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Sharib Ali∗, Kedir M. Adal∗, Désiré Sidibé ∗, Thomas P. Karnowski†, Edward Chaum,M.D.‡

and Fabrice Mériaudeau∗
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Abstract—Diabetic macular edema is characterized by hard
exudates. Presence of such exudates cause vision loss in the
affected areas. We present a novel approach of segmenting
exudates for screening and follow–ups by building an ethnicity
based statistical atlas. The chromatic distribution in such an atlas
gives a good measure of probability of the pixels belonging to
the healthy retinal pigments or to the abnormalities (like lesions,
imaging artifacts etc.) in the retinal fundus image. Post–processing
schemes are introduced in this paper for the enhancement of the
edges of such exudates for final segmentation and to separate
lesion from false positives. A sensitivity(recall) of 82.5 % at 35%
of positive predictive value on FROC-curve is achieved. Results
are obtained on a publicly available HEI-MED data-set and have
been compared to two reference methods on the same dataset
showing the competitiveness of the proposed algorithm.

I. INTRODUCTION

A. Clinical motivation

Diabetic macular edema (DME) is one of the most severe

complication seen in both pre–proliferative and proliferative

diabetic retinopathy. According to the first global estimate of

World Diabetes Population 2010, more than 21 million people

worldwide are affected with it. In DME, vascular leakage

produces yellow or white waxy patches often referred as

“hard exudates”. These are the hallmarks for the diagnosis of

macular edema in fundus images. Macula is the most central

area of the retina for vision. The adverse effect of presence

of these exudates results from distorted vision to complete

loss of vision. A regular follow-up and diagnosis can help in

treatment of them by laser surgery and can reduce the risk of

blindness by 90 %.

B. Previous work

Bright lesion segmentation (like exudates) can be divided

into adaptive grey level based thresholding [1], region growing

method [2], morphology based technique [3], and classification

methods [4]–[6]. Sopharak et al. [3] proposed a method to

automatically extract the exudates from the images of diabetic

patients with non–dilated pupil. In their approach they used

fuzzy C–mean clustering followed by morphological closing

reconstruction. Standard deviation, hue, intensity and number

of edge pixels are selected as input features based on exudate

characteristics. The algorithm was evaluated on 10 images

against their ground truth manually obtained by ophthalmolo-

gists. They present an overall sensitivity of 87.2% at specificity

of 99.2%. Morphological closing reconstruction technique can

give distance information between the detected exudates and

the optic disc but it fails to detect tiny exudates. The algorithm

also cannot separate the exudates and the imaging artifacts.

Sanchez et al. [7] used the green channel of the fundus

image due to its higher contrast in RGB color space. The

authors found the pixels belonging to the background using

the method described in [8] and applied bilinear interpolation

to generate the complete background. The image is then

modeled as a mixture of three Gaussian models represent-

ing background, foreground and outliers respectively. The

foreground constitute vessels, optic disk and lesion. An EM

(Expectation-Maximization) algorithm was used to estimate

the exudate candidate and thresholded dynamically. As the

exudate detection procedure, the authors employed Kirsch’s

edge operator [9] to separate the exudate from artifacts and

other bright lesions. Niemeijer et al. [4] applied a machine

learning approach for the automatic detection of exudates and

cotton–wool spots in color fundus images. They presented a

method for distinguishing among drusen, exudate and cotton

wool spots. 300 retinal images of patients with diabetes were

chosen from tele–diagnosis database. The gold standard was

built on this dataset by two retinal specialists. They achieved

95% sensitivity at 88% specificity for the bright lesions. The

sensitivity/specificity pairs were 77%/88%, 95%/86% and

70%/93% for drusen, exudates and cotton wool spots detec-

tion respectively. Giancardo et al. [6] used the preprocessing

step by background estimation with a large median filter on

the I-channel of the normalized image in HSI color space. The

normalized image was further enhanced with morphological

reconstruction. This gave a clear distinction between the dark

and bright structures. The author manually removed the optic

nerve. Exudate candidates were selected based on some score

using connected component analysis. The score was assigned

based on Kirsch edges and stationary wavelets analysis. The

method was evaluated using varying threshold from 0 to 1 in

steps of 0.05 (0 : 0.05 : 1). All of these classification methods

require an accurate manual annotations for the training dataset.

