N

N

Unification modulo a 2-sorted Equational theory for
Cipher-Decipher Block Chaining
Siva Anantharaman, Christopher Bouchard, Paliath Narendran, Michaél

Rusinowitch

» To cite this version:

Siva Anantharaman, Christopher Bouchard, Paliath Narendran, Michaél Rusinowitch. Unification
modulo a 2-sorted Equational theory for Cipher-Decipher Block Chaining. Logical Methods in Com-
puter Science, 2013, 26 p. hal-00854841v1

HAL Id: hal-00854841
https://hal.science/hal-00854841v1
Submitted on 28 Aug 2013 (v1), last revised 6 Feb 2014 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00854841v1
https://hal.archives-ouvertes.fr

UNIFICATION MODULO A 2-SORTED EQUATIONAL THEORY
FOR CIPHER-DECIPHER BLOCK CHAINING

SIVA ANANTHARAMAN*, CHRISTOPHER BOUCHARD, PALIATH NARENDRAN?,
AND MICHAEL RUSINOWITCH?*

* LIFO, Université d’Orléans (France)
e-mail address: sivaQuniv-orleans.fr

T University at Albany-SUNY (USA)
e-mail address: ¢b829983Q@albany.edu

¥ University at Albany-SUNY (USA)
e-mail address: dran@cs.albany.edu

Loria-INRIA Crand Est, Nancy (France)
e-mail address: rusi@loria.fr

ABSTRACT. We investigate unification problems related to the Cipher Block Chaining
(CBC) mode of encryption. We first model chaining in terms of a simple, convergent,
rewrite system over a signature with two disjoint sorts: list and element. By interpreting
a particular symbol of this signature suitably, the rewrite system can model several practi-
cal situations of interest. An inference procedure is presented for deciding the unification
problem modulo this rewrite system. The procedure is modular in the following sense:
any given problem is handled by a system of ‘list-inferences’, and the set of equations thus
derived between the element-terms of the problem is then handed over to any (‘black-box’)
procedure which is complete for solving these element-equations. An example of applica-
tion of this unification procedure is given, as attack detection on a Needham-Schroeder
like protocol, employing the CBC encryption mode based on the associative-commutative
(AC) operator XOR. The 2-sorted convergent rewrite system is then extended into one that
fully captures a block chaining encryption-decryption mode at an abstract level, using no
AC-symbols; and unification modulo this extended system is also shown to be decidable.

1. INTRODUCTION

The technique of chaining is applicable in many situations. A simple case is e.g., when
we want to calculate the partial sums (resp. products) of a (not necessarily bounded) list
of integers, with a given ‘base’ integer; such a list of partial sums (resp. products) can be
calculated, incrementally, with the help of the following two equations:

Key words and phrases: Equational unification, Block chaining, Protocol.
 Research supported in part by NSF grant CNS-0905286.

 Research supported in part by NSF grant CNS-0905286.

¥ Research supported in part by FP7 NESSOS Project.

be(nil, z) = nil, be(cons(xz,Y), z) = cons(h(zx, z), be(Y, h(x,z)))

where nil is the empty list, z is the given base integer, x is an integer variable, and Y is the
given list of integers. The partial sums (resp. products) are returned as a list, by evaluating
the function be, when h(z, z) is interpreted as the sum (resp. product) of x with the given
base integer z.

A more sophisticated example is the Cipher Block Chaining encryption mode (CBC, in
short), employed in cryptography, a mode which uses the AC-operator exclusive-or (XOR)
for ‘chaining the ciphers across the message blocks’; here is how this is done: Let @ stand
for XOR (which we let distribute over block concatenation), and let m = p;...p, be a
message given as a list of n ‘plaintext’ message subblocks. Then the encryption of m, with
any given public key k£ and initialization vector v, is defined as the list ¢; . .. ¢, of ciphertext
message subblocks, where: ¢; = ex(p1 ®v), and ¢; = ex(p; ® ex(ci—1)), for any 1 < i < n;
more generally, let M = m - M’ be a message decomposed as a concatenation of a single
message block m with the rest of the message list M’; then the encryption of M with
any given public key k, with = taken as initialization vector (IV), is given recursively by
be(M,x) = h(m,x) - be(M', h(m,x)). (Note: It is usual in Cryptography to see a message
as a sequence of “records”, each record being decomposed into a sequence of blocks of the
same size; what we refer to as ‘message’ in this paper, would then correspond to a ‘record’
in the sense of cryptography.)

The above set of equations also models this CBC encryption mode: for this, we interpret
the function h(x,y) as the encryption eg(z @ y) of any single block message =, XOR-ed
with the initialization vector y, using a given public key k. Actually, our interest in the
equational theory defined by the above two equations was motivated by the possibility of
such a modeling for Cipher Block Chaining, and the fact that rewrite as well as unification
techniques are often employable, with success, for the formal analysis of cryptographic
protocols (cf. e.g., [1 B, [7, [8, 9], and also the concluding section).

This paper is organized as follows. In Section [2] we introduce our notation and the
basic notions used in the sequel; we shall observe, in particular, that the two equations
above can be turned into rewrite rules and form a convergent rewrite system over a 2-
sorted signature: lists and elements. Our concern in Section [3| is the unification problem
modulo this rewrite system; we present a 2-level inference system (corresponding, in a way,
to the two sorts of the signature) for solving this problem. Although our main aim is to
investigate the unification problem for the case where h is an interpreted function symbol
(as in the two situations illustrated above), we shall also be considering the case where h
is a free uninterpreted symbol. The soundness and completeness of our inference procedure
are established in Section[dl While the complexity of the unification problem is polynomial
over the size of the problem when A is uninterpreted, it turns out to be NP-complete when
h is interpreted so that the rewrite system models CBC encryption. We then present, in
Section o], a 2-sorted convergent system DBC that fully models at an abstract level, a block
chaining cipher-decipher mode without using any AC-operators; this is done by adding a
couple of equations to the above two: one for specifying a left-inverse g for h (g does the
deciphering), and the other for specifying the block chaining mode for deciphering. A 2-level
inference procedure extending the one given in Section [3|is presented, and is shown to be
sound and complete for unification modulo this extended system DBC; unification modulo
DBC also turns out to be NP-complete. In the concluding section we briefly evoke possible
lines of future work over these systems BC and DBC.

Note: The first part of this paper, devoted to unification modulo BC, is a more detailed
version of the work we presented at LATA 2012 ([2]).

2. NOTATION AND PRELIMINARIES

We consider a ranked signature X, with two disjoint sorts: 7, and 7, consisting of binary
functions bc, coms, h, and a constant nil, and typed as follows:

bc: ;xT, =T , cons: T, X1, =T, h: T, X1, =71, , nil:T.

We also assume given a set X of countably many variables; the objects of our study are
the (well-typed) terms of the algebra 7 (X, X); terms of the type 7, will be referred to as
elements; and those of the type 7; as lists. It is assumed that the only constant of type list is
nil; the other constants, if any, will all be of the type element. For better readability, the set
of variables X will be divided into two subsets: those to which ‘lists’ can get assigned will
be denoted with upper-case letters as: X,Y, Z, U, V, W, ..., with possible suffixes or primes;
these will be said to be variables of type 7;; variables to which ‘elements’ can get assigned will
be denoted with lower-case letters, as: x,¥, z,u,v,w, ..., with possible suffixes or primes;
these will be said to be variables of type 7.. The theory we shall be studying first in this
paper is defined by the two axioms (equations) already mentioned in the Introduction:

be(nil, z) = nil, be(cons(x,Y), z) = cons(h(x, z), be(Y, h(zx,z)))

It is easy to see that these axioms can both be oriented left-to-right under a suitable
lexicographic path ordering (Ipo) (cf. e.g., [10]), and that they form then a convergent —
i.e., confluent and terminating — 2-sorted rewrite system.

As mentioned in the previous section, we consider two theories that contain the above
two axioms. The first is where these are the only axioms; we call that theory BC,. The
other theory is where h is interpreted as for CBC, i.e., where h(z,y) = e (x ® y) where
@ is exclusive-or and e, is encryption using some (fixed) given key k. This theory will be
referred to as BC;. We use the phrases “BC-unification” and “unification modulo BC” to
refer to unification problems modulo both the theories, collectively.

Note that in the case where h is a free uninterpreted symbol (i.e., BCy) h is fully
cancellative in the sense that for any terms si,t1, s9, t2, h(s1,t1) e h(sa,t2) if and only if
51 Rpe s2 and t1 =g, ta. But when h is interpreted for CBC, this is no longer true; in such
a case, h will be only semi-cancellative, in the sense that for all terms s1, so, ¢, the following
holds:

h is right-cancellative: h(sy,t) ~p. h(s2,t) if and only if s; ~p, s2, and

h is also left-cancellative: h(t,s1) =gz h(t, s2) if and only if s1 =gz, s2.

