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ABSTRACT

We consider a nonlinear inverse scattering problem where

the goal is to detect breast cancer from measurements of the

scattered field that results from its interaction with a known

wave in the microwave frequency range. The modeling of the

wave-object interaction is tackled through a domain integral

representation of the electric field in a 2D-TM configuration.

The inverse problem is solved in a Bayesian framework where

the prior information is introduced via a Gauss-Markov-Potts

model. A Variational Bayesian Approximation (VBA) tech-

nique is adapted to complex valued contrast and applied to

compute the posterior estimators and reconstruct maps of both

the permittivity and conductivity. Results obtained by means

of this approach from synthetic data are compared with those

given by a deterministic contrast source inversion method.

Index Terms— Inverse scattering problem, breast cancer

detection, Gauss-Markov-Potts prior, Variational Bayesian

Approximation.

1. INTRODUCTION

In last few years, a lot of work has been devoted to the appli-

cation of microwave imaging to breast tumor detection [1, 2].

In fact, microwave imaging is an attractive alternative to X-

ray mammography for detection of breast cancers because di-

electric properties of tumors are notably different from that

of healthy biological tissues and microwaves can be used to

emphasize these differences.

Microwave tomography is a nonlinear inverse scattering

problem where the goal is to retrieve a contrast function rep-

resentative of the dielectric properties (permittivity and con-

ductivity) of an unknown object, from measurements of the

scattered field that results from its interaction with a known

interrogating (incident) wave. When the object under test is

small compared to the wavelength or is lowly contrasted with

respect to the embedding, this inverse problem can be lin-

earized in the framework of the first order weak scattering

Born or Rytov approximations [3, 4]. However, as underlined

above, it is not the case of the objects considered herein, as

contrast can be high. In the early 90’s, several determinis-

tic inversion algorithms have been developed in order to deal

with the nonlinear problem at hand in the case of microwave

imaging, through an iterative minimization of a cost func-

tional that expresses the discrepancy between the measured

scattered fields and the fields computed by means of the cur-

rent solution (the sought contrast) through a forward model

based upon two coupled integral equations that link the ob-

served scattered field to the contrast function [5, 6, 7].

Nonetheless, inverse scattering problems are known to be

ill-posed, which means that a regularization is required prior

to their resolution. Such a regularization is usually done by

introducing a priori information on the object, which is not

easy with the latter techniques as this information must be

introduced in the functional to be minimized. The Bayesian

framework allows us to take easily into account such an in-

formation. In fact, we know that the object under test is com-

posed of a finite number of different materials distributed in

compact regions, meaning that the sought image is composed

of a finite number of homogeneous area. To account for this

prior knowledge, a Gauss-Markov field with an hidden Potts

label field, denoted hereafter as Gauss-Markov-Potts model,

is proposed and a variational Bayesian approximation (VBA,

[8]) is applied to obtain an estimator of the posterior law. This

method has already been applied to optical diffraction tomog-

raphy [9]. Its performances have been compared to Monte-

Carlo Markov Chain (MCMC) methods that yield good re-

sults but are very costly in terms of computation time and

technical difficulties [10, 11]. The originality of this work is

to apply this approach to breast cancer detection where, con-

trarily to the case treated in [9], the unknown contrast is com-

plex valued because biological media are lossy, which means

that both permittivity and conductivity images have to be re-

constructed. Hence the proposed Bayesian approach and the

VBA method are adapted to the case of complex valued con-

trasts by assuming that permittivity and conductivity have the

same segmentation, i.e. the same hidden field, but are inde-

pendent conditionally to this hidden variable.

The rest of this paper is organized ad follows: section 2

presents the forward modeling of the problem. Then the



Bayesian framework is presented in section 3 and the vari-

ational approach is discussed in section 4. The method is

applied to breast tumor detection in section 5 and compared

to contrast source inversion method (CSI, [7]). Finally, some

conclusions and perspectives are given in section 6.