In addition they are also highly dependent on the type of

features selected for classification.

C. Aim of study

The retinal image acquisition using low cost fundus camera

is the most widely used technique. However, the segmentation

of such bright lesions and their subsequent follow–ups are



not easy because of 1) presence of anatomical structures with

highly correlated pixels with that of lesion, 2) illumination

variability and 3) movement of the eye during multiple visits

of the patient. We propose an automatic statistical atlas based

exudate segmentation algorithm. The test image is warped

on to this atlas co–ordinate. A distance map with this atlas

image not only suppresses the optic disc and other vascula-

tures in the retinal image but also registers the image to a

common co–ordinate system. The lesions on this map show

high deviation from the healthy retinal pixels. Further, post–

processing schemes are applied for the edge enhancement of

these lesions. Statistical retinal atlas has been shown to be

effective method for image grading [10] but has not been

exploited for quantification of any kind of lesion segmentation.

II. MATERIALS AND METHODOLOGY

The retinal atlas is created from 400 good quality paired

fundus images of healthy African American eye from a dataset

containing 5,218 retina fundus images collected from February

2009 to August 2011 from clinics in the mid-South region of

the USA as part the Telemedical Retina Image Analysis and

Diagnosis (TRIAD) project [11]. The images are from both

healthy and abnormal retinas with color variations covering the

pigmentation spectrum found in the patient population, which

is approximately 70% African American and 30% Caucasian.

Exudate segmentation is validated using publicly available

HEI–MED dataset [6] for diabetic macular edema. It includes

a mixture of images with no macular edema or with varying

degree of macular edema. The dataset consists of 169 fundus

images with mixed ethnicities. We evaluate our methods with

the 104 images corresponding to African American patients.

The idea of building an ethnic group based statistical retinal

atlas is because the ethnic background plays a significant role

in retinal luminance in the fundus images [12].

The process includes the building of the statistical atlas

using the images of the same ethnic group in the dataset

mentioned above. Any test image with the same ethnicity

patient is warped to the atlas space. A distance map is created

and further post–processing schemes are used. We have used

Kirsch’s operator and Riesz transform. The idea behind using

two edge detectors is to further enhance the edges found by the

Riesz transform. The method is detailed below and is shown

in Fig. 1.

A. Statistical retinal atlas building

A retinal atlas provides a reference representation for im-

portant retinal structures: major vessel arches (superior and

inferior), optic disc, fovea and eye pigmentation. First, a

reference co–ordinate system is identified by rigid alignment

of the detected optic nerve center, macula center and by finding

mean shape of the tracked major vessel arches in the training

dataset. The overall process is discussed below:

1) Paired retinal images registration: The paired images

are first registered using a feature based registration method.

Feature vectors are extracted from the intensity image using

SURF algorithm resulting in a 64-dimensional feature vector

Fig. 1: Block diagram of overall process.

for each interest point [13]. An interest point in the test image

is compared to an interest point in the target image by calculat-

ing the Euclidean distance between their respective descriptor

vectors. A matching pair is detected, if its distance is closer

than 0.7 times the distance of the second nearest neighbour.

This is the nearest neighbour ratio matching strategy used

to eliminate ambiguous pair of features [14]. We then apply

RANSAC algorithm to further remove outliers and estimate

the best transformation parameters from the known matches.

2) Vessel arch estimation: Considering the automatically

detected optic disk location using Hough transform [15] as

center of an arbitrary co-ordinate system shown in Fig. 2(a),

we define some empirical assumptions for finding the major

arches in the registered image pairs of each eye. These

assumptions are used in locating the seed points for the vessel

arches, which are then found automatically. For the right eye,

starting from the detected optic disc center, the search is

made in the interval [90◦, 135◦] for the upper arch and in

[225◦, 270◦] for the lower arch. Similarly, for the left eye, the

search is made in the closed interval [45◦, 90◦] for the upper

arch while for the lower arch the interval is [270◦, 315◦].