Throughout the rest of the paper we will assume the symbol h to be semi-cancellative.

Our concern in this section, and the one following, is the equational unification problems
modulo BC, and BC;. We assume without loss of generality (wlog) that any given BC-

unification problem P is in standard form, i.e., P is given as a set of equations £Q, each
having one of the following forms:

U="V,U="bc(V,y), U="cons(v, W), U="nil,
? ? ?
u="v, v="h(w,x), u="const

where const stands for any ground constant of sort 7,. The first four kinds of equations
— the ones with a list variable on the left-hand side — are called list equations, and

3

the rest (those which have an element variable on the left-hand side) are called element
equations. For any problem P in standard form, £(P) will denote the subset formed of its
list equations, and £(P) the subset of element equations. A set of element equations is said
to be in dag-solved form (or d-solved form) ([14]) if and only if they can be arranged as a
list &1 =" t1, ..., &p =’ t,, such that:

V1 <i<j<n:x; and z; are distinct variables, and x; does not occur in ¢; nor in any t;.

Such a notion is naturally extended to sets of list equations as well. In the next section
we give an inference system for solving any BC-unification problem in standard form. For
any given problem P, its rules will transform £(P) into one in d-solved form. The element
equations at that point can be passed on to an algorithm for solving them — thus in the
case of BC; what we need is an algorithm for solving the general unification problem modulo
the theory of exclusive-or.

Any development presented below — without further precision on h — is meant as one
which will be valid for both BC, and BC;.

3. INFERENCE SYSTEM FOR BC-UNIFICATION

The inference rules have to consider two kinds of equations: the rules for the list
equations in P, i.e., equations whose left-hand sides (lhs) are variables of type 7, and the
rules for the element equations, i.e., equations whose lhs are variables of type 7,. Our
method of solving any given unification problem will be ‘modular’ on these two sets of
equations: The list-inference rules will be shown to terminate under suitable conditions,
and then all we will need to do is to solve the resulting set of element equations for h.

A few technical points need to be mentioned before we formulate our inference rules.
Note first that it is not hard to see that cons is cancellative; by this we mean that
cons(s1,t1) Rge cons(sa, ta), for terms s, sy, t1, to, if and only if 51 ~p, 52 and t1 ~p to.
On the other hand, since we assume that h is semi-cancellative we can show, by structural
induction, that bc is also conditionally semi-cancellative (depending on whether its first
argument is nil or not); for details, see Appendiz-1.

Note that U =" be(U, x) is solvable by the substitution {U := nil}; in fact this equation
forces U to be nil, as would also a set of equations of the form: U =" be(V,y), V =" be(U, z).
Cycles of this kind have therefore to be checked to determine whether a list variable is forced
to be nil. This can be effectively done by defining a relation >, over type 7; variables:

U >p. V iff there is an equation U =7 be(V, X).
If X >;C X then X has to be nil. A set nonnil of variables that cannot be nil for any

unifying substitution is defined, recursively, as follows:

o if U =7 cons(z, V) is an equation then U € nonnil.
o if U =7 be(V, x) is an equation and V € nonnil then U € nonnil.
o if U ="be(V, x) is an equation and U € nonnil then V' € nonnil.

We have then the following obvious result:
Lemma 1. A variable U € nonnil if and only if there are variables V' and W such that

U~p. Vand V >, W (where ~j_ stands for the reflexive, symmetric, transitive closure
of the relation >.).

We also have to account for cases where an ‘occur-check’ succeeds on some list variable,
and the problem will be unsolvable. The simplest among such cases is when we have an
equation of the form U =7 cons(z,U) in £Q. But one could have more complex unsolvable
cases, where the equations involve both cons and bc; e.g., when £Q contains equations of the
form: U =" cons(x, V), U =" be(V,y); the problem will be unsolvable in such a case: indeed,
from the axioms of BC, one deduces that V must be of the form V =’ cons(v, V'), for some
v and V', then z must be of the form = =" h(v,y), and subsequently V =7 be(V’, z), and
we are back to a set of equations of the same format. We need to infer failure in all such
cases; for that, we define two relations on the list variables of the equations in £Q:

o U >cons Viff U =7 cons(z,V), for some z.
o U~y Viff U =" be(V,w), or V =" be(U,w), for some w.

Note that ~;_ is the symmetric closure of the relation >4.. The reflexive, symmetric
and transitive closure of >, will be denoted as ~j ...

We also define another equivalence relation ~g as the smallest equivalence relatio
that contains ~}, such that, for all U, V, U’ and V', if U >cons U and V' >ons V', then
U ~p Vif and only if U’ ~3 V'. We will be using this relation to show termination of the
inference system presented below.

In what follows, for any list variable U, we denote by [U] the equivalence class of list
variables that get equated to U; more precisely:

U ={V|U="VePoaV="UcP}

For any relation R defined over list variables, there is a natural extension to these equiva-
lence classes:

R(UL),...,[Ux]) iff Vi €[th] ... 3V, € [Un]: RO, ..., Vy).

Definition 1. Let G; = G;(P) be the graph whose nodes are the equivalence classes on the
list variables of P, with arcs defined as follows: From a node [U] on G there is a directed
arc to a (not necessarily different) node [V] on Gy if and only if:

e Either U >_.,ns V: in which case the arc is labeled with >,

e U >;. V: in which case the arc is labeled with >..
In the latter case, G; will also have a two-sided (undirected) edge between [U] and [V], which
is labeled with ~.. The graph G is called the propagation graph for P.

On the set of nodes of G, we define a partial relation >; by setting: [U] =; [V] iff there
is a path on G; from [U] to [V], at least one arc of which has label >.o,s. In other words,

= Nzc O >cons © (Nbc) >ccms)*-

A list variable U of P is said to violate occur-check iff [U] >=; [U] on G;. A node [U] on G,
will be said to be a be/be-peak (resp. a cons/be-peak) if P contains two different equations of
the form U =7 be(V, z),U =7 be(W, y) (resp. of the form U =7 cons(z, V1), U =* be(V, 2)).

IThe relation ~ 5 can be viewed as a combination of the unification closure, a notion defined by Kanellakis
and Revesz [15], and the congruence closure of ~;,.. The difference is that here we are working with a typed
system.

3.1. Inference System ZNF, for List-Equations.
(L1) Variable Elimination:
{U="V} v £Q
{U="V}u [V/U|(£Q)
(L2) Cancellation on cons:
EQ w {U =" cons(v, W), U =" cons(z,V)}

£EQ U {U =" cons(z,V), v="a, W ="V}

if U occurs in £Q

(L3.a) Nil solution-1:
EQ W {U="be(V,x), U="nil}

£Q U {U =" nil, V =" nil}

(L3.b) Nil solution-2:
EQ w {U="be(V,x), V ="nil}

£Q U {U =" nil, V =" nil}

(L3.c) Nil solution-3:
EQ w {U="be(V,r)}
£Q U {U =" nil, V =" nil}
(L4.a) Semi-Cancellation on be, at a be/be-peak:
EQ W {U="be(V,x), U="bc(W,x)}
EQ U {U =" be(W,z), V="W}
(L4.b) Push be below cons, at a nonnil be/be-peak:
EQ w {U="be(V,x), U="bc(W,y)}
EQ U {V =" cons(v,Z), W =" cons(w, Z), U =" cons(u,U’),
U =" be(Z,u), u=""hv,z), u="hlw,y)}
if U € nonnil
(L5) Splitting, at a cons/bc-peak:
EQ W {U =" cons(x,Uy), U="bc(V,2)}
EQ U {U =" cons(x,U,), V=" cons(y,V;), v =" h(y, 2), U, =" be(V},z)}
(L6) Occur-Check Violation:

£Q . .
FAIT if U occurs in £Q, and [U] >; [U] on the graph G;

(L7) Size Conflict:

itV >hU

EQ w {U =" cons(v,W), U =" nil}
FAIL

The symbol ‘@’ in the premises of the above inference rules stands for disjoint set union
(and ‘U’ for usual set union). The role of the Variable Elimination inference rule (L1) is
to keep the propagation graph of P irredundant: each variable has a unique representative
node on G;(P), up to variable equality. This rule is applied most eagerly. Rules (L2),
(L3.a)—(L3.c) and (L4.a) come next in priority, and then (L4.b). The Splitting rule (L5) is
applied in the “laziest” fashion, i.e., (L5) is applied only when no other rule is applicable.
The above inference rules are all “don’t-care” nondeterministic. (The priority notions just
mentioned serve essentially for optimizing the inference procedure.)