2. FORWARD PROBLEM

We consider a 2-D configuration in a transverse magnetic po-

larization case where the object under test is supposed to be

cylindrical, of infinite extension along the z axis and illumi-

nated by a line source whose location can be varied and that

operates at several discrete frequencies in the range 0.5 GHz

- 3 GHz. This source generates an incident electric field Einc

polarized along the z axis with an exp(−iωt) implicit time

dependence. The object is supposed to be contained in a test

domain D and the different media are characterized by their

propagation constant k(r) such that k(r)2 = ω2ǫ0ǫr(r)µ0 +
iωµ0σ(r), where ω is the angular frequency, ǫ0 and µ0 are the

permittivity and the permeability of free space, respectively,

r ∈ D is an observation point and ǫr(r) and σ(r) are the rel-

ative permittivity and conductivity of the medium. We now

consider a contrast function χ defined in D and null outside

the object, such that χ(r) = (k(r)2 − k21)/k
2
1 , where k1 is

the propagation constant of the embedding medium and we

define w(r) as the Huygens type sources induced within the

target by the incident wave, i.e. w(r) = χ(r)E(r) where

E(r) is the total field in the target. By applying Green’s the-

orem to the Helmholtz wave equations satisfied by the fields

and by accounting for boundary and radiation conditions, we

obtain two coupled contrast source integral equations, whose

first one, denoted as observation equation, is a first-kind Fred-

holm integral equation that relates the scattered field y(r) ob-

served on a measurement domain S (r ∈ S), which results

from the interaction between the object and the interrogating

wave Einc, to the induced sources w(r):

y(r) = k21

∫

D

G(r, r′)w(r′) dr′, (1)

whereG(r, r′) is the 2-D Green’s function. The second equa-

tion, the so-called coupling equation, relates the unknown to-

tal field E in the object to the induced sources w(r):

E(r) = Einc(r) + k21

∫

D

G(r, r′)w(r′) dr′. (2)

The forward problem then consists in first solving (2) for E,

knowing χ, then solving (1) for y knowing w. This is done

from discrete counterparts of the above equations obtained

by means of a method of moments [12] with pulse-basis and

point matching. The test domain D is then partitioned into

ND elementary square pixels small enough in order to con-

sider the field and the contrast as constant over each of them.

3. BAYESIAN FRAMEWORK AND PRIOR

INFORMATION

Let us denote as E, χ and w the vectors that contain the val-

ues of E(r′), χ(r′) and w(r′) at the centers r′ of the pixels

(r′ ∈ D), as y the vector containing the values of the scat-

tered field y(r) at the measurement points r (r ∈ S) and as

Go andGc huge matrices whose elements result from the in-

tegration of the Green’s function over the elementary pixels

(their expressions are given in [9]). Let us also introduce a

subscript n that accounts for the different frequencies (f ) and

source positions (ν) and two variables, ǫ and ξ, that account

for the model and measurement errors and that are supposed

to be centered and white and to satisfy Gaussian laws (i.e.,

ǫn ∼ N (0, vǫI) and ξn ∼ N (0, vξI)). By rewriting (2) in

terms of the contrast sources, we get the following discrete

counterparts of the observation and coupling equations:

yn = Go
f wn + ǫn (3)

wn =Xf E
inc
n + Xf G

c
f wn + ξn, (4)

where Xf = diag(χf ). The inverse problem consists, then,

in estimating the contrast χ, or more precisely the relative

permittivity ǫr and the conductivity σ, from the scattered

fields y, given the incident fields Einc. It can be noted

that, the induced sources w being unknown, they have to be

estimated at the same time as χ.

It is well known that inverse scattering problems are ill-

posed. This means that they must be regularized, which

is usually done by introducing a priori information on the

sought solution. The Bayesian framework is particularly well

suited for that, as it allows us to introduce such an informa-

tion in a really easy way. In the present case, the information

that we would like to account for is that the object is com-

posed of a finite number K of different materials distributed

in compact homogeneous regions. This prior information is

introduced by means of a hidden variable z(r), associated to

each pixel r, that represents a segmentation of the unknown

object. This label defines different classes of materials and

pixels with a given class k can be characterized by a contrast

that satisfies a Gaussian distribution:

p(χ(r)|z(r) = k) = N (mk, vk), k = 1, . . . ,K, (5)

with mean value mk and variance vk. The information that

the different materials are distributed in compact homoge-

neous regions is accounted for by means of a Potts-Markov

model on z that expresses the spatial dependence between

the neighboring pixels:

p(z|λ) =
1

T (λ)
exp



λ

∑

r∈D

∑

r′∈Vr

δ (z(r)− z(r′))



 ,

(6)



where z = {z(r), r ∈ D} represents the image of the labels

(segmentation), λ is a parameter that determines the correla-

tion between neighbors (herein λ = 1), T (λ) is a normaliza-

tion factor and Vr is a neighborhood of r, herein made of the

four nearest pixels.

