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Adaptive regularization of the NL-means:

Application to image and video denoising
Camille Sutour, Charles-Alban Deledalle, and Jean-François Aujol,

Abstract—Image denoising is a central problem in image
processing and it is often a necessary step prior to higher level
analysis such as segmentation, reconstruction or super-resolution.
The non-local means (NL-means) perform denoising by exploiting
the natural redundancy of patterns inside an image; they perform
a weighted average of pixels whose neighborhoods (patches) are
close to each other. This reduces significantly the noise while
preserving most of the image content. While it performs well on
flat areas and textures, it suffers from two opposite drawbacks:
it might over-smooth low-contrasted areas or leave a residual
noise around edges and singular structures. Denoising can also
be performed by total variation minimization – the ROF model
– which leads to restore regular images, but it is prone to
over-smooth textures, staircasing effects, and contrast losses. We
introduce in this paper a variational approach that corrects
the over-smoothing and reduces the residual noise of the NL-
means by adaptively regularizing non-local methods with the
total variation. The proposed regularized NL-means algorithm
combines these methods and reduces both of their respective
defaults by minimizing an adaptive total variation with a non-
local data fidelity term. Besides, this model adapts to different
noise statistics and a fast solution can be obtained in the general
case of the exponential family. We develop this model for image
denoising and we adapt it to video denoising with 3D patches.

Index Terms—Non-local means, total variation regularization,
image and video denoising, adaptive filtering

I. INTRODUCTION

IMAGE denoising is a central problem in image processing.

It is often a necessary step prior to higher level analysis

such as segmentation, reconstruction or super-resolution. The

goal of the denoising process is to recover a high quality

image from a degraded version. Among the main denoising

techniques, variational methods minimize an energy that con-

strains the solution to be regular. One of the most famous

variational models used for image denoising is the ROF model

[1] that minimizes the total variation (TV) of the image, hence

pushing the image towards a piecewise constant solution. This

method is quite adapted to denoising while preserving edges,

but it presents three major drawbacks: the textures tend to

be overly smoothed, the flat areas are approximated by a

piecewise constant surface resulting in a staircasing effect, and

the image suffers from losses of contrast. A possible solution

to reduce these undesirable artifacts is to spatially balance the

regularization as shown in [2].

Among state-of-the-art denoising methods, the non-local

means (NL-means) [3] algorithm performs spatial filtering
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by using spatial redundancy occurring in an image. Instead

of averaging pixels that are spatially close to each other, it

compares patches extracted around each pixel to perform a

weighted average of pixels whose surroundings are close. It

has led to many non-local methods and improvements such as

[4]–[8]. This technique shows good performance on smooth

areas and repetitive textures for which the redundancy is

high, but on singular structures the algorithm might fail to

find enough similar patches and thus performs insufficient

denoising. This is referred to as the rare patch effect, and has

been studied for instance in [9] and [10]. On the other hand,

the presence of noise in the compared patches can lead to

false detections. It can result in averaging several pixel values

that do not truly belong to the same underlying structure,

creating an over-smoothing [6] sometimes referred to as the

patch jittering blur effect [9].

Variational and non-local methods have been put together

by defining “non-local” regularization terms [11], [12]. Such

approaches enforce the regularity on neighborhood systems

built from the similarity between surrounding patches. This

allows to deal separately with smooth and textured areas. In

[12], the authors perform a non-local regularization by defining

a non-local gradient that enables them to smooth the flat areas

while preserving fine structures. Unlike the total variation, this

approach is free of the staircasing effect but it is still subject

to the rare patch effect. Non-local regularization has been

adapted to many inverse problems, for example in [13] for

inpainting or compressive sensing or in [14] for deconvolution.

Louchet and Moisan [9] have also proposed to combine

the NL-means with TV regularization in their TV-means algo-

rithm. They adapt the total variation into a local filter, and they

perform the NL-means based on the local TV regularization.

They manage to reduce both the staircasing effect and the rare

patch effect with an iterative scheme.

In the context of super-resolution, Protter et al. [15] and

d’Angelo and Vandergheynst [16] suggest minimizing an en-

ergy with a non-local data-fidelity term, based on the weights

of the NL-means, and a total-variation regularization (instead

of a non-local regularization term as studied above). This sums

up to minimizing the total-variation of the NL-means solution.

The same idea was explored in [17] for deconvolution.

In this article, we follow a similar approach to combine

TV with the NL-means in order to correct their respective

defaults. We first reduce the patch jittering blur effect and

next we apply a local regularization where the NL-means

perform insufficient denoising, to reduce the rare patch effect.

The prior dejittering step reduces bias at a cost of a larger

variance. This ensures that the denoising performed by the NL-
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means is reliable up to residual noise fluctuations, meaning

that not too many irrelevant candidates have been selected

in the averaging process. Then we define a confidence index

based on the level of residual noise after dejittering. This

index locally ponders the TV regularization, hence creating

an adaptive model as suggested in [2]. Contrary to [15] and

[16], our model preserves the NL-means result where it is

reliable without introducing over-smoothing, staircasing or

contrast losses inherent to the non-adaptive TV minimization.

On singular structures, the adaptive regularization corrects the

rare patch effect. Besides, we propose a model that adapts

to different noise models and we derive a simple resolution

scheme in the general case of the exponential family, often

encountered in imaging problems.

We have then extended this model to video denoising.

Indeed, Buades et al. have shown in [18] that the NL-

means can denoise image sequences without applying motion

compensation. In fact, they even show that it is harmful to

do so instead of using all possible candidates in all frames.

Besides, in order to guarantee temporal coherence between

frames, we use 3D patches, as proposed in [19]. Instead

of comparing square patches computed in a single frame

in a spatio-temporal neighborhood, we compute 3D patches

that take into account temporal consistency in the computing

of weights. This selects less (if better) candidates, hence

enhancing the rare patch effect, that is then corrected thanks

to the adaptive TV regularization, that we apply locally in the

spatio-temporal domain. Hence, we have adapted our proposed

model to video denoising by computing spatio-temporal NL-

means combined with spatio-temporal TV regularization.

The organization of the paper is as follows: in Sections II

and III we remind the reader of the principle of the ROF model

and the NL-means. We give details as to how to solve these

problems and how to adapt them to different noise statistics.

In section IV, we detail our first contribution concerning the

dejittering procedure used to reach a satisfying bias-variance

trade-off. Section V presents the main contribution with the

proposed model that performs an adaptive regularization of the

NL-means. Section VI presents related approaches that com-

bine the NL-means with variational methods in a denoising

framework. In Section VII, we present a third contribution with

the generalization of our R-NL model to other noise statistics,

along with an implementation. Finally, our last contribution

is presented in section VIII that extends the model to video

denoising. Section IX presents results and compares them to

state-of-the-art methods.

II. VARIATIONAL METHODS

A. ROF model

The general problem in denoising is to recover the image

f ∈ R
N , N being the number of pixels in the image domain

Ω, based on the noisy observation g ∈ R
N . The usual model

is the case of additive white Gaussian noise:

g = f + ǫ (1)

where f is the true (unknown) image and ǫ is a realization of

Gaussian white noise of zero-mean and standard deviation σ.

The variational methods consist in looking for an image that

minimizes a given energy in order to fit the data while respect-

ing some smoothness constraints. Among these methods, the

ROF model [1] relies on the total variation (TV), hence forcing

smoothness while preserving edges. The restored image uTV

is obtained by minimizing the following energy:

uTV = argmin
u∈RN

λ‖u− g‖2 +TV(u). (2)

The term ‖u − g‖2 =
∑

i∈Ω(ui − gi)
2 is a data fidelity

term, TV(u) =
∑

i∈Ω ‖(∇u)i‖ is a regularization term and

λ > 0 is the parameter that sets the compromise between data

fidelity and smoothness. A lot of methods have been developed

in order to solve such minimization problems, among which

Chambolle’s algorithm [20], the forward-backward algorithm

[21] or Chambolle-Pock’s algorithm [22].

