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Adaptive regularization of the NL-means:

Application to image and video denoising
Camille Sutour, Jean-François Aujol, and Charles-Alban Deledalle,

Abstract—Image denoising is a central problem in image
processing and it is often a necessary step prior to higher level
analysis such as segmentation, reconstruction or super-resolution.
The non-local means (NL-means) perform denoising by exploiting
the natural redundancy of patterns inside an image; they perform
a weighted average of pixels whose neighborhoods (patches)
are close to each other. This allows to reduce significantly the
noise while preserving most of the image content. While it
performs well on flat areas and textures, it might leave a residual
noise around edges and singular structures. We introduce in
this paper a variational approach that reduces this residual
noise by adaptively regularizing non-local methods with the total
variation. The classical minimization of the total variation – the
ROF model – leads to restore regular images but it is prone
to over-smooth textures and create a staircasing effect on flat
areas. The proposed regularized NL-means algorithm combines
these methods and reduce both of their respective defaults by
minimizing the total variation with a non-local data fidelity term.
Besides, this model adapts to different noise statistics and a fast
solution can be obtained in the general case of the exponential
family. We develop this model for image denoising and then we
adapt it to video denoising, where it enables us to use 3D patches.

Index Terms—Non-local means, total variation regularization,
image and video denoising, adaptive filtering

I. INTRODUCTION

IMAGE denoising is a central problem in image processing.

It is often a necessary step prior to higher level analysis

such as segmentation, reconstruction or super-resolution. The

goal of the denoising process is to recover a high quality image

from a degraded version. Among the main denoising tech-

niques, variational methods minimize an energy that constrains

solutions to be regular. One of the most famous variational

models used for image denoising is the ROF model [1] that

minimizes the total variation (TV) of the image, hence pushing

the image towards a piecewise constant solution. This method

is quite adapted to denoising while preserving edges, but it

presents two major drawbacks: the textures tend to be overly

smoothed, and the flat areas are approximated by a piecewise

constant surface, resulting in a staircasing effect.

Among state-of-the-art denoising methods, the non-local

means (NL-means) [2] algorithm performs spatial filtering

by using spatial redundancy occurring in an image. Indeed,

instead of averaging pixels that are spatially close to each

other, it compares patches extracted around each pixel to
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perform a weighted average of pixels whose surroundings are

close. It has led to many non-local methods and improvements

such as [3] or [4]. This technique shows good performance on

smooth areas and repetitive textures for which the redundancy

is high, but on edges and singular structures it might fail

to find enough similar patches and thus performs insufficient

denoising. This is referred to as the rare patch effect, that has

been studied for instance in [5] and [6].

Variational and non-local methods have been put together by

Gilboa and Osher in [7] in order to deal separately with smooth

and textured areas. They perform a non-local regularization

by defining a non-local gradient that allows them to smooth

the flat areas while preserving fine structures, resulting in

a reduction of the staircasing effect. Kindermann et al. [8]

have also introduced a non-local regularization term based on

the similarity of patches. Non-local regularization has been

adapted to many inverse problems, for example in [9] for

inpainting or compressive sensing or in [10] for deconvolution

problems.

Louchet and Moisan [5] have also proposed to combine

the NL-means with TV regularization in their TV-means

algorithm. They adapt the total variation in order to turn it

into a local filter, and they perform local TV regularization

where the NL-means suffers from the rare patch effect. They

manage to reduce both the staircasing effect and the rare patch

effect with an iterative scheme.

The goal of this paper is also to combine TV minimization

with the NL-means, but with a non-local data fidelity term

instead of a non-local regularization term as studied above.

Protter et al. [11] and d’Angelo and Vandergheynst [12] have

used the same type of approach in the context of super-

resolution. Their technique could be adapted to a denoising

context. They use a non-local data-fidelity term based on the

normalized weights from the NL-means algorithm. This sums

up to computing the solution of the NL-means, then applying

TV regularization. In this article, contrary to [11] and [12],

we exploit weights that are not normalized. This allows us

to use the weights to ponder the TV regularization, hence

creating an adaptive model. Our main contribution is to show

that the values of the weights reflect the level of denoising

performed by the NL-means: on constant areas the NL-means

perform efficient denoising free of the staircasing effect while

on edges adaptive regularization will correct the rare patch

effect. Besides, we propose a model that adapts to different

noise models and we derive a simple resolution scheme in the

general case of the exponential family, often encountered in

imaging problems.

We have then extended this model to video denoising.
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Indeed, Buades et al. have shown in [13] that the NL-means

allow to denoise image sequences without applying motion

compensation. In fact, they even show that it is harmful to

do so instead of using all possible candidates in all frames.

Besides, in order to guarantee temporal coherence between

frames, we use 3D patches, as proposed in [14]. Instead

of comparing square windows computed in a single frame

in a spatio-temporal neighborhood, we compute 3D patches

that take into account temporal consistency in the computing

of weights. This selects less (if better) candidates, hence

enhancing the rare patch effect, that is then corrected thanks to

the adaptive spatial TV regularization. Hence, we have adapted

our proposed model to video denoising by computing spatio-

temporal NL-means combined with spatial TV regularization.

The goal of this paper is to combine the NL-means with

variational methods in order to reduce their weaknesses while

using their strengths. We thus propose a regularized version of

the NL-means algorithm. The main contributions in this paper

are the model and its intuitive interpretation, its extension to

the exponential family that offers a general model robust to

different noise statistics, and the extended framework to video

denoising without prior motion compensation. In particular,

we can use three-dimensional patches in the NL-means for

video denoising. They are responsible for an increased rare

patch effect that is corrected thanks to the TV regularization,

while providing a better temporal consistency.

The organization of the paper is as follows: in Sections II

and III we remind the reader of the principle of the NL-means

and the ROF model. We give details as to how to solve these

problems and how to adapt them to different noise statistics.

Section V presents different approaches that combine the NL-

means with variational methods in a denoising framework. In

Section IV and VI, we present our R-NL model, its general-

ization and implementation. Finally, Section VII extends the

model to video denoising and Section VIII presents results and

compares them to state-of-the-art methods.

