
HAL Id: hal-00854818
https://hal.science/hal-00854818

Submitted on 28 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient BER-Based Reliability Method For
SRAM-based FPGA

Fouad Sahraoui, Fakhreddine Ghaffari, Mohamed El Amine Benkhelifa,
Bertrand Granado

To cite this version:
Fouad Sahraoui, Fakhreddine Ghaffari, Mohamed El Amine Benkhelifa, Bertrand Granado. An ef-
ficient BER-Based Reliability Method For SRAM-based FPGA. 7th IEEE International Design and
Test Symposium IDT’2012, Dec 2012, Doha, Qatar. 6 p. �hal-00854818�

https://hal.science/hal-00854818
https://hal.archives-ouvertes.fr

An Efficient BER-based Reliability Method For
SRAM-based FPGA

Fouad Sahraoui1, Fakhreddine Ghaffari1, Mohamed El Amine Benkhelifa1, Bertrand Granado²
1 ETIS, CNRS, ENSEA, Cergy-Pontoise University; 6 avenue du Ponceau, 95000 Cergy-Pontoise, FRANCE

2 UPMC, LIP6, CNRS UMR 7606; 4 Place Jussieu, 75252 PARIS Cedex 05, FRANCE
1firstname.name@ensea.fr 2firstname.name@lip6.fr

 Abstract- Single Event Upset (SEU) is a major concern for
SRAM-based FPGAs where a simple bit-flip can lead to an
abnormal execution. We present in this paper, a new fault tolerance
method based on hardware BER (Backward Error Recovery) to
protect/correct system against the occurrence of transient faults.
We use the partial dynamic reconfiguration offered by Xilinx
Virtex-5 FPGAs to ensure hardware checkpoint and upon detection
of fault we use recovery. Our method has several advantages: first it
is non-intrusive (no internal modification of hardware modules of
the system), second it is not based on redundant hardware
resources (like most methods in the literature), and finally it has a
static area overhead ratio when applied to a system. To validate our
approach, we implemented it on a Xilinx platform based on a
Partial Reconfigurable Region (PRR).

Index Terms- Fault tolerance, Checkpoint, Recovery, SRAM-based
FPGAs, partial dynamic reconfiguration, readback.

I. INTRODUCTION

 Modern FPGAs have reached a level of flexibility that can
perform switching functionalities, on-line update and even
environmental adaptability through partial dynamically
reconfiguration; which is the ability to change the
functionality of a portion of the chip without halting the rest of
the FPGA [1, 2]. Furthermore, these FPGAs are no longer
considered as only prototyping platform but also as execution
platform, which lead to conduct new researches to enhance the
execution of FPGA-based systems [3-5] through this ability.

 To achieve this flexibility, SRAM-based FPGAs are
composed of two distinct levels. A Configuration level,
formed by a number of SRAM cells holding configuration
data called Bitstream. This level controls the behavior of a
Resources level, which is a distribution of basic elements:
look-up-tables, flip-flops, multiplexers and dedicated blocks,
all interconnected by configurable routing matrixes. While this
type of platform joins between the flexibility of software
implementation (processors for example) and high
performance of application-specific integrated circuit (ASIC),
it could introduce, depending on their running environment, an
undesirable behavior at execution time. Radiation, ionization,
extreme temperature variation and power fluctuation can
affect the correct execution of FPGA-based system and lead to
abnormal and erroneous results. A convenient solution for
such harsh conditions is the use of radiation-hardened devices
[6], where their internal structure offers a more reliable
platform. Despite the improvement of reliability, these devices

still lack a lot of features that are already available on SRAM-
based FPGAs, like reconfiguration, high performance/density
and low cost.

 To benefit from the available SRAM-based FPGAs features,
a number of fault tolerant techniques must be incorporated
within the execution platform to enhance the overall reliability
of the system. Among these methods, redundancy (Triple
Modular Redundancy TMR [7], Duplication With Comparison
DWC [8]) is one of the most simple and effective technique
used in hardware to tolerate faults on FPGAs. Unfortunately
these methods have some major drawbacks like:
area/resources overhead, maximum frequency reduction, and
huge increase of power consumption.

 In this paper, we are seeking for an alternative approach for
fault tolerance that is based on the mechanism of saving fault-
free states of a running module and the mechanism of re-
executing one of these saved states in case of an error
detection. These two mechanisms are known as checkpoint
and recovery. Formally, we investigate the feasibility to
perform a checkpoint/recovery of hardware modules on FPGA
platform. We validate this fault tolerant method on Xilinx
FPGAs (Virtex-5 family) with respect to the following
objectives.