B. Adaptation to other noise statistics

Formula (2) is well adapted to Gaussian noise since it can be

seen from a Bayesian point of view as a maximum a posteriori

with a data fidelity corresponding to the log-likelihood, with

a TV a priori on the image. This model can thus be extended

to other types of (uncorrelated) noise with an energy of the

following form:

uTV = argmin
u∈RN

− λ
∑

i∈Ω

log p(gi|ui) + TV(u) (3)

where p(gi|ui) is the conditional likelihood of the true pixel

value ui given the observation of the noisy value gi.

C. Limits and discussion

Minimizing the total variation forces the solution to be

piece-wise regular, which is well adapted to denoising while

preserving edges. However, a compromise has to be found

between regularity on flat areas and preservation of textures,

based on the choice of the parameter λ. If flat areas are to

be properly denoised, λ needs to be small, so fine textures

tend to be over-smoothed. On the other hand, preserving small

structures requires a higher λ that will not allow to recover

perfectly the flat areas, resulting in a staircasing effect and a

loss of contrast. This trade-off makes the choice of λ difficult

and strongly image-dependent [23], [24]. The authors of [2]

show that this trade-off can be spatially reached by adapting

locally the regularization parameter to the local variance in

order to smooth flat areas while preserving textures.

III. NON-LOCAL FILTERING

A. The NL-means algorithm

One of the most recent popular denoising methods is the

NL-means algorithm described by Buades et al. in [3]. It is

based on the natural redundancy of the image structures, not

just locally but in the whole image. Instead of averaging pixels

that are spatially close to each other, the NL-means algorithm

compares patches, ie small windows extracted around each

pixel, in order to average pixels whose surroundings are

similar. Weights are computed in order to reflect how much

two noisy pixels are likely to represent the same true gray
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level, then pixels are averaged according to these weights. For

each pixel i ∈ Ω, the solution of the NL-means is given by

the following weighted average:

uNL
i =

∑

j∈Ω

wNL
i,j gj (4)

which is equivalent to the solution of the following minimiza-

tion problem:

uNL = argmin
u∈RN

∑

i∈Ω

∑

j∈Ω

wNL
i,j (gj − ui)

2. (5)

In both cases the weights wNL
i,j ≥ 0 are computed in order to

select the pixels j whose surrounding patches are similar to

the one extracted around the pixel of interest i as:

wNL
i,j =

1

Zi
ϕ [d(g(Pi), g(Pj))] (6)

where Zi =
∑

j∈Ω wNL
i,j is a normalization factor that ensures

that the weights sum to 1, ϕ is a kernel decay function and

d a distance function that measures the similarity between the

two patches Pi and Pj of size |P | extracted around the pixels

i and j. Note that in practice, the weighted average at pixel i
is restricted to a large search window Ni centered on i such

that wNL
i,j = 0 when j /∈ Ni. In [3], ϕ is a negative exponential

and the distance function is an Euclidean norm convolved by a

Gaussian kernel. In our implementation, we use the following

kernel:

ϕh [d] = exp

(
−|d−mP

d |
sPd × h2

)
(7)

where h > 0 is a filtering parameter and mP
d and sPd are

respectively the expectation and standard deviation of the

dissimilarity d when applied between two patches of size

|P | following the same distribution. With this setting, the

parameter h becomes less sensitive to the noise level, the

choice of the dissimilarity criterion d as well as to the size

of the patches. Hence, a same value of h can fairly be

kept constant whatever the noise level, the patch size, or the

dissimilarity criterion d.

B. Adaptation to other noise statistics

A possible extension of the NL-means to other (uncor-

related) noise statistics consists in replacing the weighted

average by the weighted maximum likelihood estimate [25],

[26]:

uNL = argmin
u∈RN

−
∑

i∈Ω

∑

j∈Ω

wNL
i,j log p(gj |ui) (8)

and the distance between two noisy patches g1 and g2 by the

following likelihood ratio [27]:

d(g1, g2) = − log
supu p(g1|u1 = u)p(g2|u2 = u)

supu p(g1|u1 = u) supu p(g2|u2 = u)
.

(9)

where u1 and u2 refers to the underlying noise-free patches.

Other extensions could have been considered, for instance the

extension of [28] applied to signal-dependent noise in [29],

[30]. Our chosen extension is known to apply directly to

various noise models (including gamma noise and Poisson

Fig. 1. Illustration of the defaults of the NL-means : the rare patch effect

(red circle) can be observed around the head and the camera, while the patch
jittering effect (blue circles) can be observed on the background.

noise) as demonstrated in [26], [27], [31] and it retrieves

exactly the classical NL-means in the case of Gaussian noise.

In comparison, [28] differs from the classical NL-means since

it leads to a two-step filtering scheme and its applicability to

some specific noise distribution might require further modifi-

cations: for instance an additional ”a priori mean” step had to

be introduced in [30].

C. Limits and discussion

Non-local methods achieve overall good performances but

they suffer from two opposite drawbacks. The algorithm might

select too many irrelevant candidates, resulting in the patch

jittering effect: structures in these areas are overly smoothed

due to the combination of candidates with different underlying

values. On the contrary, around singular structures or edges, it

can be difficult to find enough similar patches so the pixels are

not properly denoised, resulting in a residual noise called the

rare patch effect. These two problems oppose each other; they

are controlled by the filtering parameter h, the search window

size and the patch size that act as a bias-variance trade-off, as

interpreted in [32]. Figure 1 illustrates these defaults: around

the face of the cameraman and on the camera, the rare patch

effect can be observed: similar patches are hard to find so

residual noise remains. On the fence and the buildings on

the background, over-smoothing results in a loss of resolution

and produces some artifacts. The trade-off between the two

problems makes again the choice of these parameters delicate

and image dependent [7], [32].

IV. DEJITTERING OF THE NL-MEANS (NLDJ)

One way to deal with the jittering effect has been addressed

by Kervrann and Boulanger in [6]. The authors use adaptive

search windows whose size is automatically adjusted to the

local content of the image in order to reduce the number

of potentially wrong candidates. The window size is locally

selected based on a bias-variance trade-off principle. An

approximation of the residual variance in the estimated image
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uNL is given at pixel i by

(σ̂residual
i )2 =

[∑

j∈Ω

(wNL
i,j )

2
]
(σnoise

i )2. (10)

where (σnoise
i )2 is the noise variance, assumed to be constant

in the non-local neighborhood of pixel i, and wi,j are assumed

to be constant with respect to gi (or their dependency can

be neglected given the reasonably large patch size used

in practice). The quantity (σ̂residual
i )2 plays an important

role as an indicator of the total amount of noise that has

been removed at pixel i. However, the residual variance

cannot solely be used to assess the quality of the denoising.

Indeed, the jittering effect arises from large noise reduction

with mixes up of populations (i.e., bias). In [6], bias is

detected iteratively by expanding the search window size,

building up confidence interval based on (10), and selecting

the largest window size that provides an estimate uNL
i

included in all confidence intervals obtained with smaller

windows. This model deals efficiently with the jittering effect,

but is difficult to extend to cases where noise is non-Gaussian.

We propose a unified framework to tackle the jittering effect,

by limiting the amount of denoising performed by the NL-

means when it is judged to be biased. We follow the idea of

[33], [34] proposed initially for local adaptive filtering and

extended to non-local adaptive filtering in [31].

We assume that in the non-local neighborhood of pixel i,
the observations gj are all realizations of the random variable

gi = fi+ǫi where fi and ǫi are two independent random vari-

ables. The quantity fi models signal fluctuations and ǫi noise

fluctuations. We assume that the signal fi has a mean uNL
i

and a standard deviation σsignal
i and ǫi has a zero mean with

a known standard deviation σnoise
i . A significant value σsignal

i

is an indicator of jittering; it assesses that observations in the

non-local neighborhood of i belong to different populations.

In the scope of the Local Linear Minimum Mean Square

Estimator (LLMMSE) strategy [33], [34], we locally perform

a convex combination between the non-local estimation uNL

and the noisy data g, according to the following formula:

uNLDJ
i = (1− αi)u

NL
i + αigi (11)

where αi is a confidence index defined by:

αi =
(σsignal

i )2

(σsignal
i )2 + (σnoise

i )2
≈ |(σ̂NL

i )2 − (σnoise
i )2|

|(σ̂NL
i )2 − (σnoise

i )2|+ (σnoise
i )2

.