The validity of the rule (L4.b) (‘Pushing bc below cons’) results from the cancellativity
of cons and the semi-cancellativity of be (Appendiz-1). Note that the variables Z, U’, and
u in the ‘inferred part’ of this rule (L4.b) might need to be fresh; the same is true also
for the variables y and V5 in the inferred part of the Splitting rule; but, in either case
this is not obligatory, if the equations already present can be used for applying these rules.
Type-inference failure is assumed to be checked implicitly; no explicit rule is given.

We show now that such an introduction of fresh variables cannot go for ever, and that
the above “don’t-care” nondeterministic rules suffice, essentially, for deciding unifiability
modulo the axioms of BC.

Proposition 1. Let P be any BC-unification problem, given in standard form. The system
INF, of list inference rules, given above, terminates on P in polynomially many steps.

Proof: The variable elimination rule (L1) removes nodes from the propagation graph, while
the list inference rules (L2) through (L4.a) eliminate a (directed) outgoing arc from some
node of (G;. Thus their termination is easy to check. Therefore termination of the system of
list inference rules depends on the splitting rule (L5) and the rule (L4.b) (Pushing be below
cons). We show that if occur-check violation (L7) does not occur, then applications of the
rule (L5) or of the rule (L4.b) cannot go on forever.

First of all, observe that the number of bc-equations, i.e., list equations of the form
U =" be(V, 2), never increases. This number decreases in most cases, except for (L1),
(L2) and (L5). The splitting rule (L5) does not decrease the number of be-equations and
may introduce new variables, but the number of ~ ﬂ—equivalence classes of nodes does not
increase, since the (possibly) new variable V| belongs to the same equivalence class as
U, (V} ~,. Up). Thus applying the splitting rule (L5) on a list equation U = be(V, z)
removes that equation and creates a “lower” list equation of the form U; = be(Vy,x) for
some list variables Uy and Vi, such that V' ~, U >cons Ur ~p, V1. (Note that we use
~g to show termination rather than ~; , because it’s actually possible that the number of
~j -equivalence classes could increase, while the number of ~g-equivalence classes cannot.)

Suppose now that applying the splitting rule does not terminate. Then, at some stage,
the derived problem will have a sequence of variables of the form Uy >cons Ul >cons *** >cons
Up, such that its number of variables n strictly exceeds the initial number of ~ g-equivalence
classes — which cannot increase under splitting, as was observed above. So there must exist
indices 0 < ¢ < j < n such that U; ~g U;. By the definition of ~g, there must be indices
0 < < j" <nsuch that U; ~,,, Uy ~pe Uy, where ~% is the symmetric, reflexive, and
transitive closure of >.ons. In other words, we would have [U;] =; [Uy], and that would
have caused the inference procedure to terminate with FAIL. We conclude therefore that
applying the splitting rule must terminate.

Termination of (L4.b) by itself is almost obvious: The number of ~} -equivalence classes
may increase by 1 with each application of (L4.b), but the number of ~ ﬂ—equivalence classes
remains the same due to Lemma Let m be the number of bc-equations in the input
problem and n be the number of variables in the input problem. It can be shown that the
total number of applications of (L4.b) and (L5) cannot exceed mn: Indeed, whenever one of
(L4.b) or (L5) is applied, some number of be-equations are removed and an equal or lesser
number are added, whose variables belong to lower ~g-equivalence classes (as described
above). There are at most n such equivalence classes, since the number of these equivalence
classes does not increase (and there cannot be more than n such equivalence classes to start).

So a bc-equation can be “pushed down” no more than n times. Since there are initially m
bc-equations, the total number of applications of (L4.b) and (L5) cannot exceed mn. L]

A set of equations will be said to be L-reduced if none of the above inference rules (L1)
through (L7) is applicable. (Note: such a problem may not be in d-solved form.)

Unification modulo BC: The rules (L1) through (L7) are not enough to show the existence
of a unifier modulo BC. The subset of element equations, £(P), may not be solvable; for
example, the presence of an element equation of the form {z =’ h(x,z)} should lead to
failure. However, we have the following:

Proposition 2. If £(P) is in L-reduced form, then P is unifiable modulo BC if and only if
the set £(P) of its element equations is solvable.

Proof. If L(P) is L-reduced, then setting every list variable that is not in nonnil to nil will
lead to a unifier for L(P), modulo BC, provided £(P) is solvable. O

Recall that BC is the theory defined by BC when h is uninterpreted.

Proposition 3. Let P be any BC,-unification problem, given in standard form. Unifiability
of P modulo BC, is decidable in polynomial time (wrt the size of P).

Proof. If the inferences of ZN F, applied to P lead to failure, then P is not unifiable modulo
BC; so assume that this is not the case, and replace P by an equivalent problem which is
L-reduced, deduced in polynomially many steps by Proposition [Il By Proposition [2| the
unifiability modulo BC of such a P amounts to checking if the set £(P) of its element
equations is solvable. We are in the case where h is uninterpreted, so to solve E(P) we
apply the rules for standard unification, and check for their termination without failure;
this can be done in polynomial time [5]. (In this case, h is fully cancellative.) O

It can be seen that while termination of the above inference rules guarantees the exis-
tence of a unifier (provided the element equations are syntactically solvable), the resulting
L-reduced system may not lead directly to a unifier. For instance, the L-reduced system of
list equations {U =" be(V,z), U =7 be(V,y)} is unifiable, with two incomparable unifiers,
namely:

{z =y, U :=0bc(V,y)} and {U :=nil, V := nil}
To get a complete set of unifiers we need three more inference rules, which are “don’t-

know” nondeterministic, and to be applied only to L-reduced systems:

(L8) Nil-solution-Branch for be, at a be/be-peak:
£Q W {U="be(V,z), U=""bc(W,y)}
£Q U {U =" nil, V ="nil, W =" nil}
(L9) Guess a non-Nil branch for be, at a bc/be-peak:
£Q W {U ="be(V,z), U =" be(W, y)}
£Q U {V =" cons(v, Z), W =" cons(w, Z), U =" cons(u,U"),
U' ="bc(Z,u), u="h(v,z), u="h(w,y)}
(L10) Standard Unification on be:
£Q W {U="bc(V,z), U=""bc(W,y)}

EQ U {U ="be(W,y), V="W, z ="y}
8

Rule (L9) nondeterministically ‘guesses’ U to be in nonnil, in other words, it applies
rule (L4.b) ‘unconditionally’. The inference system thus extended will be referred to as
INF). By the reasonings developed above, ZN F} also terminates, in polynomially many
steps, on any problem given in standard form. We establish now a technical result, valid
whether or not h is interpreted:

Proposition 4. Let P be any BC-unification problem in standard form, to which none of
the inferences of ZN F is applicable. Then its set of list equations is in d-solved form.

Proof. If none of the equations in P involve bc or cons (i.e., all equations are equalities
between list variables), then the proposition is proved by rule (L1) (Variable Elimination).

Observe first that if ZNV F; is inapplicable to P, then, on the propagation graph G; for
P, there is at most one outgoing directed arc of GGy at any node U: Otherwise, suppose there
are two distinct outgoing arcs at some node U on Gy; if both directed arcs bear the label
>cons, then rule (L2) of ZN F; would apply; if both bear the label >p., then one of (L4.a),
(L4.b), (L9), (L10) would apply; the only remaining case is where one of the outgoing arcs
is labeled with >.,,s and the other has label >, but then the splitting rule (L5) would
apply.

Consider now any given connected component I' of (G;. There can be no directed cycle
from any node U on I to itself: otherwise the Occur-Check-Violation rule (L6) would have
applied. It follows, from this observation and the preceding one, that there is a unique
end-node Uy on I' — i.e., a node from which there is no directed outgoing arc — and also
that for any given node U on I', there is a unique well-defined directed path leading from
U to that end-node Uj.

It follows easily from these, that the list-variables on the left hand sides of the equations
in P (on the different connected components of G;) can be ordered suitably, so as to satisfy
the condition for P to be in a d-solved form. []

Example 1. The following BC,-unification problem is in standard form:
U =" cons(xz, W), U="be(V,y), W ="bc(Va,y), x =" h(z,y), y="a

We apply (L5) (Splitting) and write V' =7 cons(vi, V1), with vy, V; fresh; this, followed by
an application of rule (L2) (Cancellation on cons) leads to:

U =" cons(z, W), V =" cons(vy, V1), W =" be(Vy,z), W =7 be(Va, y),
? ? ?
z="h(v1,y), ="Nh(z,9), y="a

We apply (semi-)cancellativity of A and an element-variable elimination:

U =" cons(x, W), V=" cons(z, V1), W =" be(Vy,2), W =" be(Va, y),
z ="' h(v1,y), z ="y,) ="a

(i) No rule of ZN F; is applicable: in particular, (L4.b) doesn’t apply since W is not in
nonnil; but the rule (L8) (Nil-solution Branch for bc) can be nondeterministically applied:

U =" cons(x, W), W =" nil, Vi =" nil, Vo =" nil, V =" cons(z, V1),
x :? h(vlay)7 z :? V1, Y :? a

These equations, in d-solved form, give a solution to the original problem.