• No modifications of internal structure of the module
• Take advantage of partial dynamic reconfiguration

features

 The rest of this paper is organized as follows. Section II
covers faults tolerance methods proposed for SRAM-based
FPGAs followed by the adopted fault model and the target
device. Section III details each part of our backward error
recovery and metrics definitions. An overview of the
experimental platform based on a MicroBlaze is presented in
Section IV. Finally, we conclude this paper and present some
future works in Section V.

II. BACKGROUND AND RELATED WORK

A. Fault Tolerance Methods

 Many investigations for fault mitigation on FPGAs have
been conducted by researchers to enhance the reliability of
SRAM-based FPGAs; a great number of them are based on
the use of redundancy [9]. When redundancy is used, a

mailto:firstname.name@ensea.fr
mailto:firstname.name@lip6.fr

number of instances of the same module are added to the
design and the results are compared by the mean of a voter to
check the occurrence of faults. In the case of mismatched
results the voter masks it and propagates the majority results.
At the same time, the faulty instance can be corrected in the
background if needed. One of the most known redundancy
method in ASIC/FPGA is the Triple Module Redundancy
(TMR) [7]. Such a method is formally proven to deal with any
type of faults without any latency on one of these instances at
the same time, but produces a heavy overhead in term of
resource utilization (area), power consumption and speed
diminution.

 Some recent works were proposed to reduce the overhead
generated by the TMR strategy. In [10], the authors proposed
an online adaptive fault tolerant method relying on the partial
reconfigurable region (PRR) feature and combined with
different levels of redundancy. Depending on the level of
space radiation and orbital position, a controller choses
between five different modes of reliability to achieve better
resources utilization and power saving. Sullivan et al. make a
comparison between TMR and Reduced Precision
Redundancy (RPR) in [11], and found that the RPR approach
can be a practical alternative method for protecting arithmetic
operations with an acceptable loss of precision on the result if
a fault occurs.

 Reconfiguration capability can be used alone to avoid
redundancy in the form of configuration scrubbing [12],
which involves a periodic complete or partial rewrite of initial
bitstream to eliminate any eventual bit upset on the
configuration layer [13]. This operation is performed by
periodically retrieving the configuration data (bitstream) from
a Golden memory (supposed to be less sensitive to faults
compared to SRAM memory) and writes it via an access port
to the configuration layer. Scrubbing method is merely based
on statistical analyses of the execution environment, where the
scrubber must always works at a rate higher than the one of
faults occurrences. This method is adapted for environment
with well-known rate of fault occurrences.

 Information redundancy is another fault mitigation technique
and can be a good choice to enhance the reliability of SRAM-
based FPGAs. By using Error Detection and Correction
Codes (EDAC codes) the configuration layer can be protected
against possible bit inversion. Extended hamming code is a
well-known EDAC code to protect memory-based system; but
it can achieve only single error correction and double error
detection (SECDED) [14]. An online single event upset
controller is provided by Xilinx to detect and correct faults on
the configuration memory and is detailed in [15]. The parity
bits are calculated offline and stored in the configuration
memory, later the controller will periodically check if an error
occurred. Despite the fact that this controller is quite simple
and has a small area overhead, it can be harmful for the
protected system because if an odd number of faults occur and
are greater than two then hamming syndrome will state that
only one fault has occurred and will calculate a wrong bit
position which leads to the introduction of more faults on the

system. In [16] authors present a fault injection campaign and
results that confirm this problem and point out that the system
still contains at the end of injection a significant number of
configuration bit errors.

 Checkpoint/Recovery is an effective methodology for faults
mitigation in processor based computing systems; the
mechanism is widely used to protect scientific computation,
critical applications and distributed systems from potential
loss of calculations and system failure for many years.
Checkpoint is the operation of saving all the necessary
information of an application, called context, so it can be
restarted later from that moment, and Recovery is the opposite
operation where this information are written back to the
executive platform, so the application can resume its
computation from a fault-free state.

