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   Abstract- Single Event Upset (SEU) is a major concern for 
SRAM-based FPGAs where a simple bit-flip can lead to an 
abnormal execution. We present in this paper, a new fault tolerance 
method based on hardware BER (Backward Error Recovery) to 
protect/correct system against the occurrence of transient faults. 
We use the partial dynamic reconfiguration offered by Xilinx 
Virtex-5 FPGAs to ensure hardware checkpoint and upon detection 
of fault we use recovery. Our method has several advantages: first it 
is non-intrusive (no internal modification of hardware modules of 
the system), second it is not based on redundant hardware 
resources (like most methods in the literature), and finally it has a 
static area overhead ratio when applied to a system. To validate our 
approach, we implemented it on a Xilinx platform based on a 
Partial Reconfigurable Region (PRR). 
 
Index Terms- Fault tolerance, Checkpoint, Recovery, SRAM-based 
FPGAs, partial dynamic reconfiguration, readback. 
 

I.    INTRODUCTION 
 
   Modern FPGAs have reached a level of flexibility that can 
perform switching functionalities, on-line update and even 
environmental adaptability through partial dynamically 
reconfiguration; which is the ability to change the 
functionality of a portion of the chip without halting the rest of 
the FPGA [1, 2]. Furthermore, these FPGAs are no longer 
considered as only prototyping platform but also as execution 
platform, which lead to conduct new researches to enhance the 
execution of FPGA-based systems [3-5] through this ability. 

   To achieve this flexibility, SRAM-based FPGAs are 
composed of two distinct levels. A Configuration level, 
formed by a number of SRAM cells holding configuration 
data called Bitstream. This level controls the behavior of a 
Resources level, which is a distribution of basic elements: 
look-up-tables, flip-flops, multiplexers and dedicated blocks, 
all interconnected by configurable routing matrixes. While this 
type of platform joins between the flexibility of software 
implementation (processors for example) and high 
performance of application-specific integrated circuit (ASIC), 
it could introduce, depending on their running environment, an 
undesirable behavior at execution time. Radiation, ionization, 
extreme temperature variation and power fluctuation can 
affect the correct execution of FPGA-based system and lead to 
abnormal and erroneous results. A convenient solution for 
such harsh conditions is the use of radiation-hardened devices 
[6], where their internal structure offers a more reliable 
platform. Despite the improvement of reliability, these devices 

still lack a lot of features that are already available on SRAM-
based FPGAs, like reconfiguration, high performance/density 
and low cost. 

   To benefit from the available SRAM-based FPGAs features, 
a number of fault tolerant techniques must be incorporated 
within the execution platform to enhance the overall reliability 
of the system. Among these methods, redundancy (Triple 
Modular Redundancy TMR [7], Duplication With Comparison 
DWC [8]) is one of the most simple and effective technique 
used in hardware to tolerate faults on FPGAs. Unfortunately 
these methods have some major drawbacks like: 
area/resources overhead, maximum frequency reduction, and 
huge increase of power consumption. 

   In this paper, we are seeking for an alternative approach for 
fault tolerance that is based on the mechanism of saving  fault-
free states of a running module and the mechanism of re-
executing  one of these saved states in case of an error 
detection. These two mechanisms are known as checkpoint 
and recovery. Formally, we investigate the feasibility to 
perform a checkpoint/recovery of hardware modules on FPGA 
platform. We validate this fault tolerant method on Xilinx 
FPGAs (Virtex-5 family) with respect to the following 
objectives. 

• No modifications of internal structure of the module 
• Take advantage of partial dynamic reconfiguration 

features 

   The rest of this paper is organized as follows. Section II 
covers faults tolerance methods proposed for SRAM-based 
FPGAs followed by the adopted fault model and the target 
device. Section III details each part of our backward error 
recovery and metrics definitions. An overview of the 
experimental platform based on a MicroBlaze is presented in 
Section IV. Finally, we conclude this paper and present some 
future works in Section V. 

