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Variational Bayesian Approximation with scale mixture prior for inverse problems: a numerical comparison between three algorithms

Our aim is to solve a linear inverse problem using various methods based on the Variational Bayesian Approximation (VBA). We choose to take sparsity into account via a scale mixture prior, more precisely a student-t model. The joint posterior of the unknown and hidden variable of the mixtures is approximated via the VBA. To do this approximation, classically the alternate algorithm is used. But this method is not the most efficient. Recently other optimization algorithms have been proposed; indeed classical iterative algorithms of optimization such as the steepest descent method and the conjugate gradient have been studied in the space of the probability densities involved in the Bayesian methodology to treat this problem. The main object of this work is to present these three algorithms and a numerical comparison of their performances.

INTRODUCTION

In many inverse problems in signal processing we want to infer on an unknown signal through an observed one related between them through any linear or non linear transformation. In the case of linear relation and when discretized, we arrive to the following model of observation:

g = H f + ε (1) 
where f = [ f 1 , f 2 , ..., f N ] ∈ R N represents the unknowns to be estimated, g = [g 1 , g 2 , ..., g M ] ∈ R M the observed data, ε the errors of modelling and measurement and H ∈ M N×M the matrix of the system response. In practice, the dimension of this matrix is huge thus the computation of the direct solution f = H -1 g even if it exists, is too high. Hence the character of ill-posed problem. A classical approach when dealing with these ill-posed problems is to introduce additional information. This is the shape of the Bayesian framework [START_REF]Approche bayésienne pour les problèmes inverses[END_REF] which relates the probability of the hypothesis from both the currently achieved information (data) and previous knowldege (prior distribution) in order to compute the posterior distribution of parameters.

To obtain the posterior distribution, we need to relate the likelihood and the prior distribution according to the Bayes formula

p( f |g) = p( f , g) p(g) = p(g| f ) p( f ) p(g) (2) 
where p( f |g) is the posterior distribution and p(g| f ) is the likelihood. In practice, most of the Bayesian approaches use Markov Chain Monte Carlo (MCMC) [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] algorithms to estimate the posterior mean. However, for large dimensional problems involving a complicated covariance matrix, MCMC methods does not give a good results, in addition to their high computational cost.

Therefore, an alternative methodology called Variational Bayesian (VB) was proposed in 1995 by D. Mackay [START_REF] Mackay | Information Theory, Inference, and Learning Algorithms[END_REF], having applications in computer sciences [START_REF] Jordan | An introduction to variational methods for graphical models[END_REF], signal processing for different applications such as recursives methods [START_REF] Babacan | Variational bayesian blind deconvolution using a total variation prior[END_REF], deconvolution [START_REF] Smídl | The Variational Bayes Method in Signal Processing (Signals and Communication Technology[END_REF] and source separation [START_REF] Ichir | A Mean field approximation approach to blind source separation with Lp priors[END_REF] etc. The main idea is to approximate the joint posterior of the unknown by a separable density. This method could be more effecient than MCMC in large dimensional cases especially when the covariance matrix is no longer convertible. Besides, as the computation are analytical, the rate of convergence is better than MCMC methods. This VB methodology is the main point of this paper.

In the following, based on our model [START_REF] Andrews | Mixtures of normal distributions[END_REF] and assuming that the noise is an iid Gaussian vector N (0, σ 2 ε I), then thanks to (2) we obtain

p(g| f ) = (2πv ε ) -N/2 exp - g -H f 2 2v ε (3) 
We introduce prior information in the data and we take sparsity into account. In fact, different prior model have been used to enforce sparsity [START_REF] Mohammad-Djafari | Bayesian approach with prior models which enforce sparsity in signal and image processing[END_REF], such as the student model where the most general case is given by Gaussian Vector Scale Mixture (GVSM) [START_REF] Andrews | Mixtures of normal distributions[END_REF]. We consider then ∀ j ∈ {1, ..., N}, f j destributed following a separable heavy tailed distribution. We suppose that f j ∼ u j / √ z j where u j ∼ N (u j |0, σ 2 f I) and z j a precision parameter chosen as a Gamma random variable i.e z j ∼ G(z j |α, β). Then ∀ j ∈ {1, ..., N} we have p( f j , z j ) ∼ N ( f j |0, σ f /z j ) G(z j |α, β). And ∀ j ∈ {1, ..., N} the density of f j is given by