(ii) For the sake of completeness, we could also try the rule (L9) (Guess a non-Nil branch)
nondeterministically, successively on the two equations for W in the problem derived above;
so we write V3 = cons(va, Vy) and Vo =* cons(vs, V4). These applications of (L9), followed
by applications of Variable elimination, Cancellation on cons, and the full cancellativity of
h (which is true in this case), will lead us to:

U =" cons(y, W), V =" cons(vi, V1), Vi =" cons(vs, VJ),
Vo ="V, V§ ="V, W =" be(V,),
? ? ? ? ?
r="Y,y= h(vlay)u Vg = V3, 2= V1, Yy="0a

The list equations are in d-solved form, but the element equations being unsatisfiable we
are led to failure.

(iii) For the following problem (almost same as (i) above, but for an element equation):
U =" cons(xz, W), U ="be(V,y), W =" be(Va,y), y =" a
the reasonings as developed in (ii) above would have led us to a non-nil solution for W:

U=" cons(y, W), V =’ cons(vy, V1), V1 =’ cons(ve, V), Va ='W, w="' be(Vi,),
?

”
="y, y="a
where V3 is any arbitrary list, and y, vy are any arbitrary elements. []

We turn our attention in the following section to the unification problem modulo BC.
When h is uninterpreted, we saw that this unification is decidable in polynomial time. But
when h is interpreted so that BC models CBC, we shall see that unification modulo BC, is
NP-complete.

4. SOLVING A BC-UNIFICATION PROBLEM

Let P be a BC-Unification problem, given in standard form. We assume that ZAN/F; has
terminated without failure on P; we saw, in the preceding section (Proposition , that P
is then in d-solved form. We also assume that we have a sound and complete procedure
for solving the element equations of P, that we shall denote as ZN F.. For the theory
BC, where h is uninterpreted, we know (Proposition [3) that ZNV F. is standard unification,
with cancellation rules for h, and failure in case of ‘symbol clash’. For the theory BC,,
where h(z,y) is interpreted as e(x @ y, k) for some fixed key k, ZN'F. will have rules for
semi-cancellation on h and e, besides the rules for unification modulo XOR in some fixed
procedure, that we assume given once and for all.

In all cases, we shall consider ZN F, as a black-box that either returns most general
unifiers (mgu’s) for the element equations of P, or a failure message when these are not
satisfiable. Note that ZN F,. is unitary for BC, and finitary for BC,. For any problem P in
d-solved form, satisfiable under the theory BC, there is a unique mgu, as expressed by the
equations of P themselves (cf. also [I4]), that we shall denote by 6. Under BC; there could
be more than one (but finitely many) mgu’s; we shall agree to denote by 6, any one among

10

them. The entire procedure for solving any BC-unification problem P, given in standard
form, can now be synthesized as a nondeterministic algorithm:

The Algorithm A: Given a BC-unification problem P, in standard form.
G; = Propagation graph for P.

INF; = Inference procedure given above for L£(P).

INF, = Any given (complete) procedure for solving the equations of £(P).

(1) Compute a standard form for P, to which the “don’t-care” inferences of ZN F; are
no longer applicable. If this leads to failure, exit with FAIL. Otherwise, replace P
by this standard form.

(2) Apply the “don’t-know” nondeterministic rules (L8)—(L10), followed by the rules of
INF, as needed, until the equations no longer get modified by the inference rules
(L1)—(L10). If this leads to failure, exit with FAIL.

(3) Apply the procedure ZN F, for solving the residual set £(P) of element-equations;
if this leads to failure, exit with FAIL.

(4) Otherwise let o be the substitution on the variables of P as expressed by the resulting
equations. Return ¢ as a solution to P.

Proposition 5. The algorithm A is sound and complete.

Proof. The soundness of A follows from the soundness (assumed) of ZN'F,. and that of
IN F}, which is easily checked: obviously, if P’ is any problem derived from P by applying
any of these inference rules, then any solution for P’ corresponds to a solution for P. The
completeness of A follows from the completeness (assumed) of ZN F,, and the completeness

of ZN'F} that we prove below.]

Lemma 2. If ¢ is a solution for a given BC-unification problem P in standard form, then
there is a sequence of ZN F)-inference steps that transforms P into a problem P’ in d-solved
form such that o is an instance of 6, (modulo BC).

Proof sketch. The proof is by case analysis. We may assume, without loss of generality,
that P is L-reduced (i.e., the mandatory inferences of ZN F) have all been applied). If
P is already in d-solved form then we are done since o =gz, 0p, for some mgu 05. If P
is not in d-solved form, then we have to consider several cases, depending on the possible
inference branches. We will just illustrate one such case (the reasoning is quite similar for
all the other cases). Suppose there are two equations U =’ be(Z,v) and U =" be(Y,w) in
P. If o0(v) =g, o(w), then we must have 0(Z) =4, 0(Y), and o is extendable as a solution
for the problem obtained by applying the rule (L10). If o(v) #, o(w), then ¢ must be
extendable as a solution to the problem derived under rule (L8) or rule (L9). Now, we
know that the inference steps always terminate, so such a reasoning can be completed into
an inductive argument, to prove the lemma. (Note that the “don’t-know” nondeterministic
rules (L8)—(L10) come into play only to ensure the completeness of the procedure.) O

Proposition 6. Unification modulo BC is finitary.

Proof. Let P be a BC-unification problem. We can assume without loss of generality that

‘P is in standard form, because any unification problem can be converted to a finite problem

in standard form. Let S be the set of mgus of P. By lemma [2| for each ¢ € S, there is

a sequence of ZN F-inference steps that leads to P’ and 6p such that o is an instance of

Op:. Let D be the set of all such derived problems. Because all the inference rules in ZN F
11

terminate, and because there are finitely many inference rules, D contains finitely many
problems.

In the uninterpreted case BCy, o is Op for some P’ € D, so there are finitely many
unifiers in S. For BC1, note that unification modulo XOR is finitary [16]. Therefore, there
are finitely many XOR-mgus for the element problem derived from P’, so there are finitely
many unifiers in S that are instances of 6p/. Since there are finitely many problems in D,
there are finitely many unifiers in S.]

4.1. BC,-Unification is NP-Complete. Recall that BCy is the theory defined by BC
when A is uninterpreted, and BC; is the theory when h is interpreted so that BC models
the (XOR-based) cipher-block-chaining mode CBC.

Proposition 7. Unifiability modulo the theory BC; is NP-complete.

Proof. NP-hardness follows from the fact that general unification modulo XOR is NP-
complete [12]. We deduce the NP-upper bound from the following facts:

a) For any given BC-unification problem, computing a standard form is in polynomial
time, wrt the size of the problem.

b) Given a standard form, the propagation graph can be constructed in polynomial
time (wrt its number of variables).

c¢) Applying (L1)-(L10) till termination takes only polynomially many steps.

d) Extracting the set of element-equations from the resulting set of equations is in P.

e) Solving the element-equations, with the procedure ZN F., using unification modulo
XOR, is in NP. L]

4.2. An Illustrative Example.

The following public key protocol is a slight variant of one that was studied in [11] —
the modification is that the namestamp of the sender of a message forms the first block of
the encrypted message body, and not the second as was specified in [11]):

A— B:A {Am},

B — A:B,{B,m},,
where A, B are the participants of the protocol session, m is a message that they intend
secret for others, and kb (resp. ka) is the public key of B (resp. A).

If the CBC encryption mode is assumed and the message blocks are all of the same
size, then this protocol becomes insecure; here is why. Let ez(x) stand for the encryption
e(x, kz) with the public key kz of any principal Z. Under the CBC encryption mode, what
A sends to B is the following list, in the ML-notation:

A— B:[A, [eg(Adv), eg(m®ep(Adv))]].
Here & stands for XOR and v is the initialization vector (V') agreed upon between A
and B. But then, some other agent I, entitled to open a session with B with initialization
vector w, can get hold of the first encrypted block (namely: eg(A@v)) as well as the second
encrypted block of what A sent to B, namely eg(m,ep(A @ v)); (s)he can then send the
following as a ‘bona fide’ message to B:
I - B:[I, [eg(IDw), eg(m®ep(ADv))]];
upon which B will send back to I the following:
B—1:[B,[ejf(Bow), ef(mdeg(Adv)Peg(Idw)®er(Bdw))]].

12

It is clear then that the intruder I can get hold of the message m intended to remain secret
for him/her.

