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Abstract —To take account of the uncertainties introduced on the losses in the stator of a synchronous electricalhine, using
magnetic properties during the manufacturing process, the the Monte Carlo Simulation Method.

present work focuses on the stochastic modelling of iron losses in
electrical machine stators. The investigated samples are composed
of 28 dinky stators, coming from the same production chain. The
stochastic modelling approach is first described. Thereafter, the Il. IRON LOSSES VARIABILITY
Monte-Carlo sampling method is used to calculate, in post- A Experimental approach

processing, the iron loss density in a PMSM that is modelled by . .
the finite element method. The interest of such approach is Twenty eight samples of slinky stators made fromsame

emphasized by calculating the main statigtical characterigics Standard lamination grade M800-50A and the samengey

associated to the losses variability. are investigated. In a first step, the variabilit the iron
losses is quantified from the experiment. To thisl,ethe
I. INTRODUCTION magnetic characterization is carried out using atit&ion

winding that creates a magnetic flux in the yokengl its

Proper modelling and dimensioning of electrical hiaes perimeter and a secondary winding that measures the
require the knowledge of magnetic steel propersesh as magnetic flux density (Fig.1). Preliminary analykas been
the magnetic behaviour law and iron losses. Usudllg realised, concerning the repeatability of measurgsnand
dimensioning is reliable when the input data, edato the the influence of manual windings. Results showe these
geometry and physical parameters, are assumed twelbe aspects do not present a significant variability. the
known. In that context, many works have been corexér following, all samples have been characterizedbftevels of
with the post-processing of iron losses calculation the the magnetic flux density By (from 0.75T to 1.5T) and 6
numerical modelling of electrical machines [2] irevels of frequency (5Hz to 200Hz).
deterministic cases, meaning that uncertaintieateél to
magnetic properties are neglected. Such assumptaes to
be insufficient as the manufacturing of electricahchine
magnetic parts, from the cutting of laminations ttile final
magnetic core shape, may introduce uncertaintiesthen
magnetic properties, especially on the iron los$tp
Therefore, the development of models that take watcof
these uncertainties is relevant for electrical nvaeh
designers. In [3], an experimental approach invagvia Fig.1.Stator samples
sample of twenty eight slinky stators, manufacturedn the . , )
same assembly line, is investigated to take acooiuthie iron  Statistical analysis were performed on the measingu
loss variability. Studying this kind of stator i$ interest as '0Sses, from one sample to another, and the vétyahias
the manufacturing process, consisting in a lonip sif steel _quantlflegl in term of the coeffl_C|e_nt of variatig@v), which
lamination that is progressively punched and rolgdin a 1S the ratio of the standard dewa_tlon (Std)_toniman.
spiral way, may have noticeable impact and vaiitgtoin the At S0Hz, the calculated Cv is approximately 6% &ir
magnetic properties of the material. Following thisrk, a Bmax I€vel. Iron losses for the 28 samples measuret 5t
stochastic model of iron losses parameters is dpeelin this @nd 50Hz are illustrated in figure 2.
paper. Note that the modelling approach is simitathose
presented in the field of fatigue crack growth ieamanical
probabilistic modelling. These models are mainlieiasted
in describing the stochastic aspect of the fatigienaterial,
using the Paris Erdogan model [10].

In our case, the developed model is used for ssticha
Finite Element (FE) post-processing calculationttod iron




B. Stochastic modelling approach

In order to account for this variability, the folling steps
have been considered:

The variability of the iron losses appears cleaalyd
reflects the non repeatability of the residual ¢aists
introduced by the manufacturing process. More Hetaithe
experimentation may be consulted in [3].

then validated with the second group. This approach

7.8
v allows one to check the validity of the probabidist
; model for the studied group of samples.
7.2 v v v vy B.1. Deterministic model-Parameters identification
g v o vo For a sinusoidal supply, the so-called loss sejoarat
% vy v v approach, according to the phenomenological priacip
66 . v ] proposed by Bertotti [4], is implemented for moutg]l the
iron losses of the samples:
v . T 2 y
6 ‘ ‘ ‘ A\, 1 dB dB )2
7 14 21 28 k.| = = = =
Samples Pot kh[ 2 j f +Tv(|; ke( dtj +kexc[ dtj a @)