 When it comes to FPGA based systems, this concept may at
first seem to be inappropriate for such platform and
furthermore not supported natively. The few studies we have
found working with hardware checkpoint/recovery involve a
deep transformation of the target module. In [17], three
variants of hardware checkpoint are presented, each one
introduces additional circuitries to retrieve the context of the
hardware module. A tool was proposed to automatically
transform the hardware module and introduce the additional
access logics to the state of the module. These modifications
are based on a set of netlist primitives substitution performed
automatically. The main drawback is the alteration of the
hardware module which can introduce design faults and
performances degradation. Another work, presented in [18],
investigates the integration of software and hardware
checkpoint on a FPGA based cluster application. An interface
to each hardware accelerator core (hardware module) is added
to allow the access to the state of internal resources and by the
way support the hardware checkpoint; this work is also based
on an automatic transformation approach but applied at the
VHDL level, which imposes certain constraints on the source
code (must be described like an FSM) and a specific interface.

 From our point of view, a modification approach is not
always feasible or can induce a long time to apply on an
existing system (even if it is automatically applied). Because
of this, we explore the possibility of using actual FPGAs
capabilities which provide partial dynamic reconfiguration to
construct a checkpoint with no modification of the modules (a
little modification/addition between the system’s modules can
be tolerated).

B. Fault Model

 Faults are classified into two main categories: permanent
faults and transient faults [19]. The first category includes the
ones which produce a persistent erroneous behavior of the
system. The only way to correct the affected part is to perform
a system reboot or in extreme case a replacement of erroneous
part with another correct instance. This type of fault is mostly
induced by physical damage of the internal elements and leads
to the alteration of elements, like for example a flip-flop which

stuck at a same state. Also, a long period of usage can leads to
the same consequences. In all case a physical intervention is
needed and shutdown of the system must be performed. On
the contrary, the second category regroups faults which
generate an erroneous behavior for a brief interval of time and
disappear. If this type of fault hits the operative layer, a simple
re-computation of the affected calculation is performed, while
if it hits the configuration layer, a reconfiguration of the
functionality is carried out to correct the system.

 Mostly, SRAM-based FPGAs are more sensitive to transient
faults than permanent ones. For example a simple ionized
particle can hit the SRAM layer and leads to a bit-flip which
can produce an erroneous behavior in the system at runtime.
Another example of source for transient faults in SRAM is the
voltage variation which could lead to abnormal operation of
SRAM cells and introduction of faults.
 The work presented here focuses on the correction of
transient faults occurring at the SRAM layer of the FPGA and
can lead to an erroneous behavior of the resource layer. Also
we don’t make distinction between a fault on a user data cell
or on a configuration cell. We consider a fault as simple
inversion of the initial value of a configuration cell on SRAM
and it can propagate to data cells.

C. Device model

 Resource layer in SRAM-based FPGAs is constructed by
three main blocks which are: logic blocks formed by slices,
routing matrixes to interconnect the logic blocks and
input/output blocks to communicate with the external
environment. Recent devices provide also embedded resources
on the die, like Block RAM and DSPs, which aim to
accelerate some specific part of hardware modules and do not
need to be re-implement using logic blocks. Although the
resources are heterogeneous; their arrangement on the fabric
follows a homogenous distribution (with some exception for
I/O), where each row contains the same number of resources
columns and arranged identically from one row to the other. In
Figure 1, we present an example of resources distribution of
Xilinx FPGA to show this homogeneous distribution (we
omitted the representation of routing for simplicity). This
representation is valid from Virtex-4 up to virtex-7.

Figure 1. Example of resources repartition on Xilinx FPGA.

 Each column of resource is configured with a specific
number of frames stored on the configuration layer (SRAM).
A frame is a vector of (1, n)-bits (n is specific to the device).
From the point of view of configuration layer, frames are
identical which mean that they have the same characteristics
(height, width) but the interpretation of information contained
inside each frame depends on the mapped resource to
configure. For example in Virtex-5 [20], all frames have
n=1312 bits height and 36 frames are needed to totally
configure a column of logic blocks.

 [20] provides an overview of the interpretation of frames
configuring CLB and explanation of which part of frame maps
a column of CLBs. Unfortunately, there is no details about the
part configuring internal elements of CLB like for example
LUTs. This information are still considered confidential,
despite the existence of some works dealing with
reverse/decode of Xilinx bitstream format [21, 22]. This is still
not helpful for the purpose of our work. So we only take
advantage of the information provided by Xilinx tools and
documentations to localize and retrieve the context of a
hardware module.
 A CLB of Virtex-5 family is constituted of two slices, each
one contains four 6-input LUTs, three multiplexers, a carry
chain and four flip-flops. We identified that flip-flops are the
location from which the context could be retrieved.