Example 2. The above attack (which exploits the properties of XOR: 2@z = 0, 200 = x)
can be modeled as solving a certain BC;-unification problem. We assume that the names
A, B, I, as well as the initialization vector w, are constants accessible to I. The message m
and the initialization vector v, that A and B have agreed upon, are constants intended to
be secret for I. We shall interpret the function symbol h of BC in terms of encryption with
the public key of B: i.e., h(x,y) is eg(z ® y).

The protocol above can then be modeled as follows: We assume that the list of terms
A sends to B, namely [A, [h(A,v), h(m,h(A,v))]], is seen by the latter as the list of terms
[A,bc([A,m],v)]; (s)he first recovers the namestamp A of the sender, then checks that the
second argument under be in what (s)he received is the IV agreed upon with A; subsequently
(s)he sends back the appropriate list of terms to A, acknowledging receipt of the message.

Now, due to our CBC-assumption, the ground terms h(A,v), h(m,h(A,v)) are both
accessible to the intruder I. So the attack by I, mentioned above, corresponds to the fact
that I can send to B the following list of terms: [I,[h(I,w),h(m,h(A,v))]]. That the
attack materializes follows from the fact that B can solve the BC;-unification problem:

be([1, 2], w) =" cons(h(I,w), [h(m, h(A,v))]),

for the element-variable z, i.e., B needs to solve the element-equation: h(z,h(I,w)) =’
h(m,h(A,v)); since h is interpreted here so that BC models CBC, (s)he can do so by
setting: z :=m @ h(A,v) ® h(I,w); and that precisely leads to the attack. O

Remark 1: (i) The above analysis does not go through if the namestamp forms the
second block of the encrypted part of the messages sent. In such a case, the protocol is
‘leak-proof’ even under CBC, provided we assume that an IV for a message is a secret to
be shared only by the sender and the intended recipient of the message, and that it is not
transmitted — as clear text or encrypted — as an initial ‘block number zero’ of the message
body. Actually, by reasoning as above one checks that the intruder I in such a case, can
only get hold of m@wv, where v is the (secret) IV that only A and B share. This in a sense is
in accordance with [I1], where the protocol was proved ‘secure’ under such a specification.

(ii) The considerations above lead us to conclude, implicitly, that in cryptographic
protocols employing the CBC encryption mode, it is necessary to forbid free access to the IVs
of the ‘records’ of the ‘messages’ sent, if information leak is to be avoided. This fact has been
pointed out in the 90’s, by Bellare et al (J6]), and again, in some detail, by K. G. Patterson
et al in [19]; both point out that TLS 1.0 — with its predictable IVs — is inherently insecure.
For more on this point, and on the relative advantages of TLS 1.1, TLS 1.2 over TLS 1.0,
the reader can also consult, e.g., http://www.educatedguesswork.org/2011/09/

(Note: keeping IVs as shared secrets alone may not always be sufficient in general, as
is shown by Example 2 above.)

5. A GENERIC BLOCK CHAINED CIPHER-DECIPHER SCHEME

In this section we extend the 2-sorted equational theory BCq studied above, into one
that fully models, in a simple manner and without using any AC-symbols, a ‘generic’ block

13

chaining encryption-decryption scheme. This theory, that we shall refer to as DBC, is
defined by the following set of (2-sorted) equations:

be(nil, z) = mnil
be(cons(z,Y), z) = cons(h(z,z), be(Y, h(z,2)))

g(h(z,y),y) = =

db(nil, z) = nil
db(cons(x,Y), z) = cons(g(x,z), db(Y, x))

db(be(X,y),y) = X

where ¢ is typed as g : 7. X e — 7. and db is typed as db: T; X Te — 7.

All these equations can be oriented from left to right under a suitable reduction ordering,
to form a convergent (2-sorted) rewrite system. The 6-th equation says that db is a left-
inverse for be; it is actually an inductive consequence of the first five: i.e., for any list-term
X and element-term y both in ground normal form, db(be(X,y),y) reduces to y under the
first five, a fact that can be easily checked by structural induction, cf. Appendiz-2. (Its
insertion as an equational axiom is for technical reasons, as will be explained in Remark
4.(ii) below.)

A few words, by way of intended semantics in the context of cryptographic protocols,
seem appropriate: h(z,y) would in such a context stand for the encryption with the public
key of an intended recipient B, of message x, ‘coupled’ in a sense to be defined, with y
as initialization vector (IV); and g(h(z,y), y) would be the decryption of h(x,y) with the
private key of B, to be then ‘decoupled’, again in a sense to be defined, with y. If an
agent A wants to send a list of terms cons(z,Y) to recipient B, (s)he would send out
be(cons(z,Y), z) where z is the IV they have mutually agreed upon; and B would see it as
the list of terms cons(h(z, z), be(Y, h(zx,z))), from which (s)he can retrieve the individual
message terms by applying the last equation for db in the system DBC.

This generic block chained encryption-decryption scheme is a natural abstraction of the
usual (XOR-based) CBC: it suffices to interpret the roles of h and g suitably, and define
properly the meanings of ‘coupling’ and ‘decoupling’, to get the usual CBC mode; for that,
one would define the ‘coupling’ as well as ‘decoupling’ of x with y as = @ y; h(z,y) would
then stand for eg(z®y), and g(z,y) would stand for dg(z) @y, where dp is decryption with
the private key of B. If we go back to Example [2| based on the usual CBC, the encrypted
part of what A sends out to B (with the notation employed there) is the the list of terms:
[R(A,v), h(m,h(A,v))], that corresponds to the the term bc([A, m],v). By applying the
last equation of DBC to this list of terms, under the assignments: z := v, x := h(A,v), Y :=
[h(m, h(A,v)], B would then derive the following list:

[9(h(A,v),v), db([h(m, h(A,v))], h(A,v))];

i.e., the list [A,m]. In other words, the usual XOR-based CBC is indeed an ‘instance’ of
the theory DBC.

Remark 2: Other ‘concrete’ cipher-decipher block chaining modes can also be seen as
instances of DBC; one among them is the Cipher FeedBack encryption mode (CFB), which
is defined as follows:

14

Let m = p1...p, be a message given as a list of n ‘plaintext’ message subblocks. Then
the encryption of m with any given key k and initialization vector v is defined as the list
€1 ...Cp, of ciphertext message subblocks, where:

c1 =p1 ®eg(v), and ¢; = p; B ex(ci—1), forany 1 <i<n

This encryption mode (also using XOR) is very similar to CBC, but works in the reverse
direction (cf. e.g., http://en.wikipedia.org/wiki/Block_cipher modes_of _operation).
It is an instance of DBC, if the ‘coupling’ and the ‘decoupling’ operations of DBC, namely
h(z,y) and g(x,y), are both defined as = @ eg(y).]

The theory DBC thus appears, indeed, as a high level equational abstraction of the
block chained encryption-decryption mode; it employs no AC-symbols for this abstraction.
It is easy to see, on the other hand, that the equations of DBC can all be oriented left-to-
right under a suitable reduction ordering, to give a convergent rewrite system. We shall be
showing below that unification modulo DBC is NP-decidable; it turns out to be actually
NP-complete, due to the presence of a left-inverse for h (namely g).

Remark 3: It is important to note that the function ¢ is not semi-cancellative:
g(h(g(t,u),u),u) =ppe 9(t,u), but h(g(t,u),u) and ¢ need not be equivalent modulo DBC.
However, it is easy to show that g is left-cancellative; see Appendiz-1 for the details.

5.1. Unification modulo DBC. We assume without loss of generality that any DBC-
unification problem P is given in a standard form, i.e., as a set of equations £Q, each
having one of the following forms:

U="V,U="be(V,y), U="db(V,y), U="cons(v, W), U="nil,

u="v, u="g(w,y), v=""hlw,z), u="_const

We have to extend some of the notions and notation of Section [3.1} in order to take db
into account. These extensions concern the propagation graph Gj of the problem and
nonnil, the set of variables which cannot be nil.

(i) If U =" ab(V,y) is in P, then write U >4, V; in which case, insert a directed arc

on G from [U] to [V] and label it with >4. The graph G; will also have then a
two-sided (undirected) edge between [U] and [V], labeled with ~gp.

(ii) The set of variables nonnil, defined earlier, is extended as follows:

If U = db(V,y) is in P, then U is in nonnil if and only if V is in nonnil.

We define a new relation >, = >,. U >g4. Its symmetric closure is ~. and its transitive,
reflexive, and symmetric closure is ~}. If U ~. V, then U and V are related by ‘chaining’,
i.e. by some number of bc and db operations. We refine then the partial relation >; on the
nodes of G; as follows:

~ = NZ O >cons © (Nc U >cons)*

This relation can still continue to be read as: [U] =; [V] iff there is a directed path on G,
from [U] to [V], at least one arc of which has label > ops.