Fig.2.lron losses at 1.5T and 50Hz of the 28 sasnplestator

where the first term corresponds to the quasiestatsteresis
losses, the second term take account for the cldskisses
(macroscopic eddy currents) and the third termelated to
the excess losses (dynamic behaviour of the magneti
domains). In relation (1), the coefficients,(a, ke kec) are
identified for each stator sample, for the wholegfrencies
and B, levels, with a least square fitting method. The
variability of the identified parameters are givenable 1.
Deterministic model-parameters identification: the first
step consists in identifying the parameters of the
deterministic model for each experimental trajector
Therefore, classical least square fitting methoy ina

TABLE |
VARIABILITY OF IDENTIFIED PARAMETERS OF IRON LOSSES

implemented. Parameters K o ke koo _
T . _ Mean 0.067 1.506 6.9xfo|  52x10

Probabilistic modelling of parameters: this step deals Sd 47x10 | 23x10° 9.19x10° | 4.90x1C°

with the identification of the probability distriban Cv (%) 6.94% 1.57% 13.31% 9.41%

functions (PDF) of the input parameters. This can b
achieved in the context of a parametric approach flg
which classical probability distribution functions™
(uniform, Gaussian, lognormal) can be tested withThe parametric approach is used to model the \ititjabf
Kolmogorov-Smirnov (KS) test, to check the goodnesshe iron losses parameters, and three candidatealpitity
of fit statistics. More precisely, KS test defineall  distributions are proposed (uniform, Gaussian, ¢ogral
hypothesis K that consists in assuming that thedistribution). These candidate probability disttibns are
experimental data are distributed according to théhen tested using the Kolmogorov Smirnov (KS) testa
proposed probability density function, at a riska®b.  risk of 5%. For the three candidate probabilitytritieition
Then, by computing the maximum distance betweefunctions, the p-values of the KS test, at a ri§l6% are
empirical Cumulative Distribution Function (CDF) of summarized in table 2.

the experimental data and the CDF of the candidate

2.Probabilistic modelling of the iron loss model parameters

distribution, one can reject or not the null hypastis at TABLE Il
a risk of a%. In practice and in many softwares. the P-VALUES OF KOLMOGOROV SMIRNOV TEST FOR THE LOSS MODEL
: ' ' PARAMETERS

distance between these CDF corresponds to a psvalue
and the null hypothesis ¢Hs rejected if the p-value K

d is less than the rigo. It is al e P e
computed is _esst an the rig%o. It is also necessary to Gaussian p-value 06k o043 de o089
analyze the inter-dependence of the parameterbeof t -
Lognormal p-value 0.53 0.76 0.2 0.75
model.
o I Unif -val 0.0 0.9 0.( 0.0
Validation of the model: the validation of the model nform pvalue

consists in assessing numerical experimentatidateck ' . N

to the probability distribution of the parameteitonte For the f|rst two lines in t.hIS table, the p-valwe greater
Carlo simulations may be used for instance. Moreovéhan the risk of 5%, meaning that, for all paf%m?m‘ the
the correlation structure between the parametess HQN 0SS model, the Gaussian and lognormal distiobs are
also to be implemented. The KS test is then appibed"t rejected, at a risk of 5%. At the opposite, tmform

validate the model in order to check if experimeatad distribution is rejected, except for the parameteMoreover,

simulated CDF are the same. In our case, it iszezl thiS table suggests also that higher p-value coorss to a
for each B, level better adequacy between the data and the candidate
ax .

S ) probability distribution. Therefore, the followingpnclusion
Cross Validation (CV) techniques: for the selected ig made:

model, one can apply a CV technique [10],[12] which
consists in splitting the experimental data in two
groups: the model is developed with the first grangd

(kn, kexc) are more likely to be Gaussian distributed
(ke,) are more likely to be lognormal distributed



Finally, the Pearson linear correlation between fitner TABLE IV
parameters is summarized in table 3. One can nttatethe SPEARMAN RANK CORRELATION OF IRON LOSSES PARAMETERS
correlation is significant for the parametergkk.).