It can be noted that a semi-supervised context is consid-

ered herein as K is supposed to be known, whereas the con-

trast χ, the induced currents w, the segmentation z and the

hyper-parameters of the model ψ = {m,v, vǫ, vξ} are esti-

mated simultaneously. We apply the Bayes formula to get the

joint posterior distribution of the unknowns:

p (χ,w, z,ψ|y) ∝ p (y|w, vǫ) p (w|χ, vξ) p (χ|z,m,v)

× p (z|λ) p (m|µ0, τ0) p (v|η0, φ0)

× p (vǫ|ηǫ, φǫ) p (vξ|ηξ, φξ). (7)

The expressions of p(y|w, vǫ) and p(w|χ, vξ), that appear in

the above equation, are derived from equations (3) and (4),

the expression of p (χ|z,m,v) is derived from equations (5),

whereas p(z|λ) is given in (6) and we assign the following

conjugate prior laws to the hyper-parameters:

p(mk) = N (µ0, τ0), p(vk) = IG(η0, φ0)

p(vǫ) = IG(ηǫ, φǫ), p(vξ) = IG(ηξ, φξ), (8)

where N (m, v) and IG(α, β) stand for Gaussian and inverse-

gamma distributions, respectively, and µ0, τ0, η0, φ0, ηǫ, φǫ,
ηξ and φξ are meta-hyper-parameters appropriately set to ob-

tain almost non-informative prior distributions.

From equation (7), different inferences can be done on the

unknowns. The usual way is to define a point estimator such

as the joint maximum a posteriori (JMAP) or the posterior

mean (PM). Generally, easy expressions for any of these two

estimators are very hard to obtain. Hence, we approximate the

posterior law in an analytic way by means of the variational

Bayesian approach.

4. VARIATIONAL BAYESIAN APPROXIMATION

The outline of the variational Bayesian method (VBA, [8]) is

to approximate the joint posterior distribution p(x|y), where

x = {χ,w, z,ψ}, by a separable law q(x) =
∏

i q(xi)
which is as close to the posterior distribution as possible in

terms of the Kullback-Leibler divergence. It can be noted that

minimizing the KL divergence is equivalent to maximizing

the free negative energy derived from statistical physics:

F(q) =

∫

RN

q(x) ln

(
p(y,x)

q(x)

)
dx. (9)

We can thus summarize the objective of VBA by:

find qopt = argmax
q

F(q). (10)

Then, assuming the separability (q(x) =
∏

i q(xi)), we can

obtain an analytic form for q:

q(xi) ∝ exp
{
〈ln(p(x,y))〉∏

j 6=i
q(xj)

}
. (11)

Now, by considering the joint posterior distribution (7), we

choose a strong separation form:

q(x) = q(vǫ)q(vξ)
∏

i

q(χi)q(wi)q(zi)
∏

k

q(mk)q(vk).

Then we apply the optimal form (equation (11)), which leads

to the following parametric distributions:

q(w) = N (m̃w, Ṽ w), q(χ) = N (m̃χ, Ṽ χ),

q(mk) = N (µ̃k, τ̃k), q(vk) = IG(η̃k, φ̃k),

q(vǫ) = IG(η̃ǫ, φ̃ǫ), q(vξ) = IG(η̃ξ, φ̃ξ),

q(z) = ζ̃k ∝ exp


λ

∑

r∈D

∑

r′∈V(r)

ζ̃(r′)


, (12)

where the expressions of the tilted shaping parameters are de-

tailed in [9]. It can be noted that these parameters are mutu-

ally dependent and can only be computed in an iterative way.