(12)

Note that in the case of Gaussian noise, the noise variance is

assumed to be known and constant in the image; it corresponds

to σ2 given for the model in (1). For signal-dependent noise,

the non-local variance can be estimated as a function of uNL
i

as will be detailed in section VII. The approximation by the

last term follows from the non-local independence assumption

between fi and ǫi, hence Var[gi] = (σsignal
i )2 + (σnoise

i )2. The

signal variance V ar[gi] can be estimated directly from the data

gj located in the non-local neighborhood using the following

formula:

(σ̂NL
i )2 =

∑

j∈Ω

wNL
i,j g

2
j −

(∑

j∈Ω

wNL
i,j gj

)2

. (13)

Pixels in the same non-local neighborhood should belong to

the same population, so the estimated standard deviation σ̂NL
i

should be close to the one of the noise σnoise. Hence, if the

estimated standard deviation σ̂NL
i is close to the expected one

σnoise
i , the index αi is close to 0. According to (11), the non-

local estimation uNL
i is kept unchanged. On the other hand,

if the non-local variance is found to be far from the expected

one, then α is closer to 1. This results in re-injecting some

noise back, to balance the bias-variance trade-off.

Note that the solution uNLDJ can be rewritten as the

following weighted sum

uNLDJ
i =

∑

j∈Ω

wNLDJ
i,j gj (14)

where wNLDJ
i,j = (1− αi)w

NL
i,j + αiδi,j

where δi,j = 1 if i = j, 0 otherwise. Hence, as for uNL and

equation (10), the residual variance of the dejittered solution

uNLDJ can be approached at pixel i by:

(σ̂residual
i )2 =

[∑

j∈Ω

(wNLDJ
i,j )2

]
(σnoise

i )2. (15)

The quantity σ̂residual
i gives an indicator on the level of residual

variance at pixel i obtained after dejittering, i.e. after a bias-

variance trade-off has been achieved. Hence, unlike (10), this

indicator can assess the quality of the denoising: it accounts

for both bias and variance since bias in uNL leads to residual

variance in uNLDJ.

This indicator is at the heart of the proposed regularization

of the NL-means as we will see in the next section. In the

following, since the dejittering step is performed in the NL-

means algorithm, we will generally refer to the (possibly

dejittered) solution of the NL-means as uNL
i =

∑
j∈Ω wi,jgj ,

where wi,j are the weights in (14).

V. REGULARIZED NL-MEANS (R-NL)

The proposed model combines both the NL-means and the

TV minimization in order to reduce the defaults observed in

each method, in particular the jittering effect and the rare

patch effect originating from the NL-means and the staircasing

effect and the loss of contrast due to the TV minimization. We

perform a TV minimization with a non-local data fidelity term

as follows:

uR-NL = argmin
u∈RN

∑

i∈Ω

λi

∑

j∈Ω

wi,j(gj − ui)
2 +TV(u). (16)

where λi > 0 are spatially varying regularization parameters.

With non-local weights wi,j = δi,j , we recover the solution

of the ROF problem (2). With non-local weights defined as

in Section III and λi = +∞, we can retrieve from (16), the

solutions of the NL-means presented in (4) and (14).

Problem (16) is also equivalent to the following:

argmin
u∈RN

∑

i∈Ω

λi

(
ui − uNL

i

)2
+TV(u). (17)

This equivalence can be obtained by developing the data

fidelity terms in equations (16) and (17) using the definition

uNL in (4) or (14), then keeping only the terms that take part
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Fig. 2. Evolution of the optimal regularization parameter λ (blue line) with
respect to the minimum square error (MSE) as a function of the residual
noise standard deviation σresidual. It is shown to be proportional to the inverse
residual noise standard deviation (σresidual)−1 (red dotted line).

in the minimization process. Hence uR-NL can be interpreted

as a regular solution fitting uNL where the λi are high.

As discussed in the previous section, an indicator of the

quality of the denoising in uNL
i is given by σresidual

i defined

in eq. (15) (the lower, the better). Hence, the parameter λi

can be chosen as a (non negative) decreasing function of

σresidual
i . The choice of this regularization function is critical to

ensure good restoration without over-smoothing the edges and

textures. A simple dimensional analysis of (2) indicates that

λ should be chosen as inversely proportional to σresidual. This

relation is also suggested in [35] and in other regularizations

involving ℓ1 norms, see for instance [36]. To validate this

point, we perform the following experiment. From an image u,

we generate several noisy versions with increasing variance.

In our context, these versions aim at modeling a solution uNL

in (17) with increasing levels of (spatially constant) residual

noise σ̂residual. We next compute solutions of (17) for different

λ parameters. For each noise level, we select the parameter

minimizing the square error (known in this simulation). We

perform a Monte-Carlo scheme in order to obtain mean values

of the optimal λ for each noise level. Figure 2 gives the

evolution of the mean optimal λ value as a function of the

residual noise level σ̂residual. This experiment suggests again

that the value of λ should be chosen inversely proportional

to the standard deviation σ̂residual. More precisely, we find that

λi should be chosen proportional to our approximation of the

amount of noise reduction, i.e.:

λi = γ

(
σ̂residual
i

σnoise
i

)−1

= γ

(∑

j∈Ω

w2
i,j

)−1/2

. (18)

where γ > 0 is a fixed parameter that sets the strength of

the adaptive regularization. The relation with the non-local

weights arises from equation (15). While λ in (2) controls the

regularity globally on the whole image, here the parameter γ
is influential only locally where the NL-means are unable to

reduce significantly the noise.

With the proposed model, the NL-means and the TV regu-

larization complete each other: on areas where the redundancy

is important (homogeneous areas for example), the NL-means

select many candidates so the residual variance is low. In the

energy to minimize, the data fidelity term is then prominent

over the regularization term, so the solution is close to the

NL-means. This provides good smoothing and prevents the

staircasing effect observed on smooth areas when treated with

TV minimization. Around singular structures and edges where

the redundancy is low, the NL-means select fewer candidates

so the residual variance is high. This is also the case if wrong

candidates are selected since the dejittering procedure reintro-

duces noises, hence leading to a higher residual variance. The

regularization term becomes prominent over the data fidelity

term, so it costs less to minimize the total variation of the

image. The solution tends to a TV solution, preserving edges

while reducing the rare patch effect.

While the regularization parameter of the TV model and

the parameters of the NL-means have been shown to be

highly image-dependent, here the optimal parameters are not

strongly influenced by the image content. Indeed, the model

intrinsically adapts to the image content, hence the parameters

do not require additional tuning: equivalent denoising strength

can be achieved with a fixed set of parameters for all images

as done in section IX.

The method is intuitive since it is based on the strengths and

weaknesses of both the NL-means and the TV minimization.

In Section VII, we will propose a simple implementation, in

a more general framework, derived directly from mixing an

NL-means algorithm with a TV minimization solver.

Figure 3 gives an illustration of solutions obtained with

TV minimization, with the NL-means, before and after the

dejittering procedure, and with the proposed R-NL algorithm.

Figure 4 highlights the effect of the dejittering step and the

adaptive regularization compared to the NL-means and TV.

Figure 4-(a) displays the difference between R-NL and TV.

Two defaults inherent to TV and corrected with R-NL are

illustrated on this picture: the staircasing effect as well as the

losses of contrast. Figure 4-(b) shows the difference between

the NL-means before and after the dejittering step. We can see

that some noise has been re-introduced on the hat and in the

feathers which were over-smoothed by NL-means. Figure 4-

(c) displays the difference between the (dejittered) NL-means

and the regularized R-NL solution. Here, the difference is

much more localized around the edges where the TV has been

selectively applied. Figure 4-(d) shows a map of the confidence

index λi that weights the data-fidelity term in the minimization

process. Accordingly with the previous figure, the confidence

index is high on flat areas, where no further regularization is

applied to the already satisfying solution provided by the NL-

means. On edges however, the NL-means did not find enough

candidates so the residual noise is important, resulting in a

smaller confidence. This is also the case on small structures

such as the side of the hat where the dejittering has re-

introduced some noise, hence increased the residual noise, to

correct the fact that some irrelevant candidates might have

been selected. This figure illustrates how the combination of

the NL-means with TV minimization can effectively correct

their respective defaults.
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(a) TV (b) NL-means (c) Dejittered NL-means (d) R-NL

Fig. 3. Denoising of Gaussian noise with standard deviation σ = 20. The parameters that have been used for all the experiments are detailed in section
IX-A. We notice the staircasing effect on the face of Lena and on the background on the TV denoised image (a). The NL-means result (b) suffers from
over-smoothing (on the hat and the feathers for example) due to the jittering effect, that is corrected on the dejittered NL-means (c). The proposed method
R-NL (d) combines these methods to provide efficient denoising free of the staircasing effect, the jittering effect and the rare patch effect.