II. NL-MEANS

The general problem in denoising is to recover the image

f ∈ R
N , N being the number of pixels in the image, based

on the noisy observation g ∈ R
N . The usual model is the case

of additive white Gaussian noise:

g = f + ǫ (1)

where f is the true (unknown) image and ǫ is a realization of

Gaussian white noise of zero-mean and standard deviation σ.

One of the most recent popular denoising methods is the NL-

means algorithm described by Buades et al. in [2]. It is based

on the natural redundancy of the image structures, not just

locally but in the whole image. Instead of averaging pixels

that are spatially close, the NL-means algorithm compares

patches, ie small windows extracted around each pixel, in order

to average pixels whose surroundings are similar. Weights are

computed in order to reflect how much two noisy pixels are

likely to represent the same true gray level, then pixels are

averaged according to these weights. For each pixel i ∈ Ω,

where Ω is the domain of the image, the solution of the NL-

means is given by the following weighted average:

(uNL)i =
1

Zi

∑

j∈Ω

wi,jgj where Zi =
∑

j∈Ω

wi,j , (2)

which is equivalent to the solution of the following minimiza-

tion problem:

uNL = argmin
u∈RN

∑

i∈Ω

∑

j∈Ω

wi,j(gj − ui)
2 (3)

where in both cases the weights wi,j ∈ [0, 1] are computed

in order to select the pixels j whose surrounding patches are

similar the the one extracted around the pixel of interest i:

wi,j = ϕ

(
−
d(g(Pi), g(Pj))

2|P |h2

)
(4)

where ϕ is a kernel decay function, d a distance function that

measures the similarity between the two patches Pi and Pj

extracted around the pixels i and j, |P | the size of the patches,

and h a filtering parameter. In [2], ϕ is a negative exponential

and the distance function is an Euclidean norm convolved

by a Gaussian kernel of bandwidth a, with a controlling the

influence of the pixels around the central one. It has been

shown that using a flat or trapezoidal kernel achieves lower

computational costs with similar performances [15].

Adaptation to other noise statistics: the weighted average

can be replaced for other (uncorrelated) noise statistics by the

the weighted maximum likelihood estimate [16], [17]:

uNL = argmin
u∈RN

−
∑

i∈Ω

∑

j∈Ω

wi,j log p(gj |ui) (5)

and the distance between two noisy patches g1 and g2 can be

adapted using the following likelihood ratio [18]:

d(g1, g2) = − log
supθ p(g1|θ1 = θ)p(g2|θ2 = θ)

supθ p(g1|θ1 = θ) supθ p(g2|θ2 = θ)
. (6)

where θ1 and θ2 refers to the underlying noise-free patches.

Discussion: non-local methods achieve overall good per-

formances but they suffer from two opposite drawbacks.

The algorithm might select too many irrelevant candidates,

resulting in the patch jittering effect: structures in these areas

are overly smoothed due to the combination of candidates with

different underlying values. On the contrary, around singular

structures or edges, it can be difficult to find enough similar

patches so the pixels are not properly denoised, resulting in

a rare patch effect. These two problems oppose each other;

they are controlled by the filtering parameter h which acts as

a bias-variance trade-off, as interpreted in [19].

III. VARIATIONAL METHODS

The variational methods consist in looking for an image that

minimizes a given energy in order to fit the data while respect-

ing some smoothness constraints. Among these methods, the

ROF model [1] relies on the total variation (TV), hence forcing

smoothness while preserving edges. The restored image uTV

is obtained by minimizing the following energy:

uTV = argmin
u∈RN

‖u− g‖2 + λTV(u) (7)
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The term ‖u − g‖2 =
∑

(ui − gi)
2 is a data fidelity term,

TV(u) =
∑

‖(∇u)i‖ is a regularization term and λ > 0 is

the parameter that sets the compromise between data fidelity

and smoothness. A lot of methods have been developed in

order to solve such minimization problems, among which

Chambolle’s algorithm [20], the forward-backward algorithm

[21] or Chambolle-Pock’s algorithm [22].

Adaptation to other noise statistics: formula (7) is well

adapted to Gaussian noise since it can be seen from a Bayesian

point of view as a maximum a posteriori with a data fidelity

corresponding to the log-likelihood, with a TV a priori on

the image. This model can thus be extended to other types of

(uncorrelated) noise with an energy of the following form:

uTV = argmin
u∈RN

−
∑

i∈Ω

log p(gi|ui) + λTV(u) (8)

where p(gi|ui) is the conditional likelihood of the true pixel

value ui given the observation of the noisy value gi.
Discussion: minimizing the total variation forces the

solution to be piece-wise regular, which is well adapted to

denoising while preserving edges. However, a compromise has

to be found between regularity on flat areas and preservation

of textures, based on the choice of the parameter λ. If flat areas

are to be properly denoised, λ needs to be high, so fine textures

tend to be over-smoothed. On the other hand, preserving small

structures requires a smaller λ that will not allow to recover

perfectly the flat areas, resulting in a staircasing effect.

IV. REGULARIZED NL-MEANS (R-NL)

The proposed model combines both the NL-means and the

TV minimization in order to reduce the defaults observed

in each method, in particular the rare patch effect and the

staircasing effect. We perform a TV minimization with a non-

local data fidelity term as follow:

uR-NL = argmin
u∈RN

∑

i∈Ω

∑

j∈Ω

wi,j(gj − ui)
2 + λTV(u). (9)

With non-local weights defined as in Section II and λ = 0,

the solution of (9) is the solution of the NL-means algorithm

presented in (2). With wi,j = δi,j (with δi,j = 1 if i = j, 0

otherwise), we recover the solution of the ROF problem (7).

We can show that problem (9) is equivalent to the following:

argmin
u∈RN

∑

i∈Ω

(∑

j∈Ω

wi,j

)
(ui − (uNL)i)

2
+ λTV(u). (10)

Hence uR-NL can be interpreted as a regular solution fitting

uNL where the sum of the non-local weights is large.

