E(P).

It remains to show that solving a general DBC-unification problem is NP-hard. This
follows from our Proposition 5.7 below, where we actually make a more precise statement.

Proposition 5.7. Unifiability modulo g(h(x, y), y) = x is NP-complete.

Proof. (cf. also [4].) We need only to prove the NP lower bound; we do that by reduction
from the Monotone 1-in-3 SAT problem, formulated as follows:

Given a propositional formula in CNF without negation such that every clause has exactly
3 literals (variables), check for its satisfiability under the condition that exactly one literal
in each clause should evaluate to true.

This problem is known to be NP-complete [20].
Now consider the following problem of unification modulo g(h(x, y), y) = x, involving

3 element-variables x1, x2, x3:

g(h(g(h(g(h(a, b), x1), b), x2), b), x3) =
? g(h(a, b), c)

where a, b, c are ground constants.
Since g(h(x, y), y) → x is a convergent rewrite system, the unifiability problem is equiv-

alent to finding an instance of the equation under an irreducible substitution such that both
sides can be reduced to the same term. But the right-hand side term g(h(a, b), c) is irre-
ducible modulo g(h(x, y), y) → x; so we need to eliminate two g symbols from the left-hand
side term g(h(g(h(g(h(a, b), x1), b), x2), b), x3). The only way to do that is by assigning b
to two of the variables, and then reduce using the rule g(h(x, y), y) → x. We easily check
that we obtain the following possible results: g(h(a, b), x1), g(h(a, b), x2), g(h(a, b), x3). If
we assign the third ‘left-out’ variable – let us call it x – to b, the term obtained g(h(a, b), b)
would reduce to a, which is irreducible and different from g(h(a, b), c). If we assign this
left-out variable to some irreducible term t different from b and c, then g(h(a, b), t) would
be irreducible, again different from g(h(a, b), c). Hence, the only way to reduce both sides
of the given problem to become equal, is to assign c to the left-out variable. In other words:
solving this problem amounts to assigning the term c to exactly one of the three variables
x1, x2, x3, and assigning b to the other two.

Now let us consider a (finite) set of clauses, each with three positive literals. To each
clause L1 ∨L2 ∨L3 in this set, we associate 3 element-variables x1, x2, x3, and the element-
equation g(h(g(h(g(h(a, b), x1 ), b), x2), b), x3) =? g(h(a, b), c) on these variables. From the
discussion above, the system of derived equations has a solution modulo g(h(x, y), y) = x if
and only if the set of clauses is 1-in-3 satisfiable.
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Remark 5.8. (i) It can be shown that DBC-unification is finitary, along the same lines of
reasoning as for the proof of Proposition 4.3.

(ii) The inference rules (DB5), (DB7.a) and (DB7.b) of INF ′′
l – which are justified by

the last equation of DBC – play the role of reducing unification modulo DBC, in fine, to
unification modulo BC.

Example 5.9. (i) The following problem: U =? db(V, x), V =? cons(y,W ), W =? bc(U, z)
is unsatisfiable. Our procedure exits with failure: we have an Occur-Check Violation: U >db

V >cons W >bc U .
(ii) The following problem P is in standard form:

U =? db(V, y), U =? cons(x,U1), V =? cons(y, V1)

We have a cons/db-peak at [U ] on the graph of P, and the only “don’t-care” rule applicable
is the Splitting rule (DB4); we can use the equation V =? cons(y, V1) for that splitting.
After cancellation on cons and a variable elimination step, the problem derived is:

U =? cons(x,U1), x =? g(y, y), U1 =
? db(V1, y), V =? cons(y, V1)

which is in d-solved form, and gives a solution.

Example 5.10. (i) The following problem: U =? db(V, y), V =? db(U, z) is in standard
form, but is not in a d-solved form. Rule (DB1.c) is applicable, and gives the “nil” solution
to U and V , with y, z arbitrary.

(ii) The following problem P is in standard form: U =? bc(V, x), V =? db(U, y), but not
in a d-solved form; the only applicable inference rule is (DB5) (Flip db to bc conditionally),
and the problem becomes:

U =? bc(V, x), U =? bc(V, y)

This is a BC-unification problem which is L-reduced, but not in a d-solved form. None
of the list-variables U, V is in nonnil; so, an obvious easy solution is U := nil, V := nil,
the element-variables x, y being arbitrary; this corresponds to applying rule (L8). We could
also nondeterministically apply the rule (L10) (Standard unification on bc); to deduce then
the most general solution solution, namely: U := bc(V, x), x := y.