p( f j ) = R √ z j (2πv f ) 1/2 exp - z j f 2 j 2v f z α j -1 j β α j j exp -β j z j Γ(α j ) dz j (4) 
Thereby we take the hidden variable z into account and thanks to (3) and (4) the student-t distribution is conjugate with the Gaussian likelihood which leads to the following posterior distribution

p( f , z|g) ∝v M/2 ε exp -g -H f 2 2v ε N ∏ j=1 (z j /v f ) 1/2 exp - z j f 2 j 2v f × β α j j z α j -1 j exp -β j z j Γ(α j ) (5) 
However this posterior distribution is not tractable analytically due to two main drawbacks: the first one is the link between f and z which can be resolved using the VB approach presented later in the paper. The second drawback is related to the dimension of the vector f . When the dimension increases the correlation matrix becomes too large to be inverted effenciently. This problem can be solved by the two new algorithms presented in next sections.

The outline of the rest of this paper is as follows: in section 2 we briefly review the VBA and in section 3 and 4 we present the new algorithms. Finally we conclude by a numerical comparison between the three methods and present some perspectives of this work.

VARIATIONNAL BAYESIAN METHOD

The purpose of the classical VBA [START_REF] Choudrey | Variational Methods for Bayesian Independent Component Analysis[END_REF][START_REF] Mackay | Information Theory, Inference, and Learning Algorithms[END_REF] is to find the best approximating law within a class of approximating laws to the exact posterior distribution by minimizing the Kullback Leibler divergence. However, minimizing the Kullback divergence is equivalent to maximizing the free negative energy F (q) (a term derived from statistical physics) which is given by

F (q) = R N q( f , z) ln p(g, f , z) q( f , z) d f dz ( 6 
)
where q is an approximate posterior probability density (pdf) taken as a separable law

q( f , z) = ∏ q 1 ( f ) q 2 (z) = ∏ j q 1 j ( f j ) ∏ j q 2 j (z j ).
We can thus resume the objective of the VBA method by finding

q opt = arg max q F (q) (7) 
And assuming the separability we can obtain an analytic form for q (see [START_REF] Choudrey | Variational Methods for Bayesian Independent Component Analysis[END_REF] for variational calculus):

q j k+1 ( f j ) = 1 K j exp ln p(g, f , z) ∏ j =i q k i ( f i )q (k+1) (z) (8) 
where K j is the normalizing factor. Although the solution is obtained analytically, (8) does not have an explicit form. This solution is hardly tractable in practice, and it is approximated using iterative methods that impose the use of conjugate prior to obtain the posterior law belonging to a known family. Thus optimizing the posterior turns out to be an optimization of its distribution parameters.

Considering the model (1), we choose a conjugate prior for f and z and the optimal approximating distribution of f is known to belong to a Gaussian family, and a Gamma one for the prior probability density function of z. So we initialize the two densities as

q (0) 1 ( f ) = ∏ j N ( f j |m (0) j , v (0) j ) = N ( f |m (0) , Diag(v (0) )) q (0) 2 (z) = ∏ j G(z j |α (0) j , β (0) j ) = G(z|α (0) , β (0) ) where m (0) = [m (0) 1 , m (0) 2 , ..., m (0) 
N ] ′ ∈ R N is the vector of means, v (0) ∈ R N is the vector of initial variances and Diag(v (0) ) is a diagonal matrix with (v (0) ) on its diagonal.

Thanks to the conjugacy property, if we denote by k the number of iterations then during the iterations, q (k) 1 ( f ) and q (k) 2 (z) will stay in the same families and we obtain q (k)

1 ( f ) = ∏ j N ( f j | m (k) j , v (k) j ) = N ( f | m (k) , v (k) ) q (k) 2 (z) = ∏ j G(z j | α (k) j , β (k) j ) = G(z| α (k) , β (k) ) (9) 
Based on the equation ( 7) we deduce that the optimization problem can be tackled following the alternating optimization scheme

q1 = arg max q 1 {F (q 1 q2 )} q2 = arg max q 2 {F ( q1 q 2 )} (10) 
For the approximation of q 2 (z) it is easy to see from (5) that p(z| f , g) is separable, thus all the z i can be computed simultaneously knowing only q 1 ( f ). And we obtain:

   α (k+1) j = α j + 1/2 β (k+1) j = m (k) j 2 +v (k) j 2v f + β j (11) 
However, for the approximation of q 1 ( f ) we use the updating equations ( 8) and ( 5), that eventually result in the following updating equations (see [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF] for details):

     v (k+1) j = 1 v f α j / β (k+1) j + 1 v ε diag (H t H) j -1 m (k+1) j = v (k+1) j v ε H t (g -Hm (k) ) j -diag (H t H) j m (k) j . (12) 
In the following we present methods meant to solve the functional optimization problem given by the VBA more efficiently than the approaches suggested by [START_REF] Ichir | A Mean field approximation approach to blind source separation with Lp priors[END_REF].

VARIATIONAL BAYESIAN DESCENT GRADIENT LIKE ALGORITHM

The maximization problem ( 7) is considered as an infinite dimensional concave problem subject to the positivity assumption and the normalization constraint; ∀i, q i ( f i ) d f i = 1. It would be convenient to determine the approximating density using the gradient descent method. Therefore, choosing a workspace adapted for Variational Bayesian methodolgy where classical optimization algorithms still hold is an important point. In [START_REF] Molchanov | Tangent sets in the space of measures: with applications to variational analysis[END_REF], such a problem was treated, then inspired by that and by the exponentiated gradient descent in [START_REF] Kivinen | Exponentiated gradient versus gradient descent for linear predictors[END_REF] a new iterative algorithm was proposed in [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF]. It is essentially based on a measure theory result which is the Radon-Nykodym theorem, see for instance [START_REF] Rudin | Real and complex analysis[END_REF]. The main idea is that a measurable function h (k) exists, precisely h (k) ∈ L 1 (q (k) ) such that

q (k+1) ( d f ) = h (k) ( f )q (k) ( d f ) (13) 
where f ∈ R N . Likewise the classical scheme given by the gradient descent method [START_REF] Kivinen | Exponentiated gradient versus gradient descent for linear predictors[END_REF] leads to the construction h (k) as the Frechet derivate of F at q (k) [START_REF] Behmardi | Introduction of fréchet and gâteaux derivative[END_REF]. So we obtain

q (k+1) = K exp λ k dJ(q (k) , f ) q (k) ( 14 
)
where λ k is the algorithm step size at the iteration k which corresponds to the step of descent whereas dJ(q (k) , f ) is given by

∀ j ∈ {1, ..., N}, ∀ f ∈ R N , d j J(q j , f ) = ln p(g, f ) ∏ j =i q i ( f i ) -ln q j -1 (15) 
Then, let k ≥ 0 be given and q (k) be constructed, we consider q (λ) given for λ ≥ 0 by

∀ f ∈ R n , q (λ) 1 ( f ) ∝ q (k) 1 ( f ) ∏ j exp d j J(q (k) j , f j ) λ k ∝ q (k) 1 ( f )     ∏ j exp ln p(g, f ) ∏ j =i q (k) i ( f i ) q (k) 1 j ( f j )     λ k ∝ q (k) 1 ( f )   ∏ j q (r) j ( f j ) q (k) 1 j ( f j )   λ k (16) Finally we obtain              v (λ) j = v (r) j v (k) j v (r) j + λ(v (k) j -v (r) j ) m (λ) j = m (k) j v (r) j + λ(m (r) j v (k) j -m (k) j v (r) j ) v (r) j + λ(v (k) j -v (r) j ) (17) 
where

     v (r) j = 1 v f α j / β (k+1) j + 1 v ε diag (H t H) j -1 m (r) j = v (r) j v ε H t (g -Hm (k) ) j -diag (H t H) j m (k) j (18)
This new algorithm allows to minimize jointly all (q j ) unlike the classical Variational Bayesian algorithm. Besides, a suboptimal stepsize λ subopt can be chosen in order to optimize the convergence rate. See [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF] for more details on this method.

As the gradient descent algorithm is known for its slow rate of convergence, a natural idea to extend the previous method was to consider the case of the conjugate gradient algorithm [START_REF] Aude | Introduction à l'optimisation numérique[END_REF]. However, its use in the metric space of the probability density encountered problems, because of the absence of the notion of inner product in that space which allows in a normal situation to have the conjugate directions.