This allows both the NL-means and the TV regularization

to complete each other: on areas where the redundancy is

high (homogeneous areas for example), the NL-means select

many candidates so the sum of the weights is high. In the

energy to minimize, the data fidelity term is then prominent

over the regularization term, so the solution is close to the

NL-means. This provides good smoothing and prevents the

staircasing effect observed on smooth areas when treated with

TV minimization. In singular structures and edges where the

redundancy is low, the NL-means select fewer candidates so

the sum of the weights is low. The regularization term becomes

prominent over the data fidelity term, so it will cost less to

minimize the total variation of the image. The solution tends

to a TV solution, preserving edges while reducing the rare

patch effect.

The method is intuitive since it is based on the strengths and

weaknesses of both the NL-means and the TV minimization.

In Section VI, we will propose a simple implementation, in

a more general framework, derived directly from mixing an

NL-means algorithm with a TV minimization solver.

Figure 1 gives an illustration of solutions obtained by the

R-NL algorithm with the TV minimization and the NL-means.

The corresponding original and noisy images are displayed in

Fig. 3-a) and b). Figure 2 highlights the effect of the adaptive

regularization in R-NL compared to the NL-means and TV.

Figure 2-a) shows a map of the sum of the weights obtained

in the NL-means algorithm. The sum of the weights is high in

flat areas, due to a large number of good candidates. Around

the head of the cameraman, the sum of the weights is lower,

revealing fewer candidates in the averaging process. Figure 2-

b) shows the absolute difference between the result of R-NL

and the one of the NL-means. The influence of the adaptive TV

regularization appears clearly on this image: the regularization

is ineffective where the sum of the weights is high while

it is strongly enforced where NL-means have left residual

noise. Figure 2-c) displays the absolute difference between

the results of R-NL and TV minimization. The difference

is stronger inside the head of the cameraman or inside the

camera, revealing a smoother result on these areas.

V. RELATED APPROACHES: HYBRID NON-LOCAL

VARIATIONAL MODELS

The idea to combine the NL-means to variational methods

or to interpret the NL-means from a variational point of

view has been studied in different approaches [23], [24].

Besides, since the NL-means provide interesting results in

denoising, several authors have adapted the non-local methods

to other problems such as deconvolution, inpainting or super-

resolution [25]–[27]. This has often been achieved through a

minimization framework that relies on non-local properties.

One of the most famous hybrid methods is the non-local

TV (NL-TV) proposed by Gilboa and Osher in [7]. Based on

the work on graph Laplacian of Zhou and Scholkopf [28] and

Bougleux et al. [29], as well as the definition of non-local

regularization terms of Kindermann et al. [8], they define a

non-local gradient as follows:

(∇wu) (x, y) = (u(x)− u(y))
√

w(x, y) (11)

where w(x, y) is the weight that measures the similarity

between x and y. This leads to the definition of a non-local

framework, including the non-local ROF model:

uNL−TV = argmin
u

‖u− g‖2 + λ
∑

i∈Ω

‖(∇wu)i‖ (12)

with
∑

i∈Ω

‖(∇wu)i‖ =
∑

i∈Ω

√∑

j∈Ω

(ui − uj)
2
wi,j .
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TV (PSNR=31.03) NL-means (PSNR=31.04) R-NL (PSNR=31.64)

Fig. 1. Denoising of Gaussian noise. We note the ability of R-NL to reduce both the staircasing effect observed on the cameraman with TV minimization
and the rare patch effect observed on the NL-means around edges while preserving small structures such as the details on the camera.

(a) Map of the weights (b) Diff. between R-NL and NL-means (c) Diff. between R-NL and TV

Fig. 2. a) Map of the sum of the non-local weights computed in the NL-means and b) Absolute difference between R-NL and the NL-means. We can see
that the weights are lower around the edges, resulting from the rare patch effect. This leads to a stronger TV regularization that compensates this rare patch
effect, while no regularization is applied where the weights are higher, preventing the staircasing effect on constant areas. c) Absolute difference between
R-NL and TV. We can see that the difference between R-NL and TV are stronger on the flat areas such as the face of the cameraman or the inside of the
camera. This shows that the staircasing effect is reduced and that smoothness is better respected with R-NL than with TV.

This model has been introduced to deal separately with tex-

tures and smooth areas. It has been adapted to deblurring,

inpainting or compressive sensing [9], [10]. Gilboa and Osher

have also adapted this non-local regularization to non-local

diffusion [30], which offers good denoising results. Figure 3-

c) shows the denoising in the case of Gaussian noise with NL-

TV. We can see that small structures such as the cables and the

writings on the boat are well-preserved while the staircasing

effect is reduced on flat areas, thanks to the adaptive non-local

regularization.

Louchet and Moisan [5] also combine the NL-means with

TV minimization in order to reduce both the rare patch effect

and the staircasing effect. First they adapt the gradient to create

a local filter and they show that their local TV denoising

prevents the staircasing effect. Indeed, on flat areas their filter

can be shown to be close to a blur by a low-pass filter, hence

avoiding the piecewise approximation in these regions. Then

they associate this local TV denoising to the NL-means to deal

with textures and edges. TV minimization tends to attenuate

textures while the NL-means suffer from the rare patch effect.

To overcome theses effects, Louchet and Moisan [5] adapt

the NL-means thanks to local TV minimization: if the NL-

means do not select enough candidates to provide sufficient

denoising, they apply local TV regularization to the patches

to obtain a sufficient number of candidates. On each pixel of

the image TV-means selects the regularization parameter λ
that will guarantee a sufficient number of candidates in the

NL-means process. This amounts to applying adaptive TV

regularization prior to the NL-means in order to ensure that it

will find enough candidates in the averaging process. Besides,

it involves a threshold controlling the level of denoising wished

for. Our idea in the R-NL algorithm actually works the other

way, since we first compute the solution of the NL-means and

apply adaptive TV regularization afterward on the areas that

did not have enough good candidates, based on the sum of the

weights obtained from the NL-means. Figure 3-d) shows some

results of the TV-means algorithm, that can be compared to

the three results presented on Fig. 1. TV-means reduce both

the staircasing effect compared to the TV minimization and

the rare patch effect compared to the NL-means.