 
II.    BACKGROUND AND RELATED WORK 

 
A.   Fault Tolerance Methods 
 
   Many investigations for fault mitigation on FPGAs have 
been conducted by researchers to enhance the reliability of 
SRAM-based FPGAs; a great number of them are based on 
the use of redundancy [9]. When redundancy is used, a 
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number of instances of the same module are added to the 
design and the results are compared by the mean of a voter to 
check the occurrence of faults. In the case of mismatched 
results the voter masks it and propagates the majority results. 
At the same time, the faulty instance can be corrected in the 
background if needed. One of the most known redundancy 
method in ASIC/FPGA is the Triple Module Redundancy 
(TMR) [7]. Such a method is formally proven to deal with any 
type of faults without any latency on one of these instances at 
the same time, but produces a heavy overhead in term of 
resource utilization (area), power consumption and speed 
diminution. 

   Some recent works were proposed to reduce the overhead 
generated by the TMR strategy. In [10], the authors proposed 
an online adaptive fault tolerant method relying on the partial 
reconfigurable region (PRR) feature and combined with 
different levels of redundancy. Depending on the level of 
space radiation and orbital position, a controller choses 
between five different modes of reliability to achieve better 
resources utilization and power saving. Sullivan et al. make a 
comparison between TMR and Reduced Precision 
Redundancy (RPR) in [11], and found that the RPR approach 
can be a practical alternative method for protecting arithmetic 
operations with an acceptable loss of precision on the result if 
a fault occurs. 

   Reconfiguration capability can be used alone to avoid 
redundancy in the form of configuration scrubbing [12], 
which involves a periodic complete or partial rewrite of initial 
bitstream to eliminate any eventual bit upset on the 
configuration layer [13]. This operation is performed by 
periodically retrieving the configuration data (bitstream) from 
a Golden memory (supposed to be less sensitive to faults 
compared to SRAM memory) and writes it via an access port 
to the configuration layer. Scrubbing method is merely based 
on statistical analyses of the execution environment, where the 
scrubber must always works at a rate higher than the one of 
faults occurrences. This method is adapted for environment 
with well-known rate of fault occurrences. 

   Information redundancy is another fault mitigation technique 
and can be a good choice to enhance the reliability of SRAM-
based FPGAs. By using Error Detection and Correction 
Codes (EDAC codes) the configuration layer can be protected 
against possible bit inversion. Extended hamming code is a 
well-known EDAC code to protect memory-based system; but 
it can achieve only single error correction and double error 
detection (SECDED) [14]. An online single event upset 
controller is provided by Xilinx to detect and correct faults on 
the configuration memory and is detailed in [15]. The parity 
bits are calculated offline and stored in the configuration 
memory, later the controller will periodically check if an error 
occurred. Despite the fact that this controller is quite simple 
and has a small area overhead, it can be harmful for the 
protected system because if an odd number of faults occur and 
are greater than two then hamming syndrome will state that 
only one fault has occurred and will calculate a wrong bit 
position which leads to the introduction of more faults on the 

system. In [16] authors present a fault injection campaign and 
results that confirm this problem and point out that the system 
still contains at the end of injection a significant number of 
configuration bit errors. 

   Checkpoint/Recovery is an effective methodology for faults 
mitigation in processor based computing systems; the 
mechanism is widely used to protect scientific computation, 
critical applications and distributed systems from potential 
loss of calculations and system failure for many years. 
Checkpoint is the operation of saving all the necessary 
information of an application, called context, so it can be 
restarted later from that moment, and Recovery is the opposite 
operation where this information are written back to the 
executive platform, so the application can resume its 
computation from a fault-free state. 