III. PROPOSED METHOD

 In this section we are giving details of each part of our
method which is based on features provided by the Xilinx
FPGA (Virtex-5 [20]). A general overview of the proposed
architecture is briefly represented in Figure 2. It aims to
enhance the reliability of a user application which consists of a
set of hardware modules placed in an Enhanced Reliability
Region (ERR). The ERR is protected with a reliability
controller that implements detection, checkpoint and recovery
mechanisms.

Figure 2. General representation of the proposed reliability architecture.

A. Detection Strategy

 Our detection approach is performed based on the extended
hamming code. Each frame of the FPGA contains parity bits
calculated at bitstream generation step. Later at execution
time, these bits are used to control the correctness of
information contained in this frame. To prevent from the
outlined problem of misdetection of odd number of faults
(>2), the granularity of our detection method is set to a frame;
it means that a detection of at least one fault in a frame makes

Slice
 I/O

BRAM

DSP

Row

Column

Enhanced Reliability Region:
Hardware modules

Reliability
Controller FPGA

it completely faulty and induces a correction step of the
module.

 In figure 3, an overview of the structure of a frame
configuring a CLB column is illustrated with the location of
parity bits.

 Figure 3. Configuration Bits in a Frame.

 The detection strategy is conducted repeatedly on a set of
frames configuring the enhanced reliability region, so errors
can be identified at their early stage of occurrence and this
minimizes their propagation. The worst scenario is where the
last scanned frame is subject to a bit-flip. The time to
detection in such scenario is given by the worst mean time to
detection:

𝑊𝑜𝑟𝑠𝑡𝑀𝑇𝑇𝐷 = 𝑇𝑓_𝑠𝑠𝑠𝑠 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓
With 𝑇𝑓_𝑠𝑠𝑠𝑠 the time to readback one frame from SRAM and
to verify its hamming syndrome, 𝑁𝑓𝑓𝑠𝑓𝑓 is the number of
frames to scan.

B. Checkpoint/Recovery Strategy

 Generally, checkpoint can be either transparent or intrusive.
Depending on the executive platform: the first case assumes
that the checkpoint of a module can be triggered while it is
performing its computation; while the second case assumes
that it must be suspended to construct checkpoint. In
transparent checkpoint, a mechanism to make a copy of all the
information of the context must be made available within the
executive platform. The checkpoint method used in our
reliability controller is able to achieve this type of transparent
checkpoint, it is a direct consequence of these facts: first, the
context of a module running on SRAM-based FPGAs is
located on flip-flops (and Block RAM in some cases but for
the moment we treat only flip-flops); and second, the ability to
copy the content of each flip-flip from the operative layer to
the configuration layer at the same time. Also, our reliability
controller can perform checkpoint in two ways: periodic or
random, which depends on the: nature of modules and it’s
context, variation of fault rate and duration of checkpoint. By
using partial dynamic reconfiguration, we provide a way to
make checkpoint and recovery of individual ERR. This is
possible by masking/unmasking online the frames involved in
the operation of capture/restore of flip-flops. The
mask/unmask operation consists on writing a special frame per
column of resources that contains configuration bits for partial
reconfiguration. One of these bits can mask the order of
capture/restore of flip-flops [20].

 The checkpoint performed by the reliability controller is
divided into these basic actions:

• Unmask frames involved on the checkpoint.
• Order the capture of the flip-flops to the SRAM.
• Readback the unmasked frame out of SRAM.
• Mask again the frames.

 In literature, a checkpoint is characterized by two metrics
[23], a checkpoint latency: that represents the quantity of time
needed to save a checkpoint on a safe storage not subject to
faults, denoted as L; and a checkpoint overhead: which
represents the introduced growth in the execution time of the
module induced by the checkpoint operation, denote as C. In
our method the time for capturing the state of flip-flops to the
configuration layer is zero (C=0). Let 𝑇𝑓_𝑓𝑓𝑠𝑑 the time to
readback one frame from SRAM, the latency is given by:

𝐿 = 𝑇𝑓_𝑓𝑓𝑠𝑑 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓
We notice that in our case C is zero because the checkpoint is
transparent and is performed instantaneously during the
module execution.