Kn a ke Ko
TABLE Il K 1| 0.27| -0.25| 0.028
LINEAR CORRELATION OF IDENTIFIED PARAMETERS OF IRON LOSS " 0.269 1 -033] 042
ke -0.25] -0.33 1] -0.52
ki a ke Kexe Kexc 0.028] 0.42] -0.52 1
K 1| 035| -017] -0.04
a| 035 1] -01] 026 In the output of the method, the results show it
ke | -0.17| -0.1 1| -0.64 marginal distribution of each parameter is mairgdirand the
kec | -0.04| 0.26| -0.64 1 obtained rank correlation matrix is very close e tesired

correlation matrix in table 4.

. I The parameter realizations from the Monte Carlohoet

B.B.Stocha.suc.ModeI validation o . . have been then used to simulate the variabilityasf losses,
The validation of the model consists in assessingerical at 50Hz and for all B level. Simulated and experimental

experimentation, regarding the PDF of the inputapeters. CDF, for B,,=1.5 T are illustrated in figure 3.
It can be achieved by Monte Carlo simulation thatolves ]

two main steps: sampling of the probabilistic inpatiables !

and performing the deterministic computations tovjite the — Jlated |-
statistic of the output of the model. If a Monte rida 0.75 - Experimenta

experiment is to deliver correct results, it hasrbeepeatedly
appreciated that correlation among input variabtesst be
taken into account [9]. Indeed, such technique rassuthat
input variables are independent, meaning that fbait PDF

is provided by the product of the marginal disttibn. If all 0.25
the input variables are Gaussian distributed, amy im this - 9]
case, one can generate Multivariate Gaussian liisitvn 0 o ‘
(MGD) random vectors, and the correlation structise .5 '/6-3fr§m LOZS-SWK7]-975 8.8
defined by the Pearson linear coefficients [11]t I§ not the ¢

case, all the joint distributions among the inpartiables have

to be specified. One can then use the Iman and v@ono

method [8]. _ S ~ This figure illustrates the good approximation difiet
By definition, this method consists in inducing estled experimental data by the simulated CDF. Then, tBetd6t is
Spearman rank correlation matrix while preservi® tapplied for all B,y levels, at a risk of 5%. For a givenB
marginal distribution for each input variables. niust be |eyel, the null hypothesis fassumes that the simulated and
noticed that the Pearson and Spearman correlatiiffes on  experimental CDF are the same. The results shotyftivaall

their theoretical . basis. The assumpt_ions .underlythg Bmax lEVels, the null hypothesis was not rejected &sla of
Pearson correlation are that the relationship betwevo 5o4 a5 the p-value of the test were between 0.8Ddh

variables is linear and both populations are Gaussi o _
distributed. At the opposite, the Spearman coimat B-4.CrossValidation Techniques
measuring monotone association, is more flexibleaindling  For the CVT, the iron loss data are split in twbsets: a
nonlinear relationships and is independent of tis&ridution modelling subset (MS), including 23 trajectoriendaa test
shape [9]. subsets (TS), constituted of 5 trajectories. Thababilistic
Therefore, the method takes in its inputs the nmalgi model is identified from the MS, and the approaekatibed
distributions of individual variables (this can bbtained by in the previous section is applied (Independent tdddarlo
using Monte Carlo simulation) and the Spearman rasknulation and implementation of the Iman and Camov
correlation matrix (identified from experimentaltda The method). From the results, a 95% confidence intfvE can
correlated vectors are then obtained by rearrangiegiously be identified and compared to the MS trajectorassshown
generated uncorrelated vectors, according to thieirelex of in figure 4.
a multivariate reference. The output of the mettwod good
approximation of the Spearman rank correlation imatmd
the same marginal distribution for each individpalameter MS trajectories
| [§]_[8-[Q]_9} 97.5% fractile
The Spearman method has been applied for the asses
parameters, regarding their marginal PDF. In thst fitep, sl \
100 000 realizations of the parameter vectors hbeen
simulated independently with Monte Carlo simulatidrhe
rank correlation matrix (table 4), identified freerperimental
data, and the simulated vectors have been thenassatput
for the Iman and Conover method.