The initial values of the unknowns χ(0) and w(0) are ob-

tained by backpropagating the scattered field data from the

measurement domain S onto the test domain D, whereas the

initial values of the segmentation z(0) are given by K-means

clustering [13], with empirical estimators for the hyperparam-

eters ψ(0). Here, given the fact that the contrast is complex

valued, first the real part is segmented and, then, the same

segmentation is used to initialize the imaginary part.
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Fig. 1. The measurement configuration



5. APPLICATION AND RESULTS

The above method is applied to microwave imaging of a sim-

ulated breast supposed to be affected by a tumor (see Fig.1).

The breast (domain D2) is of circular cross-section with a di-

ameter of 9.6 cm. It is placed in air (domain D1) and its rel-

ative dielectric permittivity and conductivity are respectively

equal to ǫr = 6.12 and σ = 0.11 Sm−1. The tumor (do-

main D3 ) is also of circular cross-section with a diameter of

2 cm and its relative dielectric permittivity and conductivity

are respectively equal to ǫr = 55.3 and σ = 1.57 Sm−1.

The source illuminates the breast from 16 various angular po-

sitions uniformly distributed around a circle of radius 7.5 cm

centered at the origin and at 6 different frequencies in the band

0.5 - 3 GHz. For each frequency and illumination angle, 32
measurements of the scattered field are performed at angular

positions also uniformly distributed around the same circle.

It can be noted that, in order to avoid committing a so-called

Fig. 2. Amplitude (left) and phase (right) of the scattered

fields computed by means of the data model (red full line)

and by means of the model used for inversion (black dashed

line) at two frequencies: 1.5 GHz (up) and 2.5 GHz (down).

“inverse crime” in the sense of [14], which would consist in

testing the inversion algorithm on data obtained by means of

a model closely related to that used in the inversion, the syn-

thetic data of the inverse problem are computed by means of

a forward model (the data model) rather different from the

one described in section 2. Indeed, whereas in the latter the

object under test is the breast affected by the tumor, in the

former it consists only in the tumor, the breast and the air

being then considered as a cylindrically stratified embedding

medium and the Green’s function modified consequently. For

inversion, the test domain D is a 12.16 cm sided square par-

titioned into 64 × 64 square pixels with side δ = 1.9mm.

Figure 2 displays the scattered fields obtained by means of

the two models when the breast is illuminated by a source lo-

cated at 90◦ and operating at two frequencies: 1.5 GHz and

2.5 GHz. It can be observed that the results fit relatively well.

Fig. 3. Maps of the permittivity (left) and conductivity (right)

reconstructed by means of CSI (up) and VBA (middle) com-

pared to the real object (down).

Figure 3 displays maps of the permittivity and conductiv-

ity reconstructed by means of CSI after 500 iterations and by

means of VBA after 4000 iterations, the latter being previ-

ously initialized by a few CSI iterations. The quality of re-

construction is significantly improved with VBA, especially

for the conductivity, as compared to CSI which gives good

results but with an insufficient resolution. Figure 4 displays

the profiles reconstructed with both methods along an hori-

zontal line crossing the center of the tumor and evidences the

fact that VBA outperforms CSI, particularly with respect to

the conductivity profile.

6. CONCLUSION

In this paper, microwave imaging for breast cancer detection

is tackled in a Bayesian framework with a Gauss-Markov-

Potts prior. A Variational Bayesian Approach (VBA) is used

to approximate posterior with a free-form distribution with



respect to complex quantities as both permittivity and con-

ductivity maps have to be retrieved. The results obtained by

means of this approach show its effectiveness. Good results

have been obtained concerning the retrieved permittivity, con-

ductivity and geometry of the object and it has been shown

that VBA performs better than the CSI deterministic inver-

sion method. The drawback of VBA is that, as CSI, it can

be considered as a local optimization algorithm that can be

trapped in suboptimal solutions corresponding to local min-

ima, contrarily to MCMC Bayesian approaches based upon

stochastic sampling. However VBA is much faster than the

latter (50 times faster for the configurations studied in [9]),

and its speed of convergence can still be improved by apply-

ing a gradient like variational Bayesian method [15]. Finally,

the application of the above method to laboratory controlled

data is under investigation.
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Fig. 4. Permittivity (up) and conductivity (down) profiles re-

constructed by means of CSI (red squares) and VBA (black

dashed line) compared to real profiles (blue full line).
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