We extend now the inference system ZN F} of Section by adding the following list
inferences; these additional rules are essentially the db-counterparts of the list inferences of

15

INF; which only needed to consider be. (Had we worked with DBC right from the start,
the inference system could have been formulated possibly more concisely, but at the expense
of readability.) We first formulate the “don’t-care” nondeterministic inference rules.

(DB1.a) Nil solution-1 for db:
EQ W {U="dab(V,z), U="nil }
EQ U {U="nil, V ="nil }
(DB1.b) Nil solution-2 for db:
EQw {U="ab(V,z), V="nil }
EQ U {U="nil, V ="nil }
(DBL1.c) Nil solution-3 for db:
EQ W {U="db(V,z)}
EQ U {U="nil, V="nil }
(DB2) Left-Cancellation on db:
EQ w {U="ab(V,x), U="db(V,y) }
EQ U U ="db(V,y), = ="y}
(DB3.a) Push db below cons, at a nonnil db/db-peak :
EQ W {U="ab(V,z), U="db(W,y) }
EQ U {V =" cons(v, V"), W =" cons(w, W), U =" cons(u,U"),
U ="db(V',v), U =" db(W',w), u="g(v,z), u="g(w,y) }
(DB3.b) Push bc and db below cons at a nonnil bc/db-peak: :
£Q W {U="be(V,z), U="db(W,y) }
EQ U {V =" cons(v, V"), W =" cons(w, W), U =" cons(u,U’),
U =" be(V',u), U =" db(W',w), u="h(v,z), w=""huy)}
(DB4) Splitting for db at a cons/db-peak:
EQ W {U =’ cons(x,Uy), U="db(V,2) }
EQ U {U =" cons(z,Uy), x =" g(y, 2), Uy =" db(Vy,y), V =" cons(y, V) }
(DB5) Flip db to bc conditionally:
EQ w {U="db(V,z)}
EQ U {V ="be(U,z)}

Rules (DB3.a), (DB3.b), (DB4) and (DB5) have the lowest priority: they are to be ap-
plied in the “laziest” fashion. The rule (DB3.b) (“Push bc and db below cons. . . if nonnil”)
is justified by the conditional left-cancellativity of db (cf. Lemma-D, Appendiz-2). Rule
(DB5) is actually a ‘narrowing’ step, justified by the fact that db ‘is a left-inverse’ for be.

For the completeness of the inference procedure, we shall also need a few more list
inference rules which are “don’t-know” nondeterministic; namely, the rules (DB6.a)—(DBS8)
below:

itV >5, U

if U € nonnil

if U € nonnil

if U € nonnil

if V>FU and V $5 U

16

(DB6.a) Guess a Nil-solution-Branch for db at a db/db-peak :
£Q w {U="db(V,z), U =" db(W,y)}
EQ U {U ="nil, V =" nil, W =" nil}
(DB6.b) Guess a Nil-solution-Branch for be and db at a be/db-peak :
EQ W {U ="be(V,x), U="db(W,y)}
EQ U {U ="nil, V =" nil, W =" nil}
(DBT7.a) Guess a Narrowing step for db at a db/db-peak :
£Q W {U="db(V,z), U= db(W,y}

iV % U
£Q U {V ="be(U,z), U="db(W,y}} v
(DB7.b) Guess a Narrowing step for db at a be/db-peak :
_? _?
EQ W {U="be(V,z), U="db(W,y} W U

EQ U {V ="be(U,z), W ="be(V,y}}
(DB8) Standard Unification on db:
EQ w {U="db(V,z), U="db(W,y)}
EQ U {U="db(W,y), V="W, z ="y}

We denote by ZN'F} the inference system that extends ZN F; with the list inference
rules (DB1)-(DB8), given above. It is important to note that the Occur-Check Violation
rule (L6) is henceforth to be applied to DBC-unification problems in standard form, under
the partial relation »; as has been refined above.

Proposition 8. Let P be any DBC-unification problem, given in standard form. The
inference system ZN F] terminates on P in polynomially many steps.

Proof. This is an extension of Proposition , to the inference system ZN F}. The proof of
that earlier proposition can be carried over practically verbatim: we only have to show that
the new inferences that might introduce fresh variables, namely the rules (DB3.a), (DB3.b)
and (DB4), cannot lead to a non-terminating chain of inferences. To ensure this, a first
observation is that the relation ~3 (which was used in the proof of that earlier proposition)
has to be refined now so as to take into account also the relation ~g,, the symmetric closure
of >g. A second observation is that these three rules which might introduce fresh variables
— namely, the rules (DB3.a), (DB3.b) and (DB4) — remove a ~g-edge at some node U,
and introduce a new ~g-edge at a node U’ such that U >.,,s U’; but the number of
Nﬁ—equivalence classes remains the same — again thanks to Lemma , while the > ops-
levels of the edges concerned on the Propagation graph (in the terminology of the proof of
Proposition get augmented. The other details of that earlier proof carry over verbatim. []

17

Given any DBC-unification problem P in standard form, let A” denote the inference
procedure based on the rules of ZN F}, given above for its list equations; we augment the
procedure A” with any given complete procedure for solving the residual set of element
equations in the problem, when the list inference rules of ZAVF} are no longer applicable.
We have then the following result:

Proposition 9. The procedure A” is sound and complete for solving DBC-unification
problems given in standard form.

Proof. The proof uses the same lines of reasoning as for Proposition [5, The procedure A" is
sound, because to any solution of a problem derived under any of its inferences, corresponds
a solution for the initial problem. The completeness of A” is again proved by case analysis,
using — whenever necessary — the “don’t-know” inference rules given above, for such an
analysis. We leave out the details. []

Proposition 10. Let P be a DBC-unification problem in standard form, to which none of
the inferences of ZN F} is applicable. Then its subset of list equations with non-nil variables
on the left-hand side is in d-solved form.

Proof. This extends Proposition 4| to the inference system ZN F}. Note that we just need
to show the following: From any given node [U] on any given connected component I' of
the Propagation graph Gj, there is an unambiguous, cycle-free, directed path to a well-
determined end-node on I". Now, given that any directed arc on G is labeled with either
> conss OT >pe, O >gp, there can be at most one outgoing arc from [U]: otherwise one of
the inferences (DB2)—(DB8) would have been applicable; there can be no directed >;-cycle
either at [U], otherwise the Occur-Check violation rule would have been applicable. Thus,
the proof of that earlier proposition carries over, essentially verbatim. L]

Proposition 11. Unifiability modulo the theory DBC is in NP.

Proof. Given any DBC-unification problem P, computing a standard form can be done in
polynomial time (wrt the number of variables of P); the same holds also for constructing the
propagation graph for the standard form. Applying then the inference rules of ZN F7} till
termination, on this standard form, takes only polynomially many steps, by Proposition
In case of non-failure, we set variables which are not in nonnil to nil and extract the set of
element-equations from the resulting problem. This can obviously be done in polynomial
time.

To show that solving P is in NP, it suffices therefore to show that the set of its element-
equations can be solved, modulo the theory defined by the single equation g(h(z,y),y) = =,
in nondeterministic polynomial time. But this is a collapsing convergent system, and the
unification problem for such theories is known to be decidable and finitary [I3 [18]. In
particular, a decision procedure can be built by using basic normalized narrowing, e.g., as
given in [B]; cf. also [I7]. We outline, briefly, such a procedure:

Procedure for Solving £(P): Note that every equation in £(P) is either a g-equation,
i.e., an equation of the form u =" g(x,v); or an h-equation, of the form u =" h(z,y).

1. IF the set of element-equations is in d-solved form, then return that set;
ELSE if the set contains g-equations, then go to Step 2; ELSE go to Step 3.

2. Choose nondeterministically an equation in £(P) of the form u =" g(x,v); and
replace it by the h-equation z =" h(u,v).

18

3. If £(P) contains two different h-equations with same lhs variable, apply standard
decomposition below h on these two; and suppress one of the two equations.
4. Apply (element-)Variable Elimination to the resulting set of element-equations, if
needed.
5. Go to Step 1.
(Note: Step 2 is just narrowing.) It is easy to check that this procedure is in NP on the
size of £(P). It remains to show that solving a general DBC-unification problem is NP-
hard. This follows from our Proposition [12| below, where we actually make a more precise
statement.]

Proposition 12. Unifiability modulo g(h(z,y),y) = x is NP-complete.