(a) Diff. between R-NL and TV (b) Diff. NL-means and NLDJ (c) Diff. R-NL and NLDJ (d) Map of the weights

Fig. 4. (a) Difference between R-NL and TV. We note two major differences inherent to the defaults of the TV minimization: the flat areas are much smoother
on R-NL since it does not suffer from the staircasing effect, and the change of intensity in the difference map reveals a loss of contrast on the TV denoised
image. (b) Difference between the standard NL-means and the associated dejittered solution. The difference is stronger on the hair and the hat where some
noise has been re-injected to balance the over-smoothing. (c) Difference between NLDJ and R-NL. Here, the difference is very local since the adaptive TV
regularization performs solely where some residual noise remains. (d) Map of the confidence index λi. As expected, the confidence in the NL-means is smaller
around edges where the candidates are hard to find and on small structures where the jittering effect has been corrected.

VI. RELATED APPROACHES: COMBINED NON-LOCAL

VARIATIONAL MODELS

The idea to combine the NL-means with variational methods

or to interpret the NL-means from a variational point of view

has been studied in different approaches [37], [38]. Besides,

since the NL-means provide interesting results in denoising,

several authors have adapted the non-local methods to other

problems such as deconvolution, inpainting or super-resolution

[17], [39], [40]. This has often been achieved through a

minimization framework that relies on non-local properties.

One of the most famous hybrid methods is the non-local

TV (NL-TV) proposed by Gilboa and Osher in [12]. Based

on the work on graph Laplacian of Zhou and Scholkopf [41]

and Bougleux et al. [42], as well as the definition of non-local

regularization terms of Kindermann et al. [11], they define a

non-local gradient as follows:

(∇wu)i,j = (ui − uj)
√
wi,j (19)

where wi,j is the weight that measures the similarity between

pixels i and j. This leads to the definition of a non-local

framework, including the non-local ROF model:

uNLTV = argmin
u

‖u− g‖2 + λ
∑

i∈Ω

‖(∇wu)i‖ (20)

with
∑

i∈Ω

‖(∇wu)i‖ =
∑

i∈Ω

√∑

j∈Ω

(ui − uj)
2
wi,j .

This model has been introduced to deal separately with tex-

tures and smooth areas. It has been adapted to deblurring,

inpainting or compressive sensing [13], [14]. Gilboa and Osher

have also adapted this non-local regularization to non-local

diffusion [43], which offers good denoising results. Figure

5-(d) shows the denoising in the case of Gaussian noise

with NL-TV. We can see that small structures such as the

cables and the writings on the boat are well-preserved while

the staircasing effect is reduced on flat areas, thanks to the

adaptive non-local regularization. If the approach can seem

similar to the R-NL model, the philosophy is in fact quite

opposite. NL-TV performs a non-local regularization in order

to preserve textures and to reduce the staircasing effect that

emanates from the TV minimization. It is possible to add in

the implementation a step that reduces the rare patch effect,

but the sole NL-TV model does not address this problem. On
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PSNR = 22.14dB PSNR = 22.13dB

(a) Original (b) Noisy

PSNR=30.13dB PSNR=29.77dB PSNR=29.59dB PSNR=29.43dB

(c) NL-means [3] (d) NLTV [12]

PSNR=29.27dB PSNR=29.01dB PSNR=30.19dB PSNR=29.92dB

(e) Non-adaptive R-NL [16] (f) R-NL (proposed method)

(g) Diff. between NL-means and d’Angelo et al. [16] (h) Diff. between NL-means and R-NL

Fig. 5. Denoising of Gaussian noise, standard deviation σ = 20. From top to bottom, left to right: (a) Original and (b) noisy images of the Cameraman and
the boat, processed with (c) NL-means, (d) NL-TV, (e) non-adaptive R-NL and (f) R-NL. (g) Difference between the solution of the NL-means and the result
of (e) and (h) Difference between the solution of the NL-means and the result of (f). We observe on these images the ability of each method to combine
variational and non-local methods in order to denoise efficiently while reducing the staircasing effect and/or the rare patch effect. The parameters are given
in section IX-A. See text for more details.

the contrary, our approach performs a local TV regularization

thanks to a non-local data-fidelity term, the main goal being to

correct the rare patch effect and the jittering effect that come

from the NL-means. A positive side-effect is that since the TV

regularization is applied very locally and selectively, it does

not suffer from the staircasing effect either.

Louchet and Moisan [9] also combine the NL-means with

TV minimization in order to reduce both the rare patch

effect and the staircasing effect. First they adapt the gradient

to create a local filter and they show that their local TV

denoising prevents the staircasing effect. Then they reduce

the rare patch effect occurring in the NL-means thanks to
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local TV minimization: if the NL-means do not select enough

candidates to provide sufficient denoising, they apply local TV

regularization to the patches to obtain a sufficient number of

candidates. This amounts to applying adaptive TV regulariza-

tion prior to the NL-means in order to ensure that it will find

enough candidates in the averaging process. Our idea in the

R-NL algorithm actually works the other way, since we first

compute the solution of the NL-means and apply adaptive TV

regularization afterward on the areas that did not have enough

good candidates, based on the confidence index obtained from

the NL-means.

NL-means have also been associated to TV minimization

in a super-resolution context. Protter et al. [15] and d’Angelo

and Vandergheynst [16] use a non-local data fidelity term

combined to TV minimization in order to obtain a high-

quality image from a low-resolution image sequence. Their

formulation shows some similarities to our proposed model,

but the philosophy behind it remains quite different. Figure

5-(e) illustrates this algorithm in a denoising context. This

amounts to applying global TV regularization on the solution

of the NL-means. We can see that the rare patch effect can be

reduced compared to the solution of the NL-means. However,

since the regularization is not adaptive, reducing the rare patch

effect requires performing an excessive smoothing resulting

in the loss of small structures and a contrast diminution.

Compared to our model, the main difference resides in the

fact that our data-fidelity is weighted by our confidence index,

which allows to perform a locally adaptive TV minimization.

Figure 5 shows the results obtained from the different meth-

ods described in this section that combine the NL-means with

TV minimization. We can observe that the NL-TV algorithm

of Gilboa and Osher does effectively preserve fine structures

such as the cables of the boat and it reduces the staircasing

effect, but the flat areas like the sky around the Cameraman’s

head are not as smoothed as in the NL-means for example.

The method based on the super-resolution algorithm of [16]

reduces the rare patch effect of the NL-means thanks to the

TV-regularization, but the compromise is hard to find: for

example, the cables of the boat tend to be over-smoothed if

the residual noise on the writings is to be efficiently removed.

Besides, the difference map between this method and the NL-

means on Fig. 5-(g) reveals that the solution obtained with

non-adaptive regularization suffers from a loss of contrast, due

to the TV minimization. R-NL on Fig. 5-(f) offers a simple

way to deal with the compromise between efficient denoising

and preservation of textures, thanks to the information pro-

vided by the estimated residual noise that acts as a measure

of confidence in the denoising performed by the NL-means.

We can observe on Fig. 5-(h) the difference between R-NL

and the NL-means. The adaptive TV regularization is locally

applied only on edges and singular structures, based on the

confidence in the NL-means provided by our residual noise

variance estimation. This prevents over-smoothing, staircasing

and loss of contrast.

VII. R-NL FOR THE EXPONENTIAL FAMILY

Both TV and NL-means are robust to different kind of

noises thanks to the possible adaptations described in sections

II and III. The proposed model can then be extended to other

types of (uncorrelated) noise with a weighted data fidelity of

the form −∑∑
wi,j log p(gj |ui), following the idea in [25],

and with weights adapted as presented in Section III. This

extended model can be solved efficiently in the general case

of the exponential family that includes additive white Gaussian

noise, Poisson noise and some multiplicative noises that are

frequently encountered in image processing problems such as

medical imaging, astronomy, remote sensing applications, etc.