Example 5.11. The following problem P is in standard (but not in a d-solved) form:

U =? bc(V, x), V =? db(W,y), W =? db(T, z), T =? bc(U, t), U =? cons(u,U1)

Observe that T >+
c W but T ≯∗

db W , so the rule (DB5) (Flip db to bc conditionally) is
applicable to the equation on W ; and that gives:

U =? bc(V, x), V =? db(W,y), T =? bc(W, z), T =? bc(U, t), U =? cons(u,U1)

The problem now presents a bc/bc-peak at T which is in nonnil, so rule (L4.b) can be
applied, by writing W =? cons(w,W1); this, followed by Cancellation on cons, and a
Standard unification step on h, leads us to deduce: w =? u, t =? z, W1 =? U1, and
subsequently W =? U ; the problem is thus transformed (after some Variable Elimination
steps) into:

U =? bc(V, x), V =? db(U, y), T =? bc(U, z), U =? cons(u,U1), W =? U, t =? z
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The rule (DB5) (Flip db to bc conditionally) is again applicable, now to the equation on V ;
we thus get:

U =? bc(V, x), U =? bc(V, y), T =? bc(U, z), U =? cons(u,U1), W =? U, t =? z

The rule (L4.a) (Semi-Cancellation on bc at a bc/bc-peak) is now applicable, and we deduce:
y =? x; after Variable Elimination, the problem transforms to:

U =? bc(V, x), T =? bc(U, z), U =? cons(u,U1), W =? U, y =? x, t =? z

which presents a cons/bc-peak on U , so the Splitting rule (L5) is applicable; we write
V =? cons(v, V1), and the problem evolves (after Variable Elimination) to:

U =? cons(u,U1), V =? cons(v, V1), U1 =
? bc(V1, h(v, x)), T =? bc(U, z), W =? U ,

u =? h(v, x), y =? x, t =? z

The list-equations, as well as the element-equations, are now in d-solved form; and they do
give a solution to the problem we started with (as can be easily checked).

6. Conclusion

We first addressed the unification problem modulo a convergent 2-sorted rewrite system BC,
that models, in particular, the (usual, XOR-based) CBC encryption mode of cryptography,
by interpreting suitably the function h in BC. A procedure is given for deciding unifica-
tion modulo BC, which has been shown to be sound and complete (and finitary) when h
is either uninterpreted, or interpreted in such a manner. In the uninterpreted case, the
procedure is a combination of the inference procedure INF

′

l presented in this paper, with
syntactic unification; it turns out to be of polynomial complexity, essentially for this rea-
son. In the case where h is interpreted as mentioned above, the unification procedure is
a combination of INF

′

l with any complete procedure for deciding unification modulo the
associative-commutative theory for XOR; and it turns out to be NP-complete for this reason.
The second part of the work extends BC into a theory DBC that models, at an abstract level,
a cipher-decipher block chaining scheme. Unifiability modulo DBC is shown to be decidable
by an inference procedure, which essentially ‘reduces’ any DBC-unification problem in fine
into one over BC. Unification modulo DBC is also (finitary and) NP-complete.

A point that seems worth mentioning here concerns the binary function symbol cons
in DBC. We have implicitly assumed that in practical situations (such as in Example 2
above) the two arguments of cons are ‘accessible’; this can be made more explicit by adding
two ‘projection’ equations to DBC, using car and cdr on cons, to get the following set of 8
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equations:

car(cons(x, Y )) = x (6.1)

cdr(cons(x, Y )) = Y (6.2)

bc(nil, z) = nil (6.3)

bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z))) (6.4)

g(h(x, y), y) = x (6.5)

db(nil, z) = nil (6.6)

db(cons(x, Y ), z) = cons(g(x, z), db(Y, x)) (6.7)

db(bc(X, y), y) = X (6.8)

with car typed as τl → τe, and cdr as τl → τl. All these equations can be oriented left-
to-right under a suitable simplification ordering, and the resulting rewrite system remains
convergent. It is not difficult to check that, even after the addition of these two projection
rules, unification problems – with some very minor restrictions on the form of equations
involving car and cdr – can still be assumed in a standard form, and solved by the inference
procedure INF ′′

l given above. In other words, the results of Section 5 remain valid for this
enlarged 2-sorted convergent rewrite system – that we shall again refer to as DBC, since no
confusion seems likely.

The rewrite system DBC thus enlarged can actually been shown to be ∆-strong in the
sense of [3], under a suitable precedence based (lpo- or rpo- like) simplification ordering, by
taking ∆ to be the subsystem formed of the two rules (6.1) and (6.2). It would then follow
from Proposition 11 of [3], that the so-called ‘passive deduction’ problem, for an intruder,
is decidable, if the intruder capabilities are modeled by this theory DBC. This would
yield, to our knowledge, the first purely rewrite/unification based approach for analyzing
cryptographic protocols employing the CBC encryption mode. The details will be given
elsewhere, where we also hope to present decision procedures for a couple of other security
problems, where an intruder eavesdrops or guesses some low-entropy data in the context of
block ciphers.