   When it comes to FPGA based systems, this concept may at 
first seem to be inappropriate for such platform and 
furthermore not supported natively. The few studies we have 
found working with hardware checkpoint/recovery involve a 
deep transformation of the target module. In [17], three 
variants of hardware checkpoint are presented, each one 
introduces additional circuitries to retrieve the context of the 
hardware module. A tool was proposed to automatically 
transform the hardware module and introduce the additional 
access logics to the state of the module. These modifications 
are based on a set of netlist primitives substitution performed 
automatically. The main drawback is the alteration of the 
hardware module which can introduce design faults and 
performances degradation. Another  work, presented in [18], 
investigates the integration of software and hardware 
checkpoint on a FPGA based cluster application. An interface 
to each hardware accelerator core (hardware module) is added 
to allow the access to the state of internal resources and by the 
way support the hardware checkpoint; this work is also based 
on an automatic transformation approach but applied at the 
VHDL level, which imposes certain constraints on the source 
code (must be described like an FSM) and a specific interface. 

   From our point of view, a modification approach is not 
always feasible or can induce a long time to apply on an 
existing system (even if it is automatically applied). Because 
of this, we explore the possibility of using actual FPGAs 
capabilities which provide partial dynamic reconfiguration to 
construct a checkpoint with no modification of the modules (a 
little modification/addition between the system’s modules can 
be tolerated). 

 
B.   Fault Model 
 
   Faults are classified into two main categories: permanent 
faults and transient faults [19]. The first category includes the 
ones which produce a persistent erroneous behavior of the 
system. The only way to correct the affected part is to perform 
a system reboot or in extreme case a replacement of erroneous 
part with another correct instance. This type of fault is mostly 
induced by physical damage of the internal elements and leads 
to the alteration of elements, like for example a flip-flop which 



stuck at a same state. Also, a long period of usage can leads to 
the same consequences. In all case a physical intervention is 
needed and shutdown of the system must be performed. On 
the contrary, the second category regroups faults which 
generate an erroneous behavior for a brief interval of time and 
disappear. If this type of fault hits the operative layer, a simple 
re-computation of the affected calculation is performed, while 
if it hits the configuration layer, a reconfiguration of the 
functionality is carried out to correct the system. 

   Mostly, SRAM-based FPGAs are more sensitive to transient 
faults than permanent ones. For example a simple ionized 
particle can hit the SRAM layer and leads to a bit-flip which 
can produce an erroneous behavior in the system at runtime. 
Another example of source for transient faults in SRAM is the 
voltage variation which could lead to abnormal operation of 
SRAM cells and introduction of faults.  
   The work presented here focuses on the correction of 
transient faults occurring at the SRAM layer of the FPGA and 
can lead to an erroneous behavior of the resource layer. Also 
we don’t make distinction between a fault on a user data cell 
or on a configuration cell. We consider a fault as simple 
inversion of the initial value of a configuration cell on SRAM 
and it can propagate to data cells. 

 
C.   Device model 
 
   Resource layer in SRAM-based FPGAs is constructed by 
three main blocks which are: logic blocks formed by slices, 
routing matrixes to interconnect the logic blocks and 
input/output blocks to communicate with the external 
environment. Recent devices provide also embedded resources 
on the die, like Block RAM and DSPs, which aim to 
accelerate some specific part of hardware modules and do not 
need to be re-implement using logic blocks. Although the 
resources are heterogeneous; their arrangement on the fabric 
follows a   homogenous distribution (with some exception for 
I/O), where each row contains the same number of resources 
columns and arranged identically from one row to the other. In 
Figure 1, we present an example of resources distribution of 
Xilinx FPGA to show this homogeneous distribution (we 
omitted the representation of routing for simplicity). This 
representation is valid from Virtex-4 up to virtex-7. 

 
Figure 1. Example of resources repartition on Xilinx FPGA. 

   Each column of resource is configured with a specific 
number of frames stored on the configuration layer (SRAM). 
A frame is a vector of (1, n)-bits (n is specific to the device). 
From the point of view of configuration layer, frames are 
identical which mean that they have the same characteristics 
(height, width) but the interpretation of information contained 
inside each frame depends on the mapped resource to 
configure. For example in Virtex-5 [20], all frames have 
n=1312 bits height and 36 frames are needed to totally 
configure a column of logic blocks. 