Proof. (We reproduce, practically verbatim, the proof of Proposition 3 in [4].) We need
only to prove the NP lower bound; we do that by reduction from the Monotone 1-in-8 SAT
problem, formulated as follows:
Given a propositional formula in CNF without negation such that every clause has
exactly 3 literals (variables), check for its satisfiability under the condition that
exactly one literal in each clause should evaluate to true.
This problem is known to be NP-complete [20]. Now consider the following problem of
unification modulo g(h(z,y),y) = z, involving 3 variables x1, zo, r3:

9(h(g(h(g(h(a,b),x1),b),22),0), 23) =F g(h(a,), c)

where a, b, ¢ are ground constants. It is not hard to check that solving this problem amounts
to assigning the term ¢ to exactly one of the three variables x1,x2, 23 (and assigning b to
the other two). L]

Remark 4: (i) It can be shown that DBC-unification is finitary, along the same lines
of reasoning as for the proof of Proposition [6

(ii) The inference rules (DB5), (DB7.a) and (DB7.b) of ZN'F] — which are justified
by the last equation of DBC — contribute to ‘reduce’ unification modulo DBC, in fine, to
unification modulo BC.

Example 3. (i) The following problem: U =’ db(V,z), V =" cons(y, W), W =" be(U, 2)
is unsatisfiable. Our procedure exits with failure: we have an Occur-Check Violation:
U >db 14 >cons w >be U.]

(ii) The following problem P is in standard form:
U="db(V,y), U =" cons(x,U;), V =" cons(y, V1)

We have a cons/db-peak at [U] on the graph of P, and the only “don’t-care” rule applicable
is the Splitting rule (DB4); we can use the equation V' =’ cons(y, V1) for that splitting.
After cancellation on cons and a variable elimination step, the problem derived is:

U =" cons(z,U1), x =" g(y,y), U1 = db(V1,y), V =" cons(y, V1)

which is in d-solved form, and gives a solution. []

19

Example 4. (i) The following problem: U =’ db(V,y), V =’ db(U, 2) is in standard form,
but is not in a d-solved form. Rule (DB1.c) is applicable, and gives the “nil” solution to U
and V', with y, z arbitrary. O

(ii) The following problem P is in standard form: U =’ be(V, x), V =" db(U, y), but not
in a d-solved form; the only applicable inference rule is (DB5) (Flip db to be conditionally),
and the problem becomes:

U ="be(V,x), U ="bc(V,y)

This is a BC-unification problem which is L-reduced, but not in a d-solved form. None
of the list variables U,V is in nonnil; so, an obvious easy solution is U := nil, V := nil,
the element variables z,y being arbitrary; this corresponds to applying rule (L8). On the
other hand, we could also nondeterministically apply the rule (L10) (Standard unification
on be); to deduce then the most general solution solution, namely: U := be(V, x), z := y. [

Example 5. The following problem P is in standard (but not in a d-solved) form:
U="be(V,z), V="db(W,y), W =" ab(T,z), T =" be(U,t), U =" cons(u,Uy)

Observe that T > W but T %%, W, so the rule (DB5) (Flip db to bc conditionally) is
applicable to the equation on W; and that gives:

U="be(V,z), V="db(W,y), T =" be(W,2), T =" be(U,t), U = cons(u,Uy)

The problem now presents a be/be-peak at T' which is in nonnil, so rule (L4.b) can be
applied, by writing W =’ cons(w, W7); this, followed by Cancellation on cons, and a
Standard unification step on h, leads us to deduce: w =’ w,t =7 z, W; =’ U, and
subsequently W =’ U; the problem is thus transformed (after some Variable Elimination
steps) into:

U="bc(V,z), V="dbU,y), T =" bc(U,z), U="cons(u,Uy), W="U, t ="z

The rule (DB5) (Flip db to be conditionally) is again applicable, now to the equation on V;
we thus get:

U="bc(V,z), U ="be(V,y), T =" bec(U,z), U="cons(u,Uy), W="U, t ="z

The rule (L4.a) (Semi-Cancellation on be at a be/be-peak) is now applicable, and we deduce:
y =’ x; after Variable Elimination, the problem transforms to:

U="bc(V,z), T =" bc(U,2), U="cons(u,Up), W="U,y="2,t="2

which presents a cons/bc-peak on U, so the Splitting rule (L5) is applicable; we write
V =7 cons(v,V}), and the problem evolves (after Variable Elimination) to:

U =" cons(u,Uy), V=" cons(v, V1), Uy =" be(Vi, h(v,2)), T =" be(U, 2), W =" U,

uw="hvz),y="ozt="2

The list equations, as well as the element equations, are now in d-solved form; and they do
give a solution to the problem we started with (as can be easily checked).]

20

6. CONCLUSION

We first addressed the unification problem modulo a convergent 2-sorted rewrite system BC,
that models, in particular, the (usual, XOR-based) CBC encryption mode of cryptography,
by interpreting suitably the function h in BC. A procedure is given for deciding unification
modulo BC, which has been shown to be sound and complete (and finitary) when h is either
uninterpreted, or interpreted in such a manner. In the uninterpreted case, the procedure
is a combination of the inference procedure ZN F 2 presented in this paper, with syntactic
unification; it turns out to be of polynomial complexity, essentially for this reason. In the
case where h is interpreted as mentioned above, the unification procedure is a combination
of IN. .7-'2 with any complete procedure for deciding unification modulo the associative-
commutative theory for XOR; and it turns out to be NP-complete for this reason. The
second part of the work extends BC into a theory DBC that models, at an abstract level, a
cipher-decipher block chaining scheme. Unifiability modulo DBC is shown to be decidable
by an inference procedure, which essentially ‘reduces’ any DBC-unification problem in fine
into one over BC. Unification modulo DBC is also (finitary and) NP-complete.

A point that seems worth mentioning here concerns the binary function symbol cons
in DBC. We have implicitly assumed that in practical situations (such as in Example 2
above) the two arguments of cons are ‘accessible’; this can be made more explicit by adding
two ‘projection’ equations to DBC, using car and cdr on cons, to get the following set of 8
equations:

car(cons(z,Y)) = =z (6.1)
cdr(cons(z,Y)) = Y (6.2)
be(nil, z) = mnil (6.3)
be(cons(z,Y), z) = cons(h(x, z), be(Y, h(z,2))) (6.4)
g(h(z,y),y) = = (6.5)
db(nil, z) = mnil (6.6)
db(cons(x,Y), z) = cons(g(x,z), db(Y, x)) (6.7)
db(be(X,y), y) = X (6.8)

with car typed as 7 — 7., and cdr as 7; — 7;. All these equations can be oriented left-
to-right under a suitable simplification ordering, and the resulting rewrite system remains
convergent. It is not difficult to check that, even after the addition of these two projection
rules, unification problems — with some very minor restrictions on the form of equations
involving car and cdr — can continue be assumed in a standard form, and solved by the
inference procedure ZN F] given above. In other words, the results of Section |5 remain
valid for this enlarged 2-sorted convergent rewrite system — that we shall again refer to as
DIBC, since no confusion seems likely.

The rewrite system DBC thus enlarged can actually been shown to be A-strong in the
sense of [3], under a suitable precedence based (lpo- or rpo- like) simplification ordering,
by taking A to be the subsystem formed of the two rules (6.1) and (6.2). It would then
follow from Proposition 11 of [3], that the so-called ‘passive deduction’ problem, for an in-
truder, is decidable, if the intruder capabilities are modeled by the theory DBC. This would
yield, to our knowledge, the first purely rewrite/unification based approach for analyzing
cryptographic protocols employing the CBC encryption mode. The details will be given

21

elsewhere, where we also hope to present decision procedures for a couple of other security
problems, where an intruder eavesdrops or guesses some low-entropy data in the context of
block ciphers.

Finally, observe that unification modulo equational theories often serves as an auxiliary
procedure in several formal protocol analysis tools, such as Maude-NPA, CL-Atse, ..., for
handling algebraic properties of cryptoprimitives. The work we have presented in this paper
could be of use in these tools, as a first step towards the automation of attack detection in
cryptographic protocols employing CBC.

[1]
2]

3]
(4]
[5]

[6]

[7]

(8]

REFERENCES

M. Abadi, V. Cortier. “Deciding Knowledge in Security Protocols Under Equational Theories”.
Theoretical Comp. Science 367(1-2):2-32, 2006.

S. Anantharaman, C. Bouchard, P. Narendran, M. Rusinowitch. “Unification modulo Chaining”. In
Proc. of 6th Int. Conference on Language and Automata Theory and Applications - LATA 2012,
LNCS 7183, pp. 70-82, Springer-Verlag, 2012.

S. Anantharaman, P. Narendran, M. Rusinowitch. “Intruders with Caps”. In Proc. of the Int. Con-
ference RTA’07, LNCS 4533, pp. 20-35, Springer-Verlag, 2007.