NL-means have also been associated to TV minimization

in a super-resolution context. Protter et al. [11] and d’Angelo

and Vandergheynst [12] use a non-local data fidelity term

combined to TV minimization in order to obtain a high-

quality image from a low-resolution image sequence. Their

formulation shows some similarities to our proposed model,

but the philosophy behind it remains quite different. Figure

3-e) illustrates this algorithm in a denoising context. This
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PSNR = 22.11dB PSNR = 22.10dB

a) Original b) Noisy

PSNR=31.58dB PSNR=30.41dB PSNR=31.09dB PSNR=30.00dB

c) NL-TV [7] d) TV-means [5]

PSNR=31.44dB PSNR=29.95dB PSNR=31.64dB PSNR=30.19dB

e) d’Angelo et al. [12] f) R-NL (proposed method)

g) Diff. between NL-means and d’Angelo et al. [12] h) Diff. between NL-means and R-NL

Fig. 3. Denoising of Gaussian noise. From top to bottom, left to right: a) Original and b) noisy images of the Cameraman and the boat, processed with c)
NL-TV, d) TV-means, e) d’Angelo et al. and f) R-NL. g) Difference between the solution of the NL-means and the result of e) and h) Difference between
the solution of the NL-means and the result of f). We observe on these images the ability of each method to combine variational and non-local methods in
order to denoise efficiently while reducing the staircasing effect and the rare patch effect. See text for more details.

amounts to applying TV regularization on the solution of

the NL-means. We can see that the rare patch effect can be

reduced compared to the solution of the NL-means. However,

since the regularization is not adaptive, reducing the rare

patch effect requires using an excessive smoothing resulting

in the loss of small structures. Compared to our model, the

main difference resides in the fact that our weights are not

normalized. In fact, we use this very information to adapt

the TV minimization step to the performance of the NL-

means. The sum of the weights in each pixel reflects the

ability of the NL-means to find good candidates and to denoise

efficiently. Then the TV minimization completes the denoising
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process by smoothing where the NL-means were insufficient

while preserving the good properties of the non-local methods

elsewhere.

Figure 3 shows the results obtained from the different meth-

ods described in this section that combine the NL-means with

TV minimization. We can observe that the NL-TV algorithm

of Gilboa and Osher does effectively preserve fine structures

such as the cables of the boat and it reduces the staircasing

effect, but the flat areas like the sky around the Cameraman’s

head are not as smoothed as in the NL-means for example.

The TV-means algorithm also reduces the staircasing effect

and offers smoother areas than NL-TV, but at the cost of a

stronger rare patch effect. The method based on the super-

resolution algorithm of d’Angelo et al. reduces the rare patch

effect of the NL-means thanks to the TV-regularization, but

the compromise is hard to find: for example, the cables of

the boat tend to be over-smoothed if the residual noise on the

writings is to be efficiently removed. R-NL offers a simple

way to deal with this compromise, thanks to the sum of the

non-normalized weights that acts as a measure of confidence in

the denoising performed by the NL-means. To illustrate further

the difference of philosophy between our R-NL method and

the algorithm derived from the super-resolution context [12],

Fig. 3-g) displays the difference between the solution of the

NL-means and the solution of the algorithm derived from [12],

while Fig. 3-h) displays the difference between the solution

of the NL-means and the solution of our R-NL algorithm. We

can observe on Fig. 3-g) that the standard TV regularization

applied on the solution of the NL-means smooths the image all

over, while the adaptive TV regularization performed in the R-

NL method works only on edges and singular structures, based

on the confidence in the NL-means provided by the sum of

the weights.

VI. R-NL FOR THE EXPONENTIAL FAMILY

Both TV and NL-means are robust to different kind of

noises thanks to possible adaptations described in Sections II

and III. The proposed model can then be extended to other

types of (uncorrelated) noise with a weighted data fidelity

of the form −
∑∑

wi,j log p(gj |ui), following the idea in

[16], and with weights adapted as presented in Section II. This

extended model can be solved efficiently in the general case of

the exponential family that includes additive white Gaussian

noise, Poisson noise and some multiplicative noises that are

encountered frequently in image processing problems such as

medical imaging, astronomy, remote sensing applications, etc.

A probability law belongs to the exponential family [31] if it

can be written under the following form:

p(g|u) = h(g) exp(η(u)T (g)−A(u)) (13)

where h, T , η and A are known functions. The extended model

is the following:

uR-NL = argmin
u∈RN

∑

i∈Ω

ZiA(ui)− η(ui)µi + λTV(u)

with Zi =
∑

j∈Ω

wi,j and µi =
∑

j∈Ω

wi,jT (gj). (14)

Algorithm 1 R-NL

Require: g: noisy input image,

h: filtering parameter

|P |: patch size

N : size and shape of the search neighborhood

λ: regularization parameter

NL-means step

Computation of the weights:

for i ∈ Ω, j ∈ N (i) do

Compute wi,j = ϕ
(
−d(g(Pi),g(Pj))

2|P |h2

)

end for

return

Z =
(∑

j∈N (i) wi,j

)

i∈Ω

µ =
(∑

j∈N (i) wi,jT (gj)
)

i∈Ω

Minimization step

Minimize

uR-NL = argmin
u

∑

i∈Ω

ZiA(ui)− η(ui)µi + λTV(u)

return uR-NL

As in the Gaussian case, it can also be reformulated with a

weighted NL-means based fidelity term:

uR-NL = argmin
u∈RN

−
∑

i∈Ω

Zi log p ((uNL)i|ui)+λTV(u) (15)

where Lw(ui) = −Zi log p ((uNL)i|ui) is the weighted log-

likelihood and µ and Z can be calculated with a quick

implementation of the NL-means. We refer the interested

reader to [32] for a more complete description of a fast way to

compute the weights. Then the minimization step is achieved

thanks to standard minimization algorithms, depending on the

type of noise involved. A general implementation of the R-NL

algorithm is given in Algorithm 1. More details regarding the

minimization step will be given in the following subsections,

according to the type of noise involved.

