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FROM LOCAL TO GLOBAL EQUILIBRIUM STATES: THERMODYNAMIC FORMALISM VIA AN INDUCING SCHEME

We present a method to construct equilibrium states via inducing. This method can be used for some non-uniformly hyperbolic dynamical systems and for non-Hölder continuous potentials. It allows to prove the occurrence of phase transition.

1. Settings 1.1. Goal. We consider a dynamical system (X, f ), where X is a compact metric space and f is topologically mixing and local homeomorphism. For x in X, f -1 x is the inverse branch defined by x. It is a homeomorphism defined on a neighborhood of f (x) onto its image which is a neighborhood of x.

If φ : X → R is a continuous function or at least a Borel function, the pressure of φ is P := sup h µ (f ) + φ dµ , where h µ (f ) is the Kolmogorov entropy. The supremum is taken over the set of invariant probabilities. A measure which realizes the supremum is called an equilibrium state for φ. In the following it will be also referred to as a global equilibrium state. In the following, studying the thermodynamic formalism means study existence, uniqueness and other properties of global equilibrium states.

It is well-known that if (X, f ) is uniformly hyperbolic and φ is Hölder continuous, then there exists a unique equilibrium state (see e.g. [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF][START_REF] Keller | Equilibrium states in ergodic theory[END_REF]). In that case it is also a Gibbs state and is fully supported. The main heuristic explanation for this result is that hyperbolicity and Hölder regularity combine themselves and allow to construct the equilibrium state via the spectral elements of the transfer operator.

The existence of equilibrium states for less regular potentials and/or for systems with weaker hyperbolicity properties is a challenging task. In that case, the study of the spectral properties of the transfer operator is usually much harder. It turns out that, for several cases, one strategy is to consider inducing scheme.

Inducing scheme may also be a solution to deal with another question, related to the notion of phase transition. Beyond the question of existence of some equilibrium state, which can follows from abstract properties, one may want to get information on that equilibrium state as e.g. if it is (or not) fully supported. For this kind of question, inducing scheme can be a solution; it is actually a way to prove that an equilibrium state gives or does not give positive weight to some special set (see e.g. [START_REF] Bruin | Renormalization, thermodynamic formalism and quasi-crystals in subshifts[END_REF]).

The goal of this note is to present a method based on inducing scheme to answer to these two previous questions. This method was actually presented in [START_REF] Leplaideur | Local product structure for equilibrium states[END_REF] for the case of uniformly hyperbolic dynamical system and Hölder continuous potential. It was then developed and extended in further works of the author; the note summarizes here all the principal steps using more general settings. Such a more general presentation allows the use of the method for more general settings that the initial ones.

1.2. Markov set and induced system. We assume there exists some Markov set R: this is a proper set R = R such that for every n and for every

x ∈ R ∩ f -n ( R), the set C n,f (x) := f -n x (R) is contained in R and f n (C n,f (x)) = R.
We consider the induced subsystems (R, F ) where F is the first return map:

F (x) = f τ (x) (x) if τ (x) := min{k > 0, f k (x) ∈ R}.
The map F is not necessarily well-defined everywhere and may also be multivalued. However it is well-defined µ-a.e. for any invariant probability µ satisfying µ(R) > 0 (Poincaré's recurrence theorem). Moreover, the main point is that the Markov property allows to well define the inverse branches: if x belongs to R and F (x) is well defined and also belongs to R, then we set C 1,F (x) := C τ (x),f (x). It is called the 1-cylinder of x (with respect to F ). The integer τ (x) is called the return-time of the 1-cylinder. By construction C 1,F (x) is a proper set, and the intersection of two different 1-cylinders has empty interior. They also form a partition of R,

• up to points which never return to R by iterations of F , • and up to the fact that two 1-cylinders may have non-empty intersection (on their borders).

For x in the interior of a 1-cylinder C, τ (x) is well-defined and coincides with the return-time of the cylinder; this may not hold for point in ∂C. However we set F (x) = f n (x) if x belongs to ∂C and the return time for C is n. We point out that F may thus be multi-valued on these points, but these values agree with the inverse branches and this is what is important for the method we present here. Then, the Markov property yields that for each x in R and for each 1-cylinder C, there exists a unique x ′ ∈ C such that F (x ′ ) = x. The set of x ′ 's is denoted as P re(x).

The main question we are interested in is : Question 1. Is there a way to study the Thermodynamic formalism for (R, F ) and to recover (or to study the properties of) the equilibrium state for (X, f ) and φ ?

The method we present here gives a positive answer to that question, up to some reasonable assumptions on φ. Reasonable means for instance, that it is possible to study the thermodynamic formalism for (R, F ).

Hypothesis on φ.

A more precise question. Consider some f -invariant probability measure µ. We assume µ(R) > 0. Then, the conditional measure µ :

= µ(. ∩ R) µ(R) is F -invariant.
We remind the notation

S n (φ) := φ + φ • T + . . . + φ • T n-1 .
In particular

S τ (•) (φ)(•) maps x to S τ (x) (φ)(x).
By the Abramov formula (see [START_REF] Petersen | Ergodic theory[END_REF] p. 257-258) we get

h µ (f ) + φ d µ ≤ P with equality iff µ = equil. state h µ (f ) + φ d µ -P ≤ 0 with equality iff µ = equil. state µ(R) h µ (F ) + S τ (.) (φ) -P.τ (.) dµ ≤ 0 with equality iff µ = equil. state h µ (F ) + S τ (.) (φ) -P.τ (.) dµ ≤ 0 with equality iff µ = equil. state
This simple sequence of inequalities shows that the thermodynamic formalism for (X, f ) and φ is related to the thermodynamic formalism for (R, F ) and S τ (.) (φ)(.).

For

x in C 1,F (y) = C n,f (y) ⊂ F , we set Φ(x) := S n (φ)(x).
Our main assumptions on φ are that it