A rectangular mask of size 20 × 20 is taken around each

pixel, considering the maximum diameter of the major arches

to be not more than 20 pixels, within the search interval

mentioned above to find the highly correlated pixels using a

low pass filter and a differentiator correlation kernel on vessel

enhanced image. Vessel enhancement was done by analysing

the eigen system of the Hessian matrix according to [16]. The

correlation filter [17] adapted on this filtered image is locally

oriented along x–axis and is defined by,

h(x, y) =
1

8K
{−2δ (y − 2)− 2δ (y − 1) + 2δ (y + 1)

+2δ (y + 2)} ⊗ {

K−1∑

k=0

δ (x− k)}, (1)

where ⊗ represents the convolution operator along y-direction,

δ represents the impulse response of the filter and K is the

kernel size.



(a) (b)

Fig. 2: Vessel Tracking in Left eye. a) Search location of major
arches; b) Automatic major arches tracing. Red points are the traced
path and blue curve is represents the estimation of the end points of
these major arches.

The pixels within the constrained search window defined are

convolved with the kernel in equation 1. The peak response of

this correlation kernel is obtained at the major vessel arches.

The pixel location is taken as a seed point for tracking the

major vessel. Vessel boundaries can be obtained by rotating

correlation kernels given by equation 1. Multiple templates

are correlated with the seed point and the search is moved

along the point with the highest response [17]. Each template

is divided into right and left template. Left template finds the

edge location in 90◦ counter–clockwise direction and right

is tuned to the right boundary. The angle of rotation of the

kernel is discretized into 16 values at spacing of 22.5◦ all

with the same sum of square weights of 60 for each template.

The tracked major arches are shown in Fig. 2(b). The blue

arc gives the end points cutting the tracked vessels at yellow

points. Typically, the radius of this arc is taken equals to 1.45

× the distance from macula center to optic disk for both right

eye and left eye images. The images in the dataset used are

macula centered. The optic disc localization was done using

circular Hough transform [15].

3) Warping and atlas: The vessel arches are estimated

for N images. We then automatically find M (M = 20)

equidistant points on each of the two major arches as explained

above. PCA (principal component analysis) is applied on these

points to find the two mean major vessel arches forming an

atlas co-ordinates frame along with the mean macula center

and mean optic disc center as shown in Fig. 3(a). The images

used were macula centered so we empirically assume it to be

at the center of the image.

Each training image is warped onto this atlas co–ordinate

frame using thin–plate splines. After all the images are warped

into this atlas co–ordinate system, we take the mean to get the

average color/pigmentation in the population. The mean image

is normalized to obtain an atlas map for the ethnic group (here

African American) population as shown in Fig. 3(b).

B. Exudate Segmentation

The test image belonging to the same ethnic group as that

of the atlas in use is first warped onto the atlas co–ordinate

system. Then a distance map is obtained with that of the mean

atlas image. This suppresses the similar pixels located at the
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Fig. 3: Statistical atlas. a) Atlas co–ordinate frame; b) Mean atlas
image.

(a) (b)

(c)

Fig. 4: Segmentation of exudates on atlas space. a) Atlas mean image
and mesh plot; b) Unhealthy eye (exudates) and mesh plot ; c)
Distance image between a) and b).

same positions as shown in Fig. 4. However, the pixels having

high variance between the test image and the mean atlas image

are those belonging to lesions or having high probability of

being lesion like imaging artifacts or drusen or cotton-wool

spots. To eliminate such false positive (FP) detections we

used two post-processing schemes. Riesz transform was used

to enhance the remaining structures that are not suppressed

then Kirsch edge operator was used to enhance only those

pixels that belonged to exudates. Our experiments showed that

using the combination of these two post–processing schemes

eliminated the FPs.
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Distance map of unhealthy eye
Riesz applied on distance map
Gold standard (Statistical atlas)

Fig. 5: Post processing scheme enhancing the lesion pixels in an
unhealthy test image [21] .

Riesz transform is a multidimensional extension of the

Hilbert transform. The space–domain representation of d–

channel filterbank is given by:

R̂f(x) =




R1f(x)

.

.

Rdf(x)


↔F − j

w

‖ w ‖
f̂(x), ∀f ∈ Lp(ℜ

d). (2)

The component filters of the Riesz transform in Eq. (2) are

90o rotated versions of each other. A general representation

of filterbank response that can be steered in any direction is

presented as,

Huf(x) =

d∑

n=1

unRnf(x) =< u,Rf(x) > . (3)

One of the major advantage of using Riesz tansform is

that the coefficients are essentially zero in smooth area of the

image [18] and has been exploited for texture enhancement in

past [19].