A. Gaussian case

The standard Gaussian model is given in Section IV,

equation (9). A lot of methods exist to solve this sort of

problem. We have chosen to use Chambolle-Pock’s algorithm

[22], whose details are given in Algorithm 2. This method

deals with minimization problems of the following form:

min
u

F (Ku) +G(u) (16)

that can be re-written in a primal-dual form:

min
u

max
y

〈Ku, y〉 − F ∗(y) +G(u) (17)

More details regarding convex analysis are given in appendix

A. In this case, the function G is the weighted fidelity term, ie

the weighted log-likelihood Lw(ui), and the function F (Ku)
is the total variation ‖∇u‖1, ie F = ‖.‖1 and K = ∇.
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Algorithm 2 Chambolle-Pock algorithm [22]

Initialization: choose τ , σ > 0
u0 = µ

Z
the result of the NL-means step

y0 = ∇u0, u0 = u0

Iterations (k ≥ 0):




yk+1 = (I + σ∂F ∗)
−1

(yk + σ∇uk)

uk+1 = (I + τ∂Lw)
−1

(uk + τ∇∗yk+1)
uk+1 = 2uk+1 − uk

Note that in Algorithm 2, ∇∗ refers to the adjoint of the

gradient, so ∇∗ = −div, and the terms (I + σ∂F ∗)
−1

and

(I + τ∂Lw)
−1

are the proximal operators associated to the

functions F ∗ and Lw. It is easy to check as in [22] that the

proximal operator of F ∗ is a soft thresholding and we have:

y = (I + σ∂F ∗)
−1

(ỹ) ⇔ yi =
ỹi

max(1, |ỹi|)
. (18)

We can also show that [22]:

u = (I + τ∂Lw)
−1

(ũ) ⇔ ui =
ũi + 2τZi(uNL)i

1 + 2τZi

. (19)

B. Poisson case

Poisson noise is also of particular interest since it occurs

often in medical imaging or night vision where the number

of photons is limited. The probability of the observed (in-

teger) intensity g according to the true value f is given by

p(g|f) = fg

g! exp(−f), where g and v are both non-negative.

The negative log-likelihood writes L(g) = f −g log f +log g!
and the problem becomes:

uR-NL = argmin
u≥0

∑

i∈Ω

Ziui − µi log(ui) + λTV(u). (20)

This functional is strictly convex, so the uniqueness of the

solution is guaranteed. However, the data fidelity term is

not differentiable, so we cannot use the forward-backward

algorithm. One solution would be to regularize the fidelity term

(ie the logarithm). Instead, we use the primal-dual algorithm

adapted to the Poisson case. Its general form is the one

presented in Algorithm 2, and Anthoine et al. have determined

explicitly the proximal operators required in Chambolle-Pock’s

algorithm in [33]:

u = (I + τ∂Lw)
−1

(ũ) ⇔ (21)

ui =





1
2

(
ũi − τZi +

√
(ũi − τZi)

2
+ 4τZi(uNL)i

)

if (uNL)i > 0,
max(ũi − τZi, 0) otherwise

C. Gamma case

We also focus on gamma multiplicative noise encountered

for example in remote sensing applications in the form of

speckle noise. The likelihood law is given by p(g|v) =
LLgL−1

Γ(L)vL exp(−Lg
v
), so the negative log-likelihood is given by

L(g|v) = Lg
v
+L log v+ log(Γ(L))−L logL− (L− 1) log g.

Algorithm 3 FB algorithm [21]

Initialization: choose u0 = µ
Z

and γ > 0
Iterations (k ≥ 0):

uk+1 = (I + γ∂F )
−1

(uk − γ∇Lw(uk))

Keeping only the terms that are involved in the minimization

step, the problem becomes:

uR-NL = argmin
u>0

∑

i∈Ω

Zi log(ui) +
µi

ui

+ λTV(u) (22)

This functional is not convex, so there is no guarantee as

to the existence of a unique minimizer. However, we can

show that a minimization algorithm will converge towards

a stationary point [34]. Since we initialize the algorithm to

the solution of the NL-means, it is reasonable to believe

that the solution will be close to the global one. We cannot

use Chambolle Pock’s algorithm since the proximal operator

derived from the data-fidelity term is not easy to compute.

However, the data fidelity term is differentiable so we can

use the forward-backward algorithm [35]. Its purpose is to

minimize the following problem:

min
u

F (u) +G(u), (23)

where G needs to be differentiable with ∇G 1/β-Lipschitz

and F simple, meaning that its proximal operator is easy to

compute. In the present case, G is the data-fidelity term Lw,

and F is the total variation. The algorithm is described in

Algorithm 3. Some accelerations such as the FISTA algorithm

[36] can also be used, or a generalized version GFB [37]

that allows to deal with n functions. In this algorithm, we

cannot compute directly the proximal operator of the total

variation (I + γ∂F )
−1

, so we have to proceed to an inner

loop that will calculate iteratively this proximal operator. The

calculation of this proximal operator is achieved through a

forward-backward algorithm or its fast version FISTA [38].

Figures 1, 4 and 5 compare the R-NL algorithm with the

TV minimization and the NL-means on 512 × 512 images in

[0, 255]. In the Gaussian case, Gaussian noise with standard

deviation σ = 20 has been added. In the Poisson and gamma

case, Poisson noise and gamma noise have been applied

respectively to the original images with a noise level set in

order to achieve a PSNR of 22dB.

VII. VIDEO DENOISING USING THE R-NL ALGORITHM

The NL-means have been adapted in [39] to video

denoising, so we would like to adapt our algorithm R-NL

to video denoising as well, in order to bring the same

advantages. The temporal NL-means achieve spatio-temporal

filtering without prior motion-compensation. Indeed, motion

estimation is a difficult task that may be nearly impossible

to solve in constant areas where the aperture problem is too

high. Buades et al. have shown that motion compensation

is in fact counter-productive in this case: in image sequence

denoising, the NL-means use a 3D neighborhood whose third

dimension corresponds to the temporal frames. Adding motion
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Noisy (PSNR=21.32) Poisson-TV (PSNR=30.03) Poisson-NL-means (PSNR=30.41) R-NL (PSNR=31.27)

Noisy (PSNR=20.50) TV (PSNR=28.75) NL-means (PSNR=28.94) R-NL (PSNR=29.43)

Fig. 4. Denoising of Poisson noise. Small structures such as the writing and the cables of the boat are better preserved with R-NL, while denoising is better
achieved on the edges than with NL-means.