0.5

CDF Iron Losses

Fig.3. Experimental and simulated CDF fa.81.5T, at 50Hz
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02.75 0.§4 1.i3 1.51 15
Bmax [T]
Fig.4. Modelling subsets and 95% Confidence Inferva



In this figure, all the MS trajectories lie withithe
identified Cl. This one is compared with the TSectories,
as shown in figure 5. It can be observed that titgee TS
trajectories lie within the 95% CI identified frotime MS.
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TS trajectories
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97.5% fractile
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Fig.6. Synchronous machine mesh
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IV. RESULTS AND DISCUSSIONS

No load simulations were performed for a remanent
magnetic flux density B0.38T in the permanent magnets. A
Monte-Carlo procedure, combined with the Iman and

2.5% fractile

(%75 1.‘13 1.‘31

Bmax [T]
Fig.5. Tests subsets and 95% Confidence Interval

0.94 15

According to all these criteria, it can be considethat the
developed stochastic model is representative offtimelosses
variability among the studied samples.

In stochastic context, the iron loss model can bitem
under the form given by (2), where the paramé&eenotes
the outcome belonging to the random space.

Plot =kh(9)(Asza(9)f + }[ke(g)((f)2+kexc(9)[?fj%]dt )

One can use the random vectky(d]) ,a.(0) ke(0) Kex(0)) Of
the iron loss model obtained in the previous stegdal with
the losses calculation in a post-processing stepa dfE
procedure

1

T

I1l. DETERMINISTIC FINITE ELEMENT MODEL AND
UNCERTAINTY PROPAGATION

To investigate the stochastic calculation of thenitosses
in a synchronous electrical machine, a 2D FE madeked,

for both scalar potentialQ and vector potentialA
formulations (Eq. 3 and 4).
div(u(Hs~gradQ)) =0 with curlHg =J 3)
curl (YpcurlA)=J 4)

with J the current density and the magnetic permeability
described by the non-linear, and single-valued, matig
behaviour law model proposed in [5]. Note thatvihgability
on the behaviour law exists but is of second oxeesus the
variability of the iron losses when considering #nerage
B(H) curve from a stator to another. Thereforea ffirst step,
the variability of the B(H) curve can be neglectadd
assumed to be deterministic.

The studied electrical machine is a 6 poles, 50hizet-
phase permanent magnet synchronous machine wista8&
slots (Fig.6) and 6 non-conductive ferrite magnets the
rotor. Considering the symmetry of the system, @nthird of
the synchronous machine is modelled using 10586 dirder
elements and 8202 nodes.

Conover method, is then performed to simulate sengbl
100,000 realizations of the statistical model adiay to the

distribution of the parametersy(lu, ke, kex). Thereafter, and
for each realization, the expression of iron los§2k is

applied in each element of the stator mesh. On ebhent,

a sample of length 100000 of local losses is tredoutated.

In this way, a sample of the total losses is olegirby

summing all the local losses on each element..

The random distribution of the stator iron lossef)Pare
estimated, and found to be Gaussian distributed).g)i
according to the Kolmogorov-Smirnov statisticalttehe
mean and the standard deviation are given in &bdéhowing
close results between both formulations. The difiee is due
to the intrinsic numerical error associated to discretized
formulations but remains acceptable. The varigbitif the
losses is quite large and, for the vector potental
formulation, it can be calculated that for a 95%fadence
interval, the iron losses are included in the weaér3.43,
4.371W.

TABLE V
VARIABILITY OF IRON LOSSES FORA AND 2 FORMULATIONS

A formulation Q formulation

Mean 3.90 W 3.96 W
Std 0.24 0.24
Cv% 6.12% 6.11%
18+
1.35¢
g
= 09¢
045
O L L L
2.8 3.35 3.9 445 5

Iron losses Pt [W]

Fig.7. Probability distribution of iron losses dindor potential vectoA

formulation



V. CONCLUSION

Stochastic post processing of iron losses is pteddn this
paper. Iron losses variability of twenty eight Snples have
been first investigated, and stochastic model takiccount of
this variability is developed. The developed modeds
validated using statistical test and cross validatechniques
in stochastic context. The stochastic model is theed to
assess post-processing calculations of iron lossaspmsm,
which can be wused to identify confidence interval.
Nevertheless, although this approach is well sufitedoost-
processing calculations it can not be used to ta®unt of,
for example, the magnetic behaviour law or the getoyn
uncertainties. In fact, these parameters are 8itrito the
finite element resolution and the FE model mustdleulated
for each Monte-Carlo realization, which will lead targe
computational times. In this context, further siatidns will
be achieved to reduce the computational time bygushe

| polynomial chaos decomposition appro&&he-[7]17}.
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