 Upon a detection of faulty frame, a recovery is needed to be
triggered. It induces a loss of computation performed from the
last checkpoint until that moment of detection, this time is
denoted 𝑇𝑙𝑜𝑠𝑡 . Also an overhead is needed to write back the
checkpoint to the SRAM, this time is calculated by:

𝑇𝑓𝑜𝑙𝑙𝑏𝑠𝑠𝑘 = 𝑇𝑓_𝑤𝑓𝑖𝑡𝑓 ∗ 𝑁𝑓𝑓𝑠𝑓𝑓
where 𝑇𝑓_𝑤𝑓𝑖𝑡𝑓 is the time to write a frame to the SRAM. As
checkpoint, the operation of recovery is divided onto these
actions:

• Write the checkpoint to frames on SRAM.
• Unmask frames to roll back.
• Order the restore of the flip-flops from the SRAM.
• Mask again the frames.

We denote the complete overhead of a recovery from an error
as R, which is the sum of lost time computation and roll back
overhead.

𝑅 = 𝑇𝑓𝑜𝑙𝑙𝑏𝑠𝑠𝑘 + 𝑇𝑙𝑜𝑠𝑡
In figure 4, a representation of a timeline of a module and the
reliability controller execution are given to illustrate the
previous definitions related to detection, checkpoint and
recovery, a worst scenario is presented where the recovery
occurs just before a planned checkpoint.

Figure 4. Outline of execution scenario.

Word 41 Word 22 Word 21 Word 20 Word 1

31 608 639 671 640 672 703 1280 0

640 configuration bits
for 10 CLBs below

the HCLK row

640 configuration bits
for 10 CLBs above

the HCLK row

ECC HCLK

HCLK configuration bits

12 ECC bits 20 HCLK bits

… …

Fault
occurrence

Module timeline

Reliability controller
timeline

Rollback of C1
One complete scan of the module (𝑇𝑓 𝑠𝑠𝑠𝑠 ∗ 𝑁𝑓𝑓𝑓𝑓𝑓)
Checkpoint latency L
Time of detection

Checkpoint
C1

Next planned
checkpoint C2:

canceled

Recovery from error:
restart from C1

New pacified
checkpoint C2

1311

 It is clear that a bit-flip can occur between the moment when
capture action is triggered and the end of read back of all
frames of the ERR, to prevent this from happening an
additional comparison is performed between the frames of the
initial bitstream and the read frames from SRAM (we perform
a bit mask on flip-flops before making the comparison because
flip-flops have necessarily changed).

 These two presented strategies of detection and checkpoint-
recovery operate following the flowchart presented in figure 5.
First, the initialization of the BER strategy is done and a first
checkpoint is created. After, a detection phase is performed
continually by readback and hamming verification. This
combination leads to minimize the detection time of a fault,
which is always less or equal to 𝑊𝑜𝑟𝑠𝑡𝑀𝑇𝑇𝐷.

Figure 5. Flowchart of the reliability controller.

C. Reliability Controller Implementation

Figure 6. Checkpoint/Recovery Platform.

To rapidly validate our approach we implement it using the
soft-core processor MicroBlaze with fault tolerant features
enabled. This later is running a software version of the

flowchart presented in figure 5. The controller contains a
HwIcap to communicate with the Configuration Control Logic
(CCL) in order to read/write frames from/to the configuration
layer. The primitive Frame ECC [20] is used to check the
hamming syndrome for each frame in the detection phase; the
output of this primitive is updated each time a readback of one
frame is performed. A SystemACE is also used to provide
access to external memory (safe storage) where context of
modules can be saved for later use. A PLB bus is added to
provide a way for the processor to communicate with the other
parts of the controller. To collect information about the
execution an RS232 UART is added and connected to an
output terminal. Time measurement is performed with an
XPS_Timer and is clocked like the MicroBlaze at 100 MHz.

IV. EXPERIMENTAL RESULTS

 Our experiments have been tested on ML506 board which
incorporates Virtex-5 FPGA [20], the tools used are Xilinx
ISE Design Suite (13.1). We applied our method on two
hardware modules: a binary counter and an implementation of
the bubble sort algorithm. We performed a random fault
injection from the MicroBlaze to perform the simulation of
faults occurrence into the SRAM region of the ERR. Table I
presents the resources utilization of the reliability controller
and the tested hardware module.