Noisy (PSNR=22.04) Gamma-TV (PSNR=30.79) Gamma-NL-means (PSNR=31.09) R-NL (PSNR=31.80)

Noisy (PSNR=20.75) TV (PSNR=29.18) NL-means (PSNR=29.34) R-NL (PSNR=29.62)

Fig. 5. Denoising of Gamma noise. We observe on the NL-means some residual noise around the face of the cameraman or the writings on the boat, corrected
by TV regularization on the R-NL results. The smoother areas are correctly treated by the NL-means, so we do not observe the staircasing effect associated
to TV denoising.

compensation reduces the number of eligible candidates,

when in the contrary in NL-means the more the merrier.

In the R-NL algorithm, the quantities µ and Z are thus

easy to compute in the spatio-temporal domain. However,

the TV regularization cannot be performed in the temporal

domain without prior motion compensation, so we apply

the regularization spatially only. Hence the R-NL algorithm

on image sequences consists in spatio-temporal NL-means

followed by spatial TV regularization.

However, on both NL-means and R-NL, if a small number
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TABLE I
PARAMETERS USED FOR IMAGE AND VIDEO DENOISING ACCORDING TO

THE TYPE OF NOISE INVOLVED

Gaussian Poisson gamma
Image denoising

Patch size 7
Search window 13

Filtering parameter 2 0.06 0.015
Regularization parameter λ 7 0.06 0.004

Video denoising
Spatial patch size 7

Spatial search window 7
Temporal patch size 5

Temporal search window 9
Filtering parameter 0.6 0.025 0.004

Regularization parameter λ 8 0.04 0.005

of frames is used to compute the solution (which is often the

case in order to lower the computational costs), no temporal

regularity is guaranteed. Indeed, motion compensation is based

on the Lambertian assumption that stipulates that a pixel

has the same gray level during its whole trajectory, forcing

a temporal regularity. In the case of the NL-means, such a

hypothesis is not verified, so a pixel value may change from

one frame to another. This results in a glittering effect when

looking at the video, even though it is not perceptible when

looking at only one frame or at the PSNR. Such a phenomenon

is not harmful when the whole image is in motion, but when

only a part of the image in the video is in motion while the

rest is static, the glittering effect appears like an undesirable

consequence of the estimation variability.

To reduce this effect, we use 3D patches instead of 2D

patches. Indeed, in the original version on the NL-means,

Buades et al. compute patches in the current image (in 2D)

and compare them to 2D patches in a 3D spatio-temporal

search zone. This does not force regularity from one frame to

another, resulting in the glittering effect. Thus, we compute 3D

patches that compare spatio-temporal neighborhoods in order

to force temporal consistency, as in [14]. In the NL-means-

3D alone, the use of three-dimensional patches favors the rare

patch effect since candidates are harder to find. But using TV

regularization afterward balances this drawback, resulting in a

more stable video without residual noise or glittering effect.

VIII. RESULTS AND DISCUSSION

A. Parameters

The parameters in the different algorithms described below

have been optimized in order to offer the best possible results

on a set of images or video sequences. The patch size and

window size of the NL-means have been maintained but the

filtering parameter h and the regularization parameter λ of the

TV regularization are set according to the type of noise. Table

I displays the parameters used for image or video denoising,

depending on the type of noise.

B. Image denoising

We present here some numerical results to compare our

R-NL algorithm to other approaches relying on non-local

and/or variational methods. We can see in Table II that

TABLE II
PSNR VALUES OF DENOISED IMAGES USING DIFFERENT METHODS FOR

IMAGES CORRUPTED BY ADDITIVE WHITE GAUSSIAN NOISE, POISSON

NOISE AND GAMMA NOISE.

Cameraman Boat Lena
Gaussian noise, σ = 20

Noisy image 22.11 22.10 22.13
TV [1] 31.28 29.42 30.19

NL-means [2] 31.04 29.79 30.94
TV-means [5] 31.09 30.00 31.35

NL-TV [7] 31.58 30.41 31.44

Non-adaptive R-NL [12] 31.43 29.95 31.11
R-NL 31.64 30.19 31.36

BM3D [40] 32.91 31.42 32.34

Poisson noise
Noisy image 21.32 20.50 21.51

Poisson-TV [33] 30.76 28.61 30.24
Poisson-NL-means [18] 30.41 28.94 30.76

Non-adaptive R-NL 31.19 29.12 31.33
R-NL 31.27 29.43 31.36

Anscombe+BM3D [41] 32.60 30.72 32.55

Gamma noise
Noisy image 22.04 20.75 22.50

Gamma-TV [34] 30.79 28.10 29.20
Gamma-NL-means 31.09 29.34 31.66
Non-adaptive R-NL 31.27 28.82 31.75

R-NL 31.81 29.62 32.22

log+BM3D [42], [43] 33.24 31.14 33.41

these methods do provide an increase in PSNR compared

to the NL-means or the TV minimization, that confirm the

visual observations from Figures 1 and 3. In the case of

Poisson or gamma noise, we did not include the TV-means

or the NL-TV algorithms since they apply only directly to

Gaussian noise. Table II illustrates also the benefit of our

adaptive regularization (ie using non-normalized weights)

compared to the non-adaptive model of d’Angelo et al. [12].

Extensions of their model to Poisson and gamma noise

have also been included under the name of Non-adaptive

R-NL. We have furthermore added in this table the results

obtained with BM3D [40] in the case of Gaussian noise,

and with BM3D applied after variance stabilization using

Anscombe transform in the case of Poisson noise [41] and

logarithm transform in the case of gamma noise [41]. Since

the main goal of this article is to offer an improvement to

the NL-means through an interpretation of the sum of the

weights as a measure of confidence, we do not claim to

offer a better PSNR than BM3D, but we do offer an intuitive

interpretation along with a simple and general implementation.

C. Video restoration

We also study here the behavior of our proposed method to

video denoising, on three image sequences: target, tennis and

bicycle. The original, noisy and denoised videos are available

for download1. Table III displays the mean PSNR of the

denoised videos using the standard NL-means adapted to video

denoising (NL-means 2D), the R-NL algorithm adapted to

video denoising (R-NL 2D), the NL-means algorithm with

3-dimensional patches (NL-means 3D), the R-NL algorithm

with 3-dimensional patches (R-NL 3D) and the state-of-the-art

1http://www.math.u-bordeaux1.fr/∼csutour/R-NL/
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TABLE III
MEAN PSNRS ON DENOISED SEQUENCES WITH NL-MEANS AND R-NL
USING 2D PATCHES, NL-MEANS AND R-NL USING 3D PATCHES, AND

V-BM3D.