Finally, observe that unification modulo equational theories often serves as an auxiliary
procedure in several formal protocol analysis tools, such as Maude-NPA, CL-Atse, . . . , for
handling algebraic properties of cryptoprimitives. The work we have presented in this paper
could be of use in these tools, as a first step towards the automation of attack detection in
cryptographic protocols employing CBC.
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Appendix-1: On the Cancellativity properties of bc, g and db

Lemma A. For all terms T1, T2, t, we have:

bc(T1, t) ≈BC bc(T2, t) if and only if T1 ≈BC T2.

Proof. The proof is by structural induction on the terms, based on the semi-cancellativity
of h and the cancellativity of cons. If either T1 or T2 is nil, then the other has to be nil
too, and the assertion of the Lemma is trivial. So suppose that T1 and T2 are not nil. Then
T1 = cons(u1, T

′
1) and T2 = cons(u2, T

′
2), for some terms u1, u2, T

′
1, T

′
2. Substituting back

into the original equation and applying the second axiom of BC, we deduce that:

cons(h(u1, t), bc(T
′
1, h(u1, t)) ) ≈BC cons(h(u2, t), bc(T

′
2, h(u2, t)) )

Since cons is cancellative, we get:

h(u1, t) ≈BC h(u2, t), and bc(T ′
1, h(u1, t)) ≈BC bc(T ′

2, h(u2, t)).

From the semi-cancellativity of h, we then deduce that:

u1 ≈BC u2, and bc(T ′
1, h(u1, t)) ≈BC bc(T ′

2, h(u1, t)).

Therefore, by structural induction, we deduce that T ′
1 ≈BC T ′

2, and the result follows.

Lemma B. For all terms T, t1, t2, we have:

bc(T, t1) ≈BC bc(T, t2) if and only if T ≈BC nil or t1 ≈BC t2.

Proof. The proof is by exactly the same reasonings as for proving the previous lemma.

We shall paraphrase these two lemmas together by saying that bc is “conditionally”
semi-cancellative.

Lemma C. For all terms u1, T1, u2, T2, u3, u4: If bc(cons(u1, T1), u3) ≈BC bc(cons(u2, T2), u4)
then h(u1, u3) ≈BC h(u2, u4) and T1 ≈BC T2.

Proof. By applying the second axiom of BC, we get:

cons(h(u1, u3), bc(T1, h(u1, u3)) ) ≈BC cons(h(u2, u4), bc(T2, h(u2, u4)) )

Cancellation on cons gives:

h(u1, u3) ≈BC h(u2, u4) and bc(T1, h(u1, u3)) ≈BC bc(T2, h(u2, u4))

By Lemma A above, this implies that T1 ≈BC T2.

In what follows, by DBC we shall mean the equational theory DBC of Section 5, and
the rewrite system it defines.

As for the analogs of the above results for the operator db of DBC, we first observe
that the function g is not semi-cancellative – more precisely, it is not right-cancellative:
indeed, we have g(h(g(t, u), u), u) =

DBC
g(t, u), although h(g(t, u), u) 6=

DBC
t, in general.

But left-cancellativity holds for g.
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Lemma D. If g(s, t1) =DBC
g(s, t2) then t1 =DBC

t2.

Proof. We can assume wlog that the terms s, t1, and t2 are in normal form. If t1 6=
DBC

t2,
then both g(s, t1) and g(s, t2) must be redexes, or, in other words, s = h(s′, t1) = h(s′, t2)
for some s′. Since h is semi-cancellative this leads to a contradiction.

Corollary E. If g(s1, t1) =DBC g(s2, t2), and t1 6=DBC t2, then s1 6=DBC s2.

So, the analog of Lemma A for db does not hold in general. However, db is ‘conditionally’
left-cancellative:

Lemma F. For all terms T, x, y, we have:

db(T, x) ≈DBC db(T, y) if and only if T ≈DBC nil or x ≈DBC y.

Proof. We just need to prove the “only if” assertion. If T is not nil, then T = cons(t, T1)
for some t, T1. Applying the last axiom of DBC, we get:

cons(g(t, x), db(T1, t)) ≈DBC cons(g(t, y), db(T1, t)).

The assertion follows then from the cancellativity of cons and the left-cancellativity of g.

Appendix-2: db as inductive left-inverse for bc

Lemma G. Let DBC′ be the convergent rewrite system formed of the first five rules in the
system DBC of Section 5. For any list-term U and element-term x both in DBC′-normal
form, we have: db(bc(U, x), x) =DBC′ U .

Proof. The proof is by structural induction on U . The base case when U is nil is trivial; so
suppose U = cons(u,U1) for some element-term u, and list-term U1. Substituting for U and
using first the 2nd equational axiom of DBC′, the left-hand side of the assertion becomes:

db(cons(h(u, x), bc(U1 , h(u, x)), x).

To which we can apply the 5th equational axiom of DBC′ to get:

cons(g(h(u, x), x), db(bc(U1 , h(u, x)), h(u, x));

By applying now the 3rd axiom of DBC′, and the induction hypothesis, this reduces (modulo
DBC′) to cons(u,U1), that is to say U .
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