Kirsch operator is a non–linear edge detector kernel that

evaluates the edges in 8 different directions on an image. The

operator is calculated for 8 directions with 450 difference [20].

hn,m = maxz=1,....,8

1∑

i=−1

1∑

j=−1

p
(z)
ij .In+i,m+j , (4)

where p
(z)
ij is the directional kernel.

The result of the post processing scheme using Riesz

transform [21] is shown in Fig. 5. We can clearly notice

that the post–processing scheme increases the cluttering of the

lesion pixels thus making the thresholding easier.

A soft thresholding is done after the treatment with the

post–processing scheme presented. The thresholding values

were empirically set as (0 : 0.1 : 1). The results of the exudate

segmentation using the statistical atlas and the post-processing

schemes discussed above are shown in Fig. 6.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Results of exudate segmentation: On the left column (a,d,g)
are original images; in middle column (b,e,h) are images with
labelled exudates from the output of the algorithm (thres=0.6) and
on the right column (c,f,i) are the ground truths annotated by an
ophtalmologist [22]. On the topmost right column (c), the blue circles
represent bright lesions which might not be possibly hard exudates.

III. RESULTS

The accuracy of the performance of the diagnosis by an

algorithm is characterized by plotting ROC curve and FROC

curve. The area under the curve gives the accuracy of the

algorithm in use. However, when dealing with highly irregular

datasets, Precision-Recall (PR) curves give a more informative

picture of an algorithm’s performance and there exists very

strong connection between ROC space and PR space [23].

For our evaluation purpose with the ground truth provided

in the HEI–MED dataset, a true positive is considered when

at least a part of the lesion overlaps with the ground truth.

The detection is a false positive when the exudate is found

outside the region of the manually annotated ground truth and

a false negative if no lesion is found in the image while a

lesion exists. Convex hulls in PR curves is achievable and is

similar to the convex hulls in the ROC curve. We have used

PR-curve but with the recall or sensitivity on the y-axis and

precison or positive predictive value on the x-axis. We call

this curve “Free-Response ROC Curve” in this article since

there is no widely accepted summary and system to evaluate

the FROC model. The method explained in [23] has been used

to accurately calculate the area under the curve (AUC).

The algorithm has been evaluated by comparing it with the

other two best methods in the literature Sanchez et. al. (2009)

[7] and Giancardo et. al. (2011) [6] for DME segmentation.

We found our method to be promising as shown in Fig. 7. The

major limitation during this evaluation was the lack of ground

truth on the atlas space. So we had to unwarp the distance

image back to the original space for evaluation. During the
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Fig. 7: FROC curve for evaluation of the method.

Method AUC

Sopharak et al. (2008) 0.580

Sanchez et al. (2009) 0.795

Giancardo et al. (2011) 0.834

Proposed Method 0.826

TABLE I: AUC comparison (methods in literature)

interpolation process there is always few pixels of error in the

unwarping. Despite this disadvantage we obtained comparable

results as shown in table I; without the need of removing the

optic nerve manually as in [6] or removing the background as

in [7]. The proposed atlas based exudate segmentation method

achieves an accuracy of 82.60%. This result should not be

confused with the detection rate accuracy used for diagnosis of

the patient which means finding 1 significant lesion. We are not

presenting the ROC curve here because we are concerned with

the overall exudate segmentation. However, we are confident

that this approach can help in better candidate selection for

the automatic diagnosis of the patients with diabetic macular

edema.

IV. CONCLUSION

The significance and the utility of the statistical atlas for

exudate segmentation has been presented in this paper. It

has been shown that bright lesions segmentation onto the

atlas space can be done without doing pre-processing steps

like image normalization, optic disc and vessel removal etc.

Experiments showed that lesions are more apparent relative to

the background vasculatures in the distance image on the atlas

space. The results presented in this paper proved the reliability

of this method. The proposed method can potentially be used

for the follow-up visits as all the test images are taken to

one coordinate frame (i.e. atlas co-ordinate system). This will

help in the analysis of the area covered by the lesions during

subsequent examinations.
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