S. Anantharaman, H. Lin, C. Lynch, P. Narendran, M. Rusinowitch. “Unification modulo Homo-
morphic Encryption”. Journal of Automated Reasoning 48(2):135-158 (2012)

F. Baader, W. Snyder. “Unification Theory”. In Handbook of Automated Reasoning, pp. 440-526,
Elsevier Sc. Publishers B.V.; 2001.

M. Bellare, R. Guérin, P. Rogaway. “XOR MACs: New Methods for Message Authentication Using
Finite Pseudorandom Function” In Proc. of the Int. Conference CRYPTO ’95, LNCS 963, pp. 1528,
Springer-Verlag, 1995

M. Baudet. “Deciding security of protocols against off-line guessing attacks”. In Proc. of the 12th
ACM Conf. on Computer and Comm. Security, CCS’05, pp. 16-25, 2005.

H. Comon-Lundh, R. Treinen. “Easy Intruder Deductions.” Verification: Theory and Practice, Es-
says Dedicated to Zohar Manna on the Occasion of His 64th Birthday (N. Dershowitz, ed.). In
LNCS 2772, pp. 225-242, Springer-Verlag, 2003.

H. Comon-Lundh, V. Shmatikov. “Intruder Deductions, Constraint Solving and Insecurity Decision
in Presence of Exclusive-Or.” In Proc. of the Logic In Computer Science Conference, LICS’03, pp.
271-280, 2003.

N. Dershowitz. “Termination of Rewriting.” Journal of Symbolic Computation 3(1/2): 69-116 (1987).
D. Dolev, S. Even, R. Karp, “On the Security of Ping-Pong Protocols”. Information and Con-
trol 55:57-68 (1982).

Q. Guo, P. Narendran, D.A. Wolfram. “Unification and Matching Modulo Nilpotence.” In Proc. of
the 13th Int. Conf. on Automated Deduction, (CADE-13), LNCS 1104, pp. 261-274, Springer, 1996.
J.-M. Hullot. “Canonical forms and Unification.” In Proc. of the 5th Int. Conf. on Automated De-
duction, (CADE-5), LNCS 87, pp. 318-334, Springer, July 1980.

J.-P. Jouannaud, and C. Kirchner. “Solving Equations in Abstract Algebras: a Rule-Based Survey
of Unification.” In Computational Logic: Essays in Honor of Alan Robinson, 360-394, MIT Press,
Boston, 1991.

P. C. Kanellakis, and P. Z. Revesz. “On the Relationship of Congruence Closure and Unification.”
J. Symbolic Computation T: 427-444 (1989).

C. Lynch, Z. Liu, “Efficient General Unification for XOR with Homomorphism.” In em Proc. of
the 23rd Int. Conference on Automated Seduction, (CADE-23), LNCS 6803, pp. 407—421, Springer-
Verlag, 2011.

C. Lynch, B. Morawska, “Basic Syntactic Mutation.” In em Proc. of the 18th Int. Conference on
Automated Deduction, (CADE-18), LNAI 2392, pp. 471-485, Springer-Verlag, 2002.

J. Millen, H.-P. Ko. “Narrowing Terminates for Encryption.” In Proc. of the Ninth IEEE Computer
Security Foundations Workshop (CSFW), pp. 39-44, 1996.

22

[19] K. G. Paterson, T. Ristenpart, T. Shrimpton. “Tag Size Does Matter: Attacks and Proofs for the
TLS Record Protocol” In Proc. of Int. Conference ASTACRYPT 2011, LNCS 2073, pp. 372-389,
Springer-Verlag, 2011.

[20] T. J. Schaefer. “The complexity of satisfiability problems.” In Proc. of the 10th Annual ACM Sym-
posium on Theory of Computing, pp. 216-226, 1978.

23

APPENDIX-1: ON THE CANCELLATIVITY PROPERTIES OF bc, g AND db

Lemma-A. For all terms 77,75, t, we have:

be(Ty,t) ~pc be(To,t) if and only if T ~pgc Th.
Proof. The proof is by structural induction on the terms, based on the semi-cancellativity
of h and the cancellativity of cons. If either T} or T5 is nil, then the other has to be nil
too, and the assertion of the Lemma is trivial. So suppose that 77 and T5 are not nil. Then

Ty = cons(uy,T]) and Ty = cons(uz,Ty), for some terms uq,ug, T}, Ty. Substituting back
into the original equation and applying the second axiom of BC, we deduce that:

cons(h(uy,t), be(T], h(ui,t))) =pc cons(h(ua,t), be(Th, h(ug,t)))

Since cons is cancellative, we get:

h(ui,t) =pc h(uz,t), and be(T], h(ui,t)) =pc be(Th, h(ug,t)).
From the semi-cancellativity of h, we then deduce that:

uy ~pc ug, and be(Ty, h(uy,t)) ~gc be(Ty, h(ui,t)).

Therefore, by structural induction, we deduce that 7] ~p¢ T4, and the result follows. []
Lemma-B. For all terms T, t1,t2, we have:

be(T, t1) ~pc be(T,ta) if and only if T ~pc nil or t1 ~pc ta.

Proof. The proof is by exactly the same reasonings as for the proof of the previous lemma. []

We shall paraphrase these two lemmas together by saying that bc is “conditionally”
semi-cancellative.

Lemma C. For all terms uy, 11, ug, Ta, uz, ug: If be(cons(ui, 1), us) ~gc be(cons(ug, Ts), ug)
then h(ui,us) ~gc h(uz,us) and Ti =pc To.

Proof. By applying the second axiom of BC, we get:
cons(h(uy,us),be(Ty, h(ui,us))) ~pc cons(h(ug, ug), be(To, h(uz,uq)))
Cancellation on cons gives:
h(u1,us) ~pc h(ug,ug) and be(Th, h(ui,us)) ~pe be(Te, h(ug, uy))

By Lemma-A above, this implies that T ~p¢ T5. []

24

In what follows, by DBC we shall mean the equational theory DBC of Section [5], and
the rewrite system it defines.

As for the analogs of the above results for the operator db of DBC, we first observe
that the function ¢ is not semi-cancellative — more precisely, it is not right-cancellative:
indeed, we have g(h(g(t,u),u),u) =pge 9g(t,u), although h(g(t,u),u) #ppe t, in general.
But left-cancellativity holds for g.

Lemma 3. If g(s,;) =DpBC g(s,t2) then t =pnc t2-

Proof. We can assume wlog that the terms s, ¢1, and t2 are in normal form. If t| #pp, t2,
then both g(s,#1) and g(s,t3) must be redexes, or, in other words, s = h(s',t1) = h(s',t2)
for some s’. Since h is semi-cancellative this leads to a contradiction.]

Corollary 4. If g(s1,t1) =ppc g(s2,t2), and t; #pge t2, then sy #ppe s2.

So, the analog of Lemma-A for db does not hold in general. However, db is ‘conditionally’
left-cancellative:

Lemma D. For all terms T, x,y, we have:

db(T,x) ~ppc db(T,y) if and only if T ~ppc nil or x ~pgcy.

Proof. We just need to prove the “only if” assertion. If T is not nil, then T' = cons(t,T1)
for some t,T7. Applying the last axiom of DBC, we get:

cons(g(t,), db(Ty,t)) ~ppc cons(g(t,y),db(Ty,t)).

The assertion follows then from the cancellativity of cons and the left-cancellativity of g.[]

APPENDIX-2: db AS INDUCTIVE LEFT-INVERSE FOR bc

Lemma 5. Let DBC’ be the convergent rewrite system formed of the first five rules in the
system DBC of Section [5] For any list-term U and element-term x both in DBC’-normal
form, we have: db(be(U,z),z) =pger U.

Proof. The proof is by structural induction on U. The base case when U is nil is trivial; so
suppose U = cons(u, Uy) for some element-term u, and list-term U;. Substituting for U and
using first the 2nd equational axiom of DBC’, the left-hand side of the assertion becomes:

db(cons(h(u,x),be(Uy, h(u, x)), x).
To which we can apply the 5th equational axiom of DBC’ to get:
cons(g(h(u, x),z), db(bc(Uy, h(u, x)), h(u, x));

By applying now the 3rd axiom of DBC’, and the induction hypothesis, this reduces (modulo
DBC') to cons(u,Uy), that is to say U. []

25

	1. Introduction
	2. Notation and Preliminaries
	3. Inference System for BC-Unification
	3.1. Inference System INFl for List-Equations

	4. Solving a BC-Unification problem
	4.1. BC1-Unification is NP-Complete
	4.2. An Illustrative Example

	5. A generic Block Chained Cipher-Decipher Scheme
	5.1. Unification modulo DBC

	6. Conclusion
	References
	Appendix-1: On the Cancellativity properties of bc, g and db
	Appendix-2: db as inductive left-inverse for bc