A probability law belongs to the exponential family [44] if it

can be written under the following form:

p(T (g)|u) = c(g) exp(η(u)T (g)−A(u)) (21)

where c, T , η and A are known functions. The extended model

is then the following:

uR-NL=argmin
u∈RN

∑

i∈Ω

λi

∑

j∈Ω

wi,j [A(ui)−η(ui)T (gi)]+TV(u)

(22)

where λi = γ
(∑

j∈Ω w2
i,j

)−1/2
. As in the Gaussian case, it

can also be reformulated with a weighted NL-means based

fidelity term:

uR-NL = argmin
u∈RN

−
∑

i∈Ω

λi log p
(
uNL
i |ui

)
+TV(u) (23)

where Lw(ui) = −λi log p
(
uNL
i |ui

)
is the weighted log-

likelihood, uNL
i =

∑
j∈Ω wi,jT (gj) and λi can be calculated

with a quick implementation of the NL-means. We refer the

interested reader to [45] for a more complete description of a

fast way to compute the weights. Then the minimization step is

achieved thanks to standard minimization algorithms, depend-

ing on the type of noise involved. A general implementation

of the R-NL algorithm is given in Algorithm 1. More details

regarding the minimization step will be given in the following

subsections, according to the type of noise involved.

A. Gaussian case

Additive white Gaussian corruptions are said to be ho-

moscedastic or signal-independent. The amplitude of the noise

fluctuations is then constant in the image with a variance of σ2.

Hence, as already mentioned, the expected non-local variance

involved in the dejittering step is chosen as: (σnoise
i )2 = σ2.

In this case, solving (23) is equivalent to solving

argmin
u∈RN

∑

i∈Ω

λi

(
ui − uNL

i

)2

2σ2
+TV(u). (24)

which is up to a re-parametrization of the proposed model

given in Section V, eq. (16). In practice, by taking into account

the multiplicative constant that intervene in the negative log-

likelihood, we can choose the same value of γ (that defines

the scaling of λ) for every noise model, as done in section IX.

A lot of methods exist to solve this sort of problem. We have

chosen to use Chambolle-Pock’s algorithm [22], whose details

are given in Algorithm 2. This method deals with minimization

problems of the following form:

min
u

F (Ku) +G(u) (25)
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Algorithm 1 R-NL

Require: g: noisy input image,

h: filtering parameter,

|P |: patch size,

N : size and shape of the search neighborhood

γ: regularization parameter

for i ∈ Ω do

NL-means step

Compute wi,j ← ϕh

[
d(g(Pi), g(Pj))

]
, ∀j ∈ Ni

Normalize wi,j ← wi,j/
∑

j wi,j , ∀j ∈ Ni

Compute uNL
i ←∑

j wi,jT (gj)

Compute (σ̂NL
i )2 ←∑

j wi,jT (gj)
2 − (uNL

i )2

Compute (σnoise
i )2 according to the type of noise

Dejittering step

Compute αi ← |(σ̂NL

i
)2−(σnoise

i
)2|

|(σ̂NL

i
)2−(σnoise

i
)2|+(σnoise

i
)2

Update uNL
i ← (1− αi)u

NL
i + αigi

Update wi,j ← (1− αi)wi,j + αiδi,j

Compute λi ← γ
(∑

j w
2
i,j

)−1/2

end for

Minimization step

uR-NL=argmin
u

∑

i∈Ω

λi[A(ui)−η(ui)u
NL
i ]+TV(u)

return uR-NL

Algorithm 2 Chambolle-Pock algorithm [22]

Initialization: choose τ , σ > 0
u0 = uNL the result of the NL-means step

y0 = ∇u0, u0 = u0

Iterations (k ≥ 0):




yk+1 = (I + σ∂F ∗)
−1

(yk + σ∇uk)

uk+1 = (I + τ∂Lw)
−1

(uk + τ∇∗yk+1)
uk+1 = 2uk+1 − uk

that can be re-written in a primal-dual form:

min
u

max
y
〈Ku, y〉 − F ∗(y) +G(u) (26)

In this case, the function G is the weighted fidelity term, ie

the weighted log-likelihood Lw(ui), and the function F (Ku)
is the total variation ‖∇u‖1, ie F = ‖.‖1 and K = ∇.

Note that in Algorithm 2, ∇∗ refers to the adjoint of the

gradient, so ∇∗ = −div, and the terms (I + σ∂F ∗)
−1

and

(I + τ∂Lw)
−1

are the proximal operators associated to the

functions F ∗ and Lw. It is easy to check as in [22] that the

proximal operator of F ∗ is a soft thresholding and we have:

y = (I + σ∂F ∗)
−1

(ỹ)⇔ yi =
ỹi

max(1, |ỹi|)
. (27)

We can also show that [22]:

u = (I + τ∂Lw)
−1

(ũ)⇔ ui =
ũi + τ/σ2λiu

NL
i

1 + 2τ/σ2λi
. (28)

B. Poisson case

Poisson noise is also of particular interest since it occurs

often in medical imaging, astronomy or night vision where

the number of photons is limited. The negative log-likelihood

of u > 0 for an observed intensity g is given by L(g|u) =
u
Q −

g
Q log u

Q + log g
Q ! where g/Q is a non-negative integer.

Poisson-corrupted data is signal-dependent with a variance

proportional to the expectation. Hence, the expected non-

local variance involved in the dejittering step is chosen as

(σnoise
i )2 = QuNL

i . The solution of the NL-means and the

adaptive regularization parameters λi can then be computed

accordingly and the variational problem becomes:

uR-NL = argmin
u≥0

∑

i∈Ω

λi

[
ui

Q
− uNL

i

Q
log

(
ui

Q

)]
+TV(u).

(29)

This functional is strictly convex, so the uniqueness of the

solution is guaranteed. However, the data fidelity term is

not differentiable. One solution would be to regularize the

fidelity term (ie the logarithm). Instead, we use the primal-

dual algorithm adapted to the Poisson case. Its general form

is the one presented in Algorithm 2, and Anthoine et al.

have determined explicitly the proximal operators required for

Chambolle-Pock’s algorithm in [46]:

u = (I + τ∂Lw)
−1

(ũ)⇔ (30)

ui =





1
2

(
ũi − τλi +

√
(ũi − τλi)

2
+ 4τλiuNL

i

)

if uNL
i > 0,

max(ũi − τλi, 0) otherwise

C. Gamma case

We also focus on gamma multiplicative noise which models

speckle fluctuations encountered for example in synthetic aper-

ture radar imagery or ultrasound imagery. The negative log-

likelihood of u > 0 for an observed intensity g > 0 is given

by L(g|u) = Lg
u +L log u+log Γ(L)−L logL−(L−1) log g,

where L is the “number of looks” that sets the level of the

noise. As for Poisson-corrupted data, gamma corruptions are

signal-dependent but with a standard deviation proportional

to the expectation. Hence, the expected non-local variance

involved in the dejittering step is chosen as (σnoise
i )2 =

(uNL
i )2/L. The solution of the NL-means and the adaptive

regularization parameters λi can then be computed accordingly

and the variational problem becomes:

uR-NL = argmin
u>0

∑

i∈Ω

λi

[
L log(ui) + L

uNL
i

ui

]
+TV(u).

(31)

This functional is not convex, so there is no guarantee as to the

existence of a unique minimizer. However, we can show that

a minimization algorithm will converge towards a stationary

point [47]. Since we initialize the algorithm to the solution of

the NL-means, it is reasonable to believe that the solution will

be close to the global one. However, for strong gamma noise

(with a low number of looks L, for example L = 4 in table I),

the sole TV minimization (with arbitrary or null initialization)

will not necessarily converge to a satisfying result. Besides,
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Noisy (PSNR=21.38) Poisson-TV (PSNR=28.67) Poisson-NL-means (PSNR=28.98) R-NL (PSNR=29.96)

Noisy (PSNR=20.97) Poisson-TV (PSNR=28.66) Poisson-NL-means (PSNR=28.79) R-NL (PSNR=29.43)

Fig. 6. Denoising of Poisson noise, Q = 4. Small structures such as the writing and the cables of the boat are better preserved with R-NL, while denoising
is better achieved on the fine structures than with NL-means.