   [20] provides an overview of the interpretation of frames 
configuring CLB and explanation of which part of frame maps 
a column of CLBs. Unfortunately, there is no details about the 
part configuring internal elements of CLB like for example 
LUTs. This information are still considered confidential, 
despite the existence of some works dealing with 
reverse/decode of Xilinx bitstream format [21, 22]. This is still 
not helpful for the purpose of our work. So we only take 
advantage of the information provided by Xilinx tools and 
documentations to localize and retrieve the context of a 
hardware module.  
   A CLB of Virtex-5 family is constituted of two slices, each 
one contains four 6-input LUTs, three multiplexers, a carry 
chain and four flip-flops. We identified that flip-flops are the 
location from which the context could be retrieved. 

 
III.    PROPOSED METHOD 

 
   In this section we are giving details of each part of our 
method which is based on features provided by the Xilinx 
FPGA (Virtex-5 [20]). A general overview of the proposed 
architecture is briefly represented in Figure 2. It aims to 
enhance the reliability of a user application which consists of a 
set of hardware modules placed in an Enhanced Reliability 
Region (ERR). The ERR is protected with a reliability 
controller that implements detection, checkpoint and recovery 
mechanisms.  

 
Figure 2. General representation of the proposed reliability architecture. 

 
A.   Detection Strategy 
 
   Our detection approach is performed based on the extended 
hamming code. Each frame of the FPGA contains parity bits 
calculated at bitstream generation step. Later at execution 
time, these bits are used to control the correctness of 
information contained in this frame. To prevent from the 
outlined problem of misdetection of odd number of faults 
(>2), the granularity of our detection method is set to a frame; 
it means that a detection of at least one fault in a frame makes 
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it completely faulty and induces a correction step of the 
module. 

   In figure 3, an overview of the structure of a frame 
configuring a CLB column is illustrated with the location of 
parity bits.  

 Figure 3. Configuration Bits in a Frame. 
 

   The detection strategy is conducted repeatedly on a set of 
frames configuring the enhanced reliability region, so errors 
can be identified at their early stage of occurrence and this 
minimizes their propagation. The worst scenario is where the 
last scanned frame is subject to a bit-flip. The time to 
detection in such scenario is given by the worst mean time to 
detection: 

𝑊𝑜𝑟𝑠𝑡𝑀𝑇𝑇𝐷 = 𝑇𝑓_𝑠𝑠𝑠𝑠 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓  
With 𝑇𝑓_𝑠𝑠𝑠𝑠 the time to readback one frame from SRAM and 
to verify its hamming syndrome, 𝑁𝑓𝑓𝑠𝑓𝑓  is the number of 
frames to scan. 
 
B.   Checkpoint/Recovery Strategy 
 
   Generally, checkpoint can be either transparent or intrusive. 
Depending on the executive platform: the first case assumes 
that the checkpoint of a module can be triggered while it is 
performing its computation; while the second case assumes 
that it must be suspended to construct checkpoint. In 
transparent checkpoint, a mechanism to make a copy of all the 
information of the context must be made available within the 
executive platform. The checkpoint method used in our 
reliability controller is able to achieve this type of transparent 
checkpoint, it is a direct consequence of these facts: first, the 
context of a module running on SRAM-based FPGAs is 
located on flip-flops (and Block RAM in some cases but for 
the moment we treat only flip-flops); and second, the ability to 
copy the content of each flip-flip from the operative layer to 
the configuration layer at the same time. Also, our reliability 
controller can perform checkpoint in two ways: periodic or 
random, which depends on the: nature of modules and it’s 
context, variation of fault rate and duration of checkpoint. By 
using partial dynamic reconfiguration, we provide a way to 
make checkpoint and recovery of individual ERR. This is 
possible by masking/unmasking online the frames involved in 
the operation of capture/restore of flip-flops. The 
mask/unmask operation consists on writing a special frame per 
column of resources that contains configuration bits for partial 
reconfiguration. One of these bits can mask the order of 
capture/restore of flip-flops [20]. 