But we can still note, if we follow the previous construction steps and thanks to the Radon-Nykodym theorem, that we can arrive to the following update equation

q (λβ) 1 ( f ) = q (k) 1 ( f ) q (r) 1 ( f ) q (k) 1 ( f ) (λ) q (k) 1 ( f ) q (k-1) 1 ( f ) (λβ) (19) 
where

q (k) 1 q (k-1) 1
is the descent direction at the previous estimate, q 1 (r) is determined by (18) and β is the conjugate parameter which is difficult to determinate. That's why in our application later, we are going to consider only the case where β = 1 which is a particular case known for the correction of Vignes [START_REF] Brette | Gradient à pas adaptatif avec corrections, une mise en oeuvre matlab[END_REF]. We notice also that for β = 0 we are simply in the domain of the algorithm presented in [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF].

Applying this algorithm to estimate q 2 ( f ) we obtain r) . Analyzing ( 12), ( 18) and (20) we notice that the common part of those three algorithms is the alternating optimzation scheme and

               v (λβ) j = v (r) v (k) v (k-1) j (v (r) v (k-1) ) j + λ v (k-1) δ (k) + βv (r) δ (k-1) j m (λβ) j = (m (k) v (k-1) v (r) ) j + λ βv (r) ∆ (k) + v (k-1) ∆ (k-1) j (v (k-1) v (r) ) j + λ v (k-1) δ (k) + βv (r) δ (k-1) j (20) with δ (k) = v (k) -v (r) , δ (k-1) = v (k-1) -v (k) , ∆ (k) = m (k) v (k-1) -m (k-1) v (k) and ∆ (k-1) = m (r) v (k) -m (k) v (
   ĝ = Hm δg = g - ĝ δ f = H t δg (21)
are the most time consuming operators that can cause some implementation issues. But as in many inverse problems where we do not have access to the matrix H, we can still compute forward operator: Hm → ĝ, which corresponds to the Radon operator in Computed Tomography (CT) for example , and the adjoint operator: H t δg → δ f , like Backprojection in CT. We may also need to compute the diagonal elements of [H t H] by developing algorithms that provide this.

RESULTS

To illustrate our results, we choose to treat the linear inverse problem given by (1) with a non invertible matrix H coming from a small tomographic problem. The test image (64 × 64) and the collected data are displayed in Fig. 1. The simulation parameters are presented in Tab. 1. There are 32 various angular positions uniformly spaced over [0, 180[. For each projection, 95 detector cells are performed. And we add to data a white Gaussian noise (iid) with standard deviation equal to 0.3. The programming language used to implement algorithms is MATLAB. The three approaches are initialized with a zero mean and a variance equal to one, the hyperparameters v e , v f and α are respectively fixed to 1, 0.05, and 0.1. The reconstruction results collected in Fig. 3. Furthermore, Tab. 2 show us that the two new algorithms have almost the same reconstruction quality than the classical VB. Besides, by comparing the exucution time we see that the two new algorithms are faster than the classical VB. Fig. 2 shows also the performance of the free negative energy criterion for the new methods and clearly demonstrates their interesting rate of convergence for 150 iterations of the algorithms. We can also check other results in the referenced paper [START_REF] Fraysse | A measure-theoretic variational Bayesian algorithm for large dimensional problems[END_REF] of these methods and their reconstruction properties on a large dimensional dictionary application problem. 

CONCLUSIONS AND PERSPECTIVES

The sparsity is requiered property in many signal and image processing applications. In this paper first we reviewed the main idea of the Variational Bayesian Approximation for ill-posed inverse problems. The student-t model was used to enforce sparsity. Then we presented two new algorithms involved in the Bayesian methodology and able to provide better results than the classical methods. In a next step we want to test the performences of these methods in non linear (bi-linear or multi-linear) cases like diffraction wave tomography (Microwave, optical..).
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TABLE 1 .

 1 Simulation parameters Image testPeaks on the image Angles of projection Detector cells Noise

	Sparse phantom	7	32	95	0.3

TABLE 2 .

 2 Execution Time Methods FBP Classical VB VB Grad VB Conjugate Grad (β = 1)

	Iterations	1	15	150	150
	SNR (db)	-2.04	5.69	2.19	7.11
	Time cpu (s) 0.036	579.6	8.77	8.93