Target Tennis Bicycle

NL-means 2D [39] 29.91 29.31 30.77
R-NL-2D 30.00 29.65 31.72

NL-means 3D 32.02 29.06 29.30
R-NL-3D 32.12 29.93 31.06

V-BM3D [44] 30.21 29.79 32.92

TABLE IV
TEMPORAL STANDARD DEVIATION ON DENOISED SEQUENCES WITH

NL-MEANS AND R-NL USING 2D PATCHES, NL-MEANS AND R-NL USING

3D PATCHES, AND V-BM3D.

Target Tennis Tennis Bicycle
(1-24) (90-148)

NL-means 2D [39] 5.46 4.27 4.69 2.02
R-NL-2D 4.94 3.65 4.11 1.89

NL-means 3D 4.50 5.13 4.82 1.39
R-NL-3D 3.98 3.56 3.91 1.29

V-BM3D [44] 5.25 3.66 4.60 1.76

video denoising algorithm V-BM3D [44]. We can see that our

results with the proposed R-NL method with 3 dimensional

patches are quite competitive.

We can also show that the video-R-NL algorithm enforces

temporal consistency thanks to the use of three-dimensional

patches, while limiting the rare patch effect thanks to the

adaptive spatial TV regularization. We measure temporal vari-

ance on different image sequences in order to illustrate the

Lambertian assumption: on areas that do not move during a

part of the sequence, the pixel value should be unchanged

from one frame to another, so the temporal standard deviation

should be close to zero. Based on the ground truth of the

original sequences, we can select areas that do not vary with

time and then calculate the standard deviation obtained on the

different denoised versions. Table IV displays the standard

deviation computed on such constant areas on the denoised

versions of the same three image sequences.

Based on Table IV, we can see that temporal stability is best

guaranteed with R-NL-3D, and that the TV regularization cor-

rects some of the glittering effect, compared to the associated

NL-means algorithm. Besides, we note that this measurement

enlightens two effects: on spatially flat areas, the glittering

effect is the main default so a higher standard deviation reflects

this phenomenon, observed in particular with the NL-means-

2D but also V-BM3D. Around edges, if they are supposed

to be stable in time, the rare patch effect is also responsible

for an increase in temporal standard deviation due to the

presence of residual noise. The standard deviation reflects

both the glittering effect and the rare patch effect. This is

the reason why the standard NL-means offer a lower variance

than the NL-means-3D : the rare patch effect is stronger with

3D patches due to the difficulty to compare bigger patches.

IX. CONCLUSION

In this paper, we have presented a new approach that

combines the NL-means with TV regularization. We use a

weighted non-local data-fidelity term, whose magnitude is

driven by the sum of the weights computed in the NL-means.

This sum of the weights offers a measure of confidence

in the denoising performed by the NL-means, and the TV

regularization is automatically adapted according to this value.

This leads to a flexible algorithm that locally uses both the

redundant and smooth properties of the images while offering

a reduction of the rare patch and staircasing effects that occur

respectively in NL-means and TV minimization.

The proposed model has an intuitive interpretation that can

be generalized to different noise statistics. Moreover, we have

shown that a solution can be achieved quite simply for types

of noises belonging to the exponential family.

We also propose an extension to video denoising that

does not need motion estimation. The method offers good

performances and guarantees temporal stability thanks to the

use of three-dimensional patches.

While we have developed our regularized NL-means based

on TV regularization, our model naturally extends to other

regularization terms adapted to different image priors. Investi-

gating such regularizations is the topic of future work. Besides,

we have focused only on the non-local weights provided by

NL-means. Beyond non-local denoising, we could also extend

this model to other types of algorithms based on weighted

averages, hence extending the applicability of this model to a

lot of other potential problems.

APPENDIX A

CONVEX ANALYSIS

We give here some elements of convex analysis. We refer

to [45] for a complete review on the subject.

Let X be a Hilbert space C a closed convex subset of X .

Γ0 is the space of functions X →]−∞,+∞], that are convex,

proper and lower semi-continuous.

Legendre-Fenchel conjugate

We define the Legendre-Fenchel conjugate of ϕ ∈ Γ0 by :

ϕ∗(u) = sup
x
〈u, x〉 − ϕ(x) (24)

We have the following propositions :

Proposition 1: ϕ∗∗ = ϕ∀ϕ ∈ Γ0

Proposition 2: If ϕ ∈ Γ0 is one-homogeneous, that is if

ϕ(λu) = λϕ(u) ∀λ > 0, then:

ϕ∗(v) = χK(v) =

{
0 if v ∈ K

+∞ otherwise

where K is a closed convex set, and we have the Legendre-

Fenchel relationship:

ϕ(x) = ϕ∗∗(x) = sup
u
〈u, x〉 − ϕ∗(u) = sup

u∈K

〈u, x〉

Sub-gradient

The sub-gradient of ϕ ∈ Γ0 is given by:

∂ϕ(x) = {u ∈ X , ∀y ∈ X , 〈y − x, u〉+ ϕ(x) ≤ ϕ(y)}

= {u ∈ X , ϕ∗(u) + ϕ(x) ≤ 〈x, u〉}

We have the following propositions:

Proposition 3: x ∈ inf ϕ ⇔ 0 ∈ ∂ϕ(x)
Proposition 4: ∀ϕ ∈ Γ0, u ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(u).
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Proximal operator

The proximal operator of ϕ ∈ Γ0 is defined as:

proxγϕx = argminyϕ(y) +
1

2γ
‖x− y‖2 (25)

We have the following proposition:

x− proxγϕx ∈ γ∂ϕ
(
proxγϕx

)
(26)

that we write:

proxγϕx = (I + γ∂ϕ)
−1

(x) (27)

Using the dual problem, we can show Moreau’s identity:

x = (I + γ∂ϕ)
−1

(x) + γ

(
I +

1

γ
∂ϕ∗

)−1

(
x

γ
) (28)

Forward-backward algorithm

The forward-backward algorithm [35] is a minimization

method that solves problems of the form:

min
u

F (u) +G(u) (29)

with F,G ∈ Γ0, with G differentiable, and ∇G 1/β-Lipschitz.