   The checkpoint performed by the reliability controller is 
divided into these basic actions:  

• Unmask frames involved on the checkpoint. 
• Order the capture of the flip-flops to the SRAM. 
• Readback the unmasked frame out of SRAM. 
• Mask again the frames. 

   In literature, a checkpoint is characterized by two metrics 
[23], a checkpoint latency: that represents the quantity of time 
needed to save a checkpoint on a safe storage not subject to 
faults, denoted as L; and a checkpoint overhead: which 
represents the introduced growth in the execution time of the 
module induced by the checkpoint operation, denote as C. In 
our method the time for capturing the state of flip-flops to the 
configuration layer is zero (C=0). Let 𝑇𝑓_𝑓𝑓𝑠𝑑  the time to 
readback one frame from SRAM, the latency is given by: 

𝐿 = 𝑇𝑓_𝑓𝑓𝑠𝑑 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓  
We notice that in our case C is zero because the checkpoint is 
transparent and is performed instantaneously during the 
module execution. 

   Upon a detection of faulty frame, a recovery is needed to be 
triggered. It induces a loss of computation performed from the 
last checkpoint until that moment of detection, this time is 
denoted 𝑇𝑙𝑜𝑠𝑡 . Also an overhead is needed to write back the 
checkpoint to the SRAM, this time is calculated by: 

𝑇𝑓𝑜𝑙𝑙𝑏𝑠𝑠𝑘 = 𝑇𝑓_𝑤𝑓𝑖𝑡𝑓 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓  
where 𝑇𝑓_𝑤𝑓𝑖𝑡𝑓  is the time to write a frame to the SRAM. As 
checkpoint, the operation of recovery is divided onto these 
actions: 

• Write the checkpoint to frames on SRAM. 
• Unmask frames to roll back. 
• Order the restore of the flip-flops from the SRAM. 
• Mask again the frames. 

We denote the complete overhead of a recovery from an error 
as R, which is the sum of lost time computation and roll back 
overhead. 

𝑅 = 𝑇𝑓𝑜𝑙𝑙𝑏𝑠𝑠𝑘 + 𝑇𝑙𝑜𝑠𝑡  
In figure 4, a representation of a timeline of a module and the 
reliability controller execution are given to illustrate the 
previous definitions related to detection, checkpoint and 
recovery, a worst scenario is presented where the recovery 
occurs just before a planned checkpoint. 

 
Figure 4. Outline of execution scenario. 
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   It is clear that a bit-flip can occur between the moment when 
capture action is triggered and the end of read back of all 
frames of the ERR, to prevent this from happening an 
additional comparison is performed between the frames of the 
initial bitstream and the read frames from SRAM (we perform 
a bit mask on flip-flops before making the comparison because 
flip-flops have necessarily changed). 

   These two presented strategies of detection and checkpoint-
recovery operate following the flowchart presented in figure 5. 
First, the initialization of the BER strategy is done and a first 
checkpoint is created. After, a detection phase is performed 
continually by readback and hamming verification. This 
combination leads to minimize the detection time of a fault, 
which is always less or equal to 𝑊𝑜𝑟𝑠𝑡𝑀𝑇𝑇𝐷. 

 
Figure 5. Flowchart of the reliability controller. 

 
C.   Reliability Controller Implementation 
 

 
Figure 6. Checkpoint/Recovery Platform. 