TABLE I
Resources utilization for reliability controller on virtex-5

Virtex-5 FPGA

(xc5vsx50tff1136-1)

Look-up tables (LUTs)

32640

Flip-flops (FFs)

32640

System utilization 6669 (21%) 7772 (24%)

Binary Counter 73 36

Bubble sorter 444 198

This software version of the proposed method uses less than
25% of the resources and leaves the rest of them for the
implementation of the enhanced reliable region, which can be
larger on the recent FPGAs like Virtex-6 and Virtex-7. The
timing measurements of the method are presented on Table II.

TABLE II
Timing measurements of operation of reliability controller (Millisecond)

Operations Details of operation For one frame
Binary

Counter:
36 frames

Bubble
Sorter:

144 frames

Detection
strategy

SRAM Read Frame 0.82 29.73 119.18

Syndrome verification 0.08 - -

Checkpoint
strategy

Flip-flop Capture* 0.12 0.12 0.12

SRAM Read Frame 0.82 29.73 119.18

SysACE write 14.24 510.24 2050.7

Recovery
strategy

SysACE read 11.97 431.01 1723.6

SRAM Write Frame 1.01 36.3 144.14

Flip-Flop Restore* 0.09 - -

BER Master

Start

Checkpoint
occurrence?

Readback frame
& verification

Checkpoint
& validation

Recovery

Faulty
frame?

Yes

Yes

No

No

MicroBlaze

Reliability
application

HWICAP Processor local bus (PLB)

System
ACE

FPGA

Checkpoint files

Module
(Counter or

bubble sorter)

 GPIO LEDs

ERR

Compact Flash

XPS_Timer RS232_UART

Reliability controller

Frame_ECC

D
D

R
 c

on
tro

lle
r

DDR2

* The time here reflect the time MicroBlaze takes to trigger the order and not
the time of capture/restore.

We point out that the frames read/write operations are the ones
taking a great portion of the overall execution time of each
strategy (the SysACE read/write can be performed by a
dedicated controller) and that the speed of the HwIcap is a
bottle neck for this method. For our system both configuration
and readback can be minimized by using dedicated hardware
controller such as UPaRC [24] or FaRM [25], which performs
partial dynamic reconfiguration at high speed and takes into
account the power consumption factor. The footprint of a
checkpoint can be optimized by just saving the binary
differences between the initial bitsream and the read back one.
Such optimization will cost a computation overhead which can
be accepted when it is smaller than the total overhead of
writing to the safe storage.

V. CONCLUSION AND FUTURE WORK

 This paper presented a new fault tolerant method based on
partial dynamic reconfiguration. The method uses error
detection and correction codes (EDAC) to localize faults and it
uses checkpoint/recovery to correct them. The actual
implementation of the method confirms advantages of such an
approach: non-intrusive and efficient fault correction. Such a
method can be applied with soft real-time applications to
satisfy fault tolerance.

 We are actually working on testing this method with
different types of modules: combinatorial, sequential and
mixed hardware IP. We are also planning to provide an
automatic method to evaluate the best moment to trigger the
checkpoint of modules.

REFERENCES

[1] Xilinx, "Partial Reconfiguration User Guide UG702 (v12.1)," May

3, 2010.
[2] A. Corporation, "Increasing Design Functionality with Partial and

Dynamic Reconfiguration in 28-nm FPGAs," White paper, 2010.
[3] E. J. McDonald, "Runtime FPGA Partial Reconfiguration," in

Aerospace Conference, 2008 IEEE, 2008, pp. 1-7.
[4] Y. Iskander, S. Craven, A. Chandrasekharan, S. Rajagopalan, G.

Subbarayan, T. Frangieh, and C. Patterson, "Using partial
reconfiguration and high-level models to accelerate FPGA design
validation," in Field-Programmable Technology (FPT), 2010
International Conference on, 2010, pp. 341-344.

[5] H. Chuan, K. Benkrid, X. Iturbe, A. Ebrahim, and T. Arslan,
"Efficient On-Chip Task Scheduler and Allocator for
Reconfigurable Operating Systems," Embedded Systems Letters,
IEEE, vol. 3, pp. 85-88, 2011.

[6] L. Rockett, D. Patel, S. Danziger, B. Cronquist, and J. J. Wang,
"Radiation Hardened FPGA Technology for Space Applications,"
in Aerospace Conference, 2007 IEEE, 2007, pp. 1-7.

[7] C. C. Xapp, "Triple Modular Redundancy Design Techniques for
Virtex FPGAs," July, 2006.