Noisy (PSNR=22.36) Gamma-TV (PSNR=29.02) Gamma-NL-means (PSNR=29.39) R-NL (PSNR=30.87)

Noisy (PSNR=22.12) Gamma-TV (PSNR=28.50) Gamma-NL-means (PSNR=29.35) R-NL (PSNR=30.22)

Fig. 7. Denoising of Gamma noise, L = 12. We observe on the NL-means some residual noise around the face of the cameraman or the writings on the
boat, corrected by TV regularization on the R-NL results. The smoother areas are correctly treated by the NL-means, so we do not observe the staircasing

effect associated to TV denoising.

we cannot use Chambolle Pock’s algorithm since the proximal

operator derived from the data-fidelity term is not easy to

compute. However, the data fidelity term is differentiable so

we can use the forward-backward algorithm [48]. Its purpose

is to minimize the following problem:

min
u

F (u) +G(u), (32)

where G needs to be differentiable with ∇G 1/β-Lipschitz

and F simple, meaning that its proximal operator is easy to

compute. In the present case, G is the data-fidelity term Lw,

and F is the total variation. The algorithm is described in

Algorithm 3. Some accelerations such as the FISTA algorithm

[49] can also be used, or a generalized version GFB [50]
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Algorithm 3 FB algorithm [21]

Initialization: choose u0 = uNL and κ > 0
Iterations (k ≥ 0):

uk+1 = (I + κ∂F )
−1

(uk − η∇Lw(uk))

that allows to deal with n functions. In this algorithm, we

cannot compute directly the proximal operator of the total

variation (I + κ∂F )
−1

, so we have to proceed to an inner

loop that will calculate iteratively this proximal operator. The

calculation of this proximal operator is achieved through a

forward-backward algorithm or its fast version FISTA [51].

Figures 3, 5, 6 and 7 compare the R-NL algorithm with the

TV minimization and the NL-means on images in [0, 255].
In the Gaussian case, Gaussian noise with standard deviation

σ = 20 has been added. In the Poisson and gamma case,

Poisson and gamma noise have been applied respectively to

the original images with a noise level set in order to achieve

a PSNR of 22dB. The parameters that were used for all the

experiments are detailed in section IX-A.

VIII. VIDEO DENOISING USING THE R-NL ALGORITHM

The NL-means have been adapted in [52] to video

denoising, so we would like to adapt our algorithm R-NL

to video denoising as well, in order to bring the same

advantages. The temporal NL-means achieve spatio-temporal

filtering without prior motion-compensation. Indeed, motion

estimation is a difficult task that may be nearly impossible

to solve in constant areas where the aperture problem is too

high. Buades et al. have shown that motion compensation

is in fact counter-productive in this case: in image sequence

denoising, the NL-means use a 3D neighborhood whose third

dimension corresponds to the temporal frames. Adding motion

compensation reduces the number of eligible candidates,

when in the contrary in NL-means the more the merrier.

However, Liu et al. advocate in [53] that motion compen-

sation is in fact essential, even in a non-local context. They

integrate optical flow estimation in the NL-means framework

in order to perform more efficient denoising while guarantee-

ing better temporal stability. In both NL-means and R-NL,

if a small number of frames is used to compute the solution

(which is often the case in order to lower the computational

costs), no temporal regularity is guaranteed. Indeed, motion

compensation is based on the Lambertian assumption that

stipulates that a pixel has the same gray level during its whole

trajectory, forcing a temporal regularity. In the case of the

NL-means, such a hypothesis is not verified, so a pixel value

may change from one frame to another. This results in a

glittering effect when looking at the video, even though it is not

perceptible when looking at only one frame or at the PSNR.

Such a phenomenon is not harmful when the whole image is

in motion, but when only part of the image in the video is

in motion while the rest is static, the glittering effect appears

like an undesirable consequence of the estimation variability.

To reduce this effect, we use 3D patches instead of 2D

patches. Indeed, in the original version on the NL-means,

Buades et al. compute patches in the current image (in 2D)

and compare them to 2D patches in a 3D spatio-temporal

search zone. This does not force regularity from one frame

to another, resulting in the glittering effect. Instead, we com-

pute 3D patches that compare spatio-temporal neighborhoods

in order to force temporal consistency, as suggested in an

inpainting context in [19]. In the NL-means-3D alone, the use

of three-dimensional patches favors the rare patch effect since

candidates are harder to find.

The rare patch effect can then be corrected using the

adaptive TV regularization. The natural way to do it would

be to apply spatial TV regularization, based on the adap-

tive regularization parameter λ we define. This provides an

effective reduction of the rare patch effect, but reduces the

temporal stability because of the fact that the TV minimization

is applied on each frame independently, so the regularization

is not consistent through time. To remedy this, we introduce a

spatio-temporal TV regularization. This approach does seem

counter-intuitive in a general framework, since the assumption

of a piece-wise constant model in the temporal dimension does

not hold (although it does not hold in the spatial domain either,

but is used nonetheless). Video denoising using only spatio-

temporal TV regularization suffers from the same defaults we

might encounter on image denoising using TV regularization,

but in the three dimensions: the staircasing effect appears

also in the temporal domain, creating a blur and a loss of

contrast around moving structures. In our framework however,

the TV regularization is applied very locally only where the

NL-means are judged to be too weak, so the staircasing effect

is also avoided here. This adaptive temporal TV regularization

forces temporal consistency when TV regularization is applied,

but does not hurt the content of the video elsewhere. The

implementation is quite straight-froward compared to spatial

TV regularization; it only needs the computation of a 3-

dimensional gradient and divergence operator.

IX. RESULTS AND DISCUSSION

A. Parameters

The algorithms described above have been carefully adapted

to limit the influence of the statistic and the level of the noise

on the different parameters. We have used three levels of noise:

low, medium and high, that correspond in the Gaussian case

to standard deviation σ = 20, 30, 40 respectively. We have

then adapted the parameters Q and L for Poisson and gamma

distributions to achieve the same initial PSNRs of about 22dB

for low noise level, 18dB for medium noise level and 16dB

for high noise level.

The kernel defined in (7) for the computation of the non-

local weights is not very sensitive to the noise statistic, so we

have set the filtering parameter h to 1 for all types and levels

of noise. We have used standard 7 × 7 patches and 21 × 21
search windows. Besides, the constants were carefully kept in

the log-likelihoods used for the TV minimization in order to

obtain a regularization scaling parameter γ of the same scale

for each type of noise. It has been set to 66 for low noise

level and 100 for medium and high noise levels, for images

quantified in 8 bits.
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TABLE II
MEAN PSNRS ON DENOISED SEQUENCES WITH NL-MEANS-2D,

R-NL-2D AND V-BM3D (2D PATCHES), AND NL-MEANS-3D R-NL-3D
AND BM4D (3D PATCHES).

Target Tennis Bicycle

NL-means 2D [52] 30.84 30.07 32.24

R-NL-2D 31.27 30.16 32.29
V-BM3D [59] 30.21 29.79 32.92
NL-means 3D 32.47 30.52 31.72

R-NL-3D 33.35 30.60 32.16
BM4D [60] 34.53 31.06 33.37

For video denoising, we have used spatio-temporal search

windows of size 7×7×9 and spatio-temporal patches of size

7×7×5, with a regularization parameter (for low noise level)

γ = 50.

B. Image denoising

We present here some numerical results to compare our

R-NL algorithm to other approaches that rely on non-local

and/or variational methods. We can see in Table I that

these methods do provide an increase in PSNR and SSIM

[54] compared to the NL-means or the TV minimization,

confirming the visual observations from Figures 3-7. In the

case of Poisson or gamma noise, we did not include the

NL-TV algorithm since it applies only directly to Gaussian

noise. Table I illustrates also the benefit of our adaptive

regularization compared to the non-adaptive model of

d’Angelo et al. [16]. Extensions of their model to Poisson (P)

and gamma (G) noise have also been included under the name

of NA/R-NL for non-adaptive R-NL. We have furthermore

added in this table the results obtained with BM3D [55] in

the case of Gaussian noise, and with BM3D applied after

variance stabilization using Anscombe transform for Poisson

noise [56] and logarithm transform for gamma noise [56].