 
To rapidly validate our approach we implement it using the 
soft-core processor MicroBlaze with fault tolerant features 
enabled. This later is running a software version of the 

flowchart presented in figure 5. The controller contains a 
HwIcap to communicate with the Configuration Control Logic 
(CCL) in order to read/write frames from/to the configuration 
layer. The primitive Frame ECC [20] is used to check the 
hamming syndrome for each frame in the detection phase; the  
output of this primitive is updated each time a readback of one 
frame is performed. A SystemACE is also used to provide 
access to external memory (safe storage) where context of 
modules can be saved for later use. A PLB bus is added to 
provide a way for the processor to communicate with the other 
parts of the controller. To collect information about the 
execution an RS232 UART is added and connected to an 
output terminal. Time measurement is performed with an 
XPS_Timer and is clocked like the MicroBlaze at 100 MHz.  

 
IV.    EXPERIMENTAL RESULTS 

 
   Our experiments have been tested on ML506 board which 
incorporates Virtex-5 FPGA [20], the tools used are Xilinx 
ISE Design Suite (13.1). We applied our method on two 
hardware modules: a binary counter and an implementation of 
the bubble sort algorithm. We performed a random fault 
injection from the MicroBlaze to perform the simulation of 
faults occurrence into the SRAM region of the ERR. Table I 
presents the resources utilization of the reliability controller 
and the tested hardware module. 

TABLE I 
Resources utilization for reliability controller on virtex-5 

Virtex-5 FPGA 

(xc5vsx50tff1136-1) 

Look-up tables (LUTs) 

32640 

Flip-flops (FFs) 

32640 

System utilization 6669 (21%) 7772 (24%) 

Binary Counter  73 36 

Bubble sorter 444 198 

 
This software version of the proposed method uses less than 
25% of the resources and leaves the rest of them for the 
implementation of the enhanced reliable region, which can be 
larger on the recent FPGAs like Virtex-6 and Virtex-7. The 
timing measurements of the method are presented on Table II. 

TABLE II 
Timing measurements of operation of reliability controller (Millisecond) 

Operations Details of operation For one frame  
Binary 

Counter: 
36 frames 

Bubble 
Sorter: 

144 frames 

Detection 
strategy 

SRAM Read Frame 0.82 29.73 119.18 

Syndrome verification 0.08 - - 

Checkpoint 
strategy 

Flip-flop Capture* 0.12 0.12 0.12 

SRAM Read Frame 0.82 29.73 119.18 

SysACE write 14.24 510.24 2050.7 

Recovery 
strategy 

SysACE read 11.97 431.01 1723.6 

SRAM Write Frame 1.01 36.3 144.14 

Flip-Flop Restore* 0.09 - - 
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* The time here reflect the time MicroBlaze takes to trigger the order and not 
the time of capture/restore. 

We point out that the frames read/write operations are the ones 
taking a great portion of the overall execution time of each 
strategy (the SysACE read/write can be performed by a 
dedicated controller) and that the speed of the HwIcap is a 
bottle neck for this method. For our system both configuration 
and readback can be minimized by using dedicated hardware 
controller such as UPaRC [24] or FaRM [25], which performs 
partial dynamic reconfiguration at high speed and takes into 
account the power consumption factor. The footprint of a 
checkpoint can be optimized by just saving the binary 
differences between the initial bitsream and the read back one. 
Such optimization will cost a computation overhead which can 
be accepted when it is smaller than the total overhead of 
writing to the safe storage. 

 
V.    CONCLUSION AND FUTURE WORK 

 
   This paper presented a new fault tolerant method based on 
partial dynamic reconfiguration. The method uses error 
detection and correction codes (EDAC) to localize faults and it 
uses checkpoint/recovery to correct them. The actual 
implementation of the method confirms advantages of such an 
approach: non-intrusive and efficient fault correction. Such a 
method can be applied with soft real-time applications to 
satisfy fault tolerance. 

   We are actually working on testing this method with 
different types of modules: combinatorial, sequential and 
mixed hardware IP. We are also planning to provide an 
automatic method to evaluate the best moment to trigger the 
checkpoint of modules. 
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