This leads to an iterative resolution:

xn+1 = proxγnF
(xn − γn∇G(xn))

= (I + γn∂F )
−1

(xn − γn∇G(xn)) . (30)

This algorithm is performed, in two steps:

1) Forward (explicit) step:

yn = xn − γn∇G(xn)
2) Backward (implicit) step:

xn+1 = proxγnF
(yn)

The parameter γ needs to verify the condition γ ≤ β where

1/β is the Lipschitz constant of ∇G.

Chambolle-Pock’s algorithm

Chambolle-Pock’s algorithm [22] minimizes problems of

the form

min
x

F (Kx) +G(x). (31)

with F,G ∈ Γ0. We can derive a primal-dual iterative

resolution scheme in two steps:

1) Dual step : maximization on y

yn+1 = (I + σ∂F ∗)
−1

(yn + σKx) (32)

2) Primal step : minimization on x

xn+1 = (I + τ∂G)
−1 (

xn − τK∗yn+1
)

(33)

3) xn+1 = xn+1 + θ
(
xn+1 − xn

)
with θ ∈ [0, 1]
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[9] G. Peyré, S. Bougleux, and L. D. Cohen, “Non-local regularization of
inverse problems,” Inverse Problems and Imaging, vol. 5, no. 2, pp.
511–530, 2011.

[10] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized non-
local regularization for deconvolution and sparse reconstruction,” SIAM

Journal Imaging Sciences, vol. 3(3), pp. 253–276, 2010.

[11] M. Protter, M. Elad, H. Takeda, and P. Milanfar, “Generalizing the non-
local means to super-resolution reconstruction,” IEEE Transactions on

image processing, vol. 18(1):36-51, 2009.

[12] E. d’Angelo and P. Vandergheynst, “Fully non-local super-resolution via
spectral hashing,” IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 1137–1140, 2011.

[13] A. Buades, B. Coll, and J.-M. Morel, “Denoising image sequences does
not require motion compensation,” Proc. IEEE Conf. Advanced Video

and Signal based Surveillance, pp. 70–74, 2005.

[14] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE Transactions on pattern analysis and machine intelligence,
vol. 29(3):463-476, March 2007.

[15] B. Goossens, H. Luong, A. Pizurica, and W. Philips, “An improved non-
local denoising algorithm,” Local and non-local approximation (LNLA),
pp. 143–156, 2008.

[16] J. Polzehl and V. Spokoiny, “Propagation-separation approach for local
likelihood estimation,” Probability Theory and Related Fields, vol. 135,
no. 3, pp. 335–362, 2006.

[17] C.-A. Deledalle, L. Denis, and F. Tupin, “Iterative weighted maximum
likelihood denoising with probabilistic patch-based weights,” IEEE

Trans. on Image Processing, vol. 18(12):2661-2672, 2009.

[18] ——, “How to compare noisy patches ? patch similarity beyond gaussian
noise,” International Journal of Computer Vision, vol. 99(1):86-102,
2012.

[19] V. Duval, J.-F. Aujol, and Y. Gousseau, “A biais-variance approach for
the non-local means,” SIAM Journal on Imaging Sciences, vol. 4(2):760-
788, 2011.

[20] A. Chambolle, “An algorithm for total variation minimization and
applications,” Journal of Mathematical Imaging and Vision, vol. 20:89-
97, 2004.

[21] P. Combettes and J. Pesquet, “Proximal splitting methods in signal
processing,” January 2010.

[22] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathematical

Imaging and Vision, vol. 40(1):120-145, 2011.

[23] S. P. Awate and R. T. Whitaker, “Unsupervised, information-theoretic,
adaptive image filtering for image restoration,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 28, no. 3, pp. 364–
376, 2006.

[24] T. Brox and D. Cremers, “Iterated nonlocal means for texture restora-
tion,” in Scale Space and Variationnal Methods in Computer Vision, vol.
4485. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
2007, pp. 13–24.

[25] A. Buades, B. Coll, and J.-M. Morel, “Image enhancement by non-
local reverse heat equation,” Technical report 22, CMLA, ENS-Cachan,

Cachan, France, 2006.



ADAPTIVE REGULARIZATION OF THE NL-MEANS: APPLICATION TO IMAGE AND VIDEO DENOISING 12

[26] M. Mignotte, “A non-local regularization strategy for image deconvolu-
tion,” Pattern recognition letters, vol. 29, pp. 2206–2212, 2008.

[27] P. Arias, V. Caselles, and G. Facciolo, “Analysis of a variational
framework for exemplar-based image inpainting,” Multiscale Modeling

& Simulation, vol. 10, no. 2, pp. 473–514, 2012.
[28] D. Zhou and B. Scholkopf, “A regularization framework for learning

from graph data,” Workshop on Statistical Relational Learning and its

Connections to other fields, 2004.
[29] S. Bougleux, A. Elmoataz, and M. Melkemi, “Discrete regularization

on weighted graphs for image and mesh filtering,” in 1st International

Conference on Scale Space and Variationnal Methods in Computer

Vision (SSVM), vol. 4485. Lecture Notes in Computer Science, 2007,
pp. 128–139.

[30] G. Gilboa and S. Osher, “Nonlocal linear image regularization and
supervised segmentation,” SIAM Multiscale Modeling and Simulation,
vol. 6(2):595-630, 2007.

[31] M. Collins, S. Dasgupta, and R. E. Schapire, “A generalization of
principal components analysis to the exponential family,” NIPS, pp.
617–624, 2002.

[32] J. Darbon, A.Cunha, T. Chan, S. Osher, and G. Jensen, “Fast non-local
filtering applied to electron cryomicroscopy,” IEEE Int. Symposium on

Biomedical Imaging (ISBI), pp. 1331–1334, 2008.
[33] S. Anthoine, J.-F. Aujol, Y. Boursier, and C. Mélot, “Some proximal
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