Since the main goal of this article is to offer an improvement

to the NL-means through an interpretation of the variance

reduction as a measure of confidence, we do not claim to

offer a better PSNR than BM3D, but we do offer an intuitive

interpretation along with a simple and general implementation.

C. Video restoration

We also study here the behavior of our proposed method

to video denoising, on three image sequences: target, tennis

and bicycle. The original, noisy and denoised videos are

available for download1. Table II displays the mean PSNR of

the denoised videos using the standard NL-means adapted to

video denoising (NL-means 2D), the R-NL algorithm adapted

to video denoising (R-NL 2D), the NL-means algorithm with

3-dimensional patches (NL-means 3D), the R-NL algorithm

with 3-dimensional patches (R-NL 3D) and the state-of-the-

art video denoising algorithms V-BM3D [59] and BM4D [60].

We can see that our results with the proposed R-NL method

with 3 dimensional patches are quite competitive.

1http://image.math.u-bordeaux1.fr/RNL

TABLE III
TEMPORAL STANDARD DEVIATION ON DENOISED SEQUENCES WITH

NL-MEANS AND R-NL USING 2D PATCHES, V-BM3D, NL-MEANS AND

R-NL USING 3D PATCHES, AND BM4D. THANKS TO THE USE OF 3D
PATCHES, R-NL-3D AND BM4D PROVIDE THE BEST TEMPORAL

STABILITY, AND VISUAL COMFORT.

Target Tennis Tennis Bicycle
(1-24) (90-148)

NL-means 2D [52] 5.45 4.27 4.36 1.64
R-NL-2D 4.47 3.34 3.57 1.25

V-BM3D [59] 5.25 3.66 4.60 1.76
NL-means 3D 5.20 4.04 4.15 1.37

R-NL-3D 3.85 2.82 3.09 0.90

BM4D [60] 3.67 2.78 3.14 0.94

We can also show that the R-NL-3D algorithm enforces

temporal consistency thanks to the use of three-dimensional

patches, while limiting the rare patch effect thanks to the

adaptive TV regularization. The superiority of spatio-temporal

patches over spatial patches is also demonstrated by comparing

BM4D with V-BM3D. We measure temporal variance on

different image sequences in order to illustrate the Lambertian

assumption: on areas that do not move during a part of the

sequence, the pixel value should be unchanged from one

frame to another, so the temporal standard deviation should

be close to zero. Based on the ground truth of the original

sequences, we can select areas that do not vary with time and

then calculate the standard deviation obtained on the different

denoised versions. Table III displays the standard deviation

computed on such constant areas on the denoised versions of

the same three image sequences.

Based on Table III, we can see that temporal stability is best

guaranteed with R-NL-3D and BM4D, thanks to the use of 3-

dimensional patches. The difference between R-NL-3D (resp.

R-NL-2D) and NL-means-3D (resp. NL-means-2D) shows that

the adaptive spatio-temporal TV regularization helps reducing

the glittering effect by enforcing spatio-temporal consistency.

D. Discussion

The approach we have presented is based on a two-step

improvement of non-local methods. It consists in correcting

the jittering effect that occurs if candidates issued from a

different underlying value are averaged together (this happens

for example on the grass of the cameraman, see figure 8), and

in reducing the rare patch effect. Since these drawbacks are

linked to the difficulty to compute the non-local weights on

noisy patches and to find relevant candidates, they are inherent

to non-local methods. Our method uses the local estimation of

the noise variance reduction as an indicator to correct first the

jittering effect then the rare patch effect. We can then extend

the model we developed for the NL-means to other non-local

methods based on the computation of non-local weights, for

example BM3D [55], or the improved version of the non-

local means SAFIR [6] and SAIF [8]. We estimate the residual

variance of the non-local solution, that we use to perform the

dejittering step then the regularization step. Figure 8 displays

the result of denoising of Gaussian noise using BM3D, SAFIR

and SAIF, along with the associated regularized versions using

the dejittering and adaptive regularization steps. We can see

http://image.math.u-bordeaux1.fr/RNL
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TABLE I
PSNR/SSIM VALUES OF DENOISED IMAGES USING DIFFERENT METHODS FOR IMAGES CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE, POISSON

NOISE AND GAMMA NOISE.

House Peppers Cameraman Boat Lena Barbara Man
(256) (256) (256) (512) (512) (512) (512)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Gaussian noise, σ = 20
Noisy image 22.12 0.33 22.11 0.47 22.14 0.39 22.13 0.73 22.11 0.67 22.12 0.78 22.10 0.79

TV [1] 30.48 0.68 29.23 0.78 28.57 0.70 28.94 0.87 30.22 0.87 26.66 0.87 28.42 0.89
NL-TV [12] 27.04 0.73 29.99 0.81 29.59 0.79 29.43 0.87 29.16 0.89 27.92 0.90 28.05 0.88

NL-Means [3] 32.23 0.77 29.87 0.82 29.01 0.78 29.30 0.85 31.53 0.89 30.09 0.92 28.48 0.87
NLDJ [31] 32.31 0.77 30.45 0.83 30.13 0.81 29.77 0.88 31.73 0.91 29.98 0.93 29.10 0.90

NA/R-NL [16] 32.16 0.77 30.11 0.82 29.27 0.78 29.01 0.84 31.33 0.89 28.11 0.89 28.38 0.85
R-NL 32.69 0.79 30.78 0.84 30.19 0.82 29.92 0.88 32.04 0.91 29.76 0.93 29.26 0.89

BM3D [55] 33.70 0.81 31.32 0.86 30.49 0.83 30.85 0.91 33.03 0.92 31.74 0.95 29.81 0.92

Gaussian noise, σ = 30
Noisy image 18.60 0.24 18.59 0.35 18.60 0.30 18.57 0.61 18.57 0.55 18.59 0.66 18.59 0.68

TV [1] 26.04 0.71 27.19 0.73 27.43 0.64 27.25 0.80 27.46 0.82 25.92 0.80 26.33 0.80
NL-TV [12] 25.15 0.61 25.97 0.68 26.26 0.63 26.04 0.81 26.15 0.83 25.68 0.85 25.75 0.82

NL-Means [3] 30.11 0.72 27.90 0.75 27.36 0.72 27.38 0.78 29.52 0.84 27.80 0.87 26.69 0.80
NLDJ [31] 30.06 0.71 28.11 0.76 27.96 0.72 27.74 0.82 29.62 0.86 27.61 0.88 27.10 0.84

NA/R-NL [16] 30.17 0.74 27.82 0.76 27.23 0.73 27.14 0.77 29.32 0.84 25.86 0.83 26.50 0.78
R-NL 30.70 0.75 28.53 0.78 28.12 0.75 27.98 0.82 30.10 0.86 27.50 0.88 27.36 0.83

BM3D [55] 32.22 0.77 29.31 0.82 28.66 0.78 29.04 0.87 31.25 0.89 29.76 0.92 28.00 0.87

Gaussian noise, σ = 40
Noisy image 16.10 0.18 16.10 0.27 16.12 0.24 16.09 0.51 16.11 0.46 16.09 0.57 16.10 0.59

TV [1] 24.71 0.60 23.08 0.67 22.18 0.57 23.82 0.73 24.53 0.76 21.96 0.73 22.75 0.73
NL-TV [12] 24.87 0.50 25.45 0.61 25.81 0.54 25.99 0.76 25.99 0.76 24.45 0.80 25.13 0.78

NL-Means [3] 28.25 0.66 26.32 0.70 26.08 0.67 26.03 0.72 28.10 0.80 26.07 0.82 25.38 0.73
NLDJ [31] 28.28 0.64 26.43 0.71 26.54 0.67 26.34 0.76 28.22 0.82 25.92 0.84 25.74 0.78

NA/R-NL [16] 27.89 0.71 25.09 0.70 24.71 0.67 25.16 0.68 27.05 0.78 23.99 0.76 24.60 0.69
R-NL 29.05 0.71 26.85 0.75 26.70 0.72 26.61 0.76 28.77 0.83 25.72 0.83 26.04 0.78