[8] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, "Using Duplication with Compare for
On-line Error Detection in FPGA-based Designs," in Aerospace
Conference, 2008 IEEE, 2008, pp. 1-11.

[9] J. A. Cheatham, J. M. Emmert, and S. Baumgart, "A survey of
fault tolerant methodologies for FPGAs," ACM Trans. Des. Autom.
Electron. Syst., vol. 11, pp. 501-533, 2006.

[10] S. Yousuf, A. Jacobs, and A. Gordon-Ross, "Partially
reconfigurable system-on-chips for adaptive fault tolerance," in
Field-Programmable Technology (FPT), 2011 International
Conference on, 2011, pp. 1-8.

[11] M. A. Sullivan, H. H. Loomis, and A. A. Ross, "Employment of
Reduced Precision Redundancy for Fault Tolerant FPGA
Applications," Field-Programmable Custom Computing Machines,
Annual IEEE Symposium on, vol. 0, pp. 283-286, 2009.

[12] M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello,
"Exploiting Self-Reconfiguration Capability to Improve SRAM-
based FPGA Robustness in Space and Avionics Applications,"
ACM Trans. Reconfigurable Technol. Syst., vol. 4, pp. 1-22, 2010.

[13] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, "FPGA partial
reconfiguration via configuration scrubbing," in Field
Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, 2009, pp. 99-104.

[14] D. K. Bhattacharryya and S. Nandi, "An efficient class of SEC-
DED-AUED codes," in Parallel Architectures, Algorithms, and
Networks, 1997. (I-SPAN '97) Proceedings., Third International
Symposium on, 1997, pp. 410-416.

[15] B. Dutton and C. Stroud, "Built-in self-test of embedded seu
detection cores in virtex-4 and virtex-5 fpgas," 2009, pp. 149-155.

[16] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A.
LaBel, M. Friendlich, H. Kim, and A. Phan, "Effectiveness of
Internal Versus External SEU Scrubbing Mitigation Strategies in a
Xilinx FPGA: Design, Test, and Analysis," Nuclear Science, IEEE
Transactions on, vol. 55, pp. 2259-2266, 2008.

[17] D. Koch, C. Haubelt, and J. Teich, "Efficient hardware
checkpointing: concepts, overhead analysis, and implementation,"
presented at the Proceedings of the 2007 ACM/SIGDA 15th
international symposium on Field programmable gate arrays,
Monterey, California, USA, 2007.

[18] A. G. Schmidt, H. Bin, R. Sass, and M. French,
"Checkpoint/Restart and Beyond: Resilient High Performance
Computing with FPGAs," in Field-Programmable Custom
Computing Machines (FCCM), 2011 IEEE 19th Annual
International Symposium on, 2011, pp. 162-169.

[19] C. Bolchini and C. Sandionigi, "Fault Classification for SRAM-
Based FPGAs in the Space Environment for Fault Mitigation,"
Embedded Systems Letters, IEEE, vol. 2, pp. 107-110, 2010.

[20] Xilinx. Virtex-5 FPGA Configuration User Guide UG191 (v3.10).
Available:
www.xilinx.com/support/documentation/user_guides/ug191.pdf

[21] Z. Wang, Z. Yao, H. Guo, and M. Lv, "Bitstream decoding and
SEU-induced failure analysis in SRAM-based FPGAs," SCIENCE
CHINA Information Sciences, pp. 1-12, 2011.

[22] J.-B. Note and É. Rannaud, "From the bitstream to the netlist,"
presented at the Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate arrays,
Monterey, California, USA, 2008.

[23] N. H. Vaidya, "Impact of checkpoint latency on overhead ratio of a
checkpointing scheme," Computers, IEEE Transactions on, vol.
46, pp. 942-947, 1997.

[24] R. Bonamy, P. Hung-Manh, S. Pillement, and D. Chillet, "UPaRC
- Ultra-fast power-aware reconfiguration controller," in Design,
Automation & Test in Europe Conference & Exhibition (DATE),
2012, 2012, pp. 1373-1378.

[25] F. Duhem, F. Muller, and P. Lorenzini, "Reconfiguration time
overhead on field programmable gate arrays: reduction and cost
model," Computers & Digital Techniques, IET, vol. 6, pp. 105-
113, 2012.

http://www.xilinx.com/support/documentation/user_guides/ug191.pdf