BM3D [55] 30.65 0.74 27.77 0.78 27.27 0.73 27.67 0.82 29.86 0.86 27.96 0.89 26.72 0.83

Poisson noise, Q = 4
Noisy image 20.70 0.31 21.23 0.45 21.38 0.84 20.97 0.70 21.21 0.64 21.40 0.76 22.59 0.84
P-TV [46] 30.31 0.72 29.25 0.78 28.67 0.73 28.66 0.86 30.35 0.87 25.99 0.86 28.91 0.92

P-NL-Means [27] 31.62 0.75 29.48 0.80 28.98 0.77 28.79 0.83 31.36 0.88 29.55 0.91 28.74 0.89
P-NLDJ [31] 31.68 0.75 29.91 0.81 29.91 0.80 29.28 0.87 31.58 0.90 29.44 0.92 29.49 0.92

NA/R-NL [16] 31.43 0.76 29.44 0.80 29.00 0.78 28.40 0.81 31.22 0.88 27.19 0.88 28.82 0.88
R-NL 32.19 0.78 30.22 0.83 29.96 0.81 29.43 0.86 31.95 0.90 29.14 0.92 29.67 0.91

Ans. + BM3D [56] 33.30 0.80 30.89 0.85 30.35 0.82 30.42 0.90 32.88 0.92 31.23 0.94 30.17 0.93

Poisson noise, Q = 8
Noisy image 17.71 0.23 18.22 0.35 18.36 0.33 17.96 0.59 18.18 0.53 18.39 0.67 19.63 0.76
P-TV [46] 28.74 0.69 27.49 0.74 26.89 0.67 27.12 0.81 28.82 0.83 24.43 0.81 27.23 0.88

P-NL-Means [27] 28.69 0.65 27.37 0.71 27.17 0.68 26.66 0.72 29.04 0.81 26.81 0.83 26.83 0.79
P-NLDJ [31] 29.57 0.69 28.20 0.76 28.18 0.73 27.67 0.81 29.82 0.86 27.47 0.88 27.87 0.87
NA/R-NL [16] 29.67 0.74 27.82 0.76 27.56 0.75 27.03 0.75 29.71 0.85 25.71 0.83 27.30 0.83

R-NL 30.18 0.74 28.59 0.79 28.35 0.77 27.88 0.81 30.33 0.87 27.29 0.88 28.08 0.87
Ans. + BM3D [56] 31.78 0.76 29.23 0.81 28.80 0.78 28.88 0.86 31.36 0.89 29.57 0.92 28.56 0.90

Poisson noise, Q = 12
Noisy image 15.91 0.19 16.43 0.30 16.54 0.29 16.23 0.53 16.42 0.48 16.65 0.61 17.86 0.70
P-TV [46] 27.07 0.59 26.10 0.67 25.67 0.59 25.95 0.77 27.18 0.77 23.60 0.76 25.96 0.84

P-NL-Means [27] 27.76 0.62 26.71 0.70 26.36 0.67 26.15 0.71 28.54 0.80 26.26 0.82 26.47 0.82
P-NLDJ [31] 28.29 0.63 27.20 0.71 27.04 0.67 26.76 0.78 28.82 0.83 26.46 0.85 27.03 0.85

NA/R-NL [16] 28.53 0.72 26.84 0.74 26.49 0.72 26.07 0.71 28.81 0.83 24.44 0.79 26.49 0.80
R-NL 29.12 0.71 27.75 0.76 27.23 0.73 27.04 0.78 29.49 0.85 26.21 0.85 27.31 0.85

Ans. + BM3D [56] 30.75 0.74 28.29 0.78 27.73 0.74 27.93 0.83 30.38 0.86 28.46 0.89 27.73 0.87

Gamma noise, L = 12
Noisy image 21.68 0.37 22.33 0.52 22.36 0.51 22.12 0.74 22.44 0.70 22.68 0.82 24.39 0.88
G-TV [47] 29.36 0.65 29.13 0.76 29.02 0.71 28.50 0.86 29.84 0.84 27.18 0.89 29.65 0.93

G-NL-Means [3] 32.24 0.77 29.72 0.82 29.39 0.80 29.35 0.85 32.22 0.91 30.22 0.93 29.79 0.92
G-NLDJ [31] 32.59 0.77 30.69 0.83 30.68 0.83 30.01 0.89 32.58 0.92 30.42 0.94 30.82 0.94

NA/R-NL [16] 32.53 0.78 30.65 0.83 30.10 0.82 29.40 0.84 32.67 0.91 28.59 0.91 30.53 0.92
R-NL 33.09 0.80 31.12 0.85 30.87 0.84 30.22 0.88 33.05 0.92 30.33 0.94 31.03 0.94

log-BM3D [57], [58] 34.01 0.82 31.70 0.87 30.99 0.84 31.10 0.91 33.81 0.93 32.01 0.95 31.45 0.95

Gamma noise, L = 4
Noisy image 16.94 0.24 17.60 0.37 17.66 0.40 17.40 0.59 17.75 0.55 17.95 0.68 19.65 0.78

G-NL-Means [3] 29.20 0.69 27.19 0.74 26.81 0.71 26.96 0.75 29.62 0.84 27.20 0.86 27.21 0.85
G-NLDJ [31] 29.20 0.66 27.56 0.74 27.65 0.72 27.48 0.81 29.78 0.86 27.15 0.88 28.11 0.89

NA/R-NL [16] 30.03 0.74 27.78 0.77 27.49 0.75 27.21 0.76 30.17 0.87 25.86 0.84 28.39 0.88
R-NL 30.15 0.74 28.09 0.78 27.99 0.76 27.86 0.81 30.46 0.87 27.18 0.88 28.49 0.89

log-BM3D [57], [58] 31.41 0.76 28.79 0.80 28.50 0.78 28.60 0.85 31.15 0.88 29.21 0.91 28.81 0.91
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BM3D (PSNR=30.49) R-BM3D (PSNR=30.59) BM3D (PSNR=29.81) R-BM3D (PSNR=29.81)

SAIF (PSNR=30.15) R-SAIF (PSNR=30.21) SAIF (PSNR=29.31) R-SAIF (PSNR=29.35)

SAFIR (PSNR=29.68) R-SAFIR (PSNR=30.18) SAFIR (PSNR=29.19) R-SAFIR (PSNR=29.54)

Fig. 8. Denoising of Gaussian noise (standard deviation σ=20) using BM3D, SAFIR and SAIF and associated regularized results R-BM3D, R-SAFIR and
R-SAIF using the proposed dejittering and adaptive regularization. The adaptive regularization corrects some artifacts when necessary, for example on the
grass and the small tower from “cameraman” or the straw from “man”. However, thanks to the adaptivity of the model, it does not degrade the result when
the targeted defaults do not occur, for example on the man with BM3D that does not suffer from either the jittering effect or the rare patch effect.

that the over-smoothing of fine structures such as the grass on

“cameraman” and the straw on “man” is corrected, and that

some artifacts (around the tower) are reduced. Besides, thanks

to the adaptivity of our approach, when no jittering or rare

patch effect has occurred, the noise reduction is estimated to

be safe so no further correction is applied.

X. CONCLUSION

In this paper, we have presented a new approach that

combines the NL-means with TV regularization. We use a

weighted non-local data-fidelity term, whose magnitude is

driven by the estimation of the amount of denoising performed

by the NL-means. The variance reduction offers a measure of

confidence in the denoising performed by the NL-means, and

the TV regularization is automatically adapted according to

this value. This leads to a flexible algorithm that locally uses

both the redundant and smooth properties of the images while

offering both a reduction of the jittering and the rare patch

effects associated to the NL-means and of the staircasing effect

that occur in the TV minimization.

The proposed model has an intuitive interpretation that can

be generalized to different noise statistics. Moreover, we have

shown that a solution can be achieved quite simply for types

of noises belonging to the exponential family.

We also propose an extension to video denoising that

does not need motion estimation. The method offers good

performances and guarantees temporal stability thanks to the

use of three-dimensional patches.

While we have developed our regularized NL-means based

on TV regularization, our model naturally extends to other

regularization terms adapted to different image priors. In-

vestigating such regularizations is the topic of future work.

Beyond non-local denoising, we could also extend this model

to other types of algorithms based on weighted averages, hence

extending the applicability of this model to numerous other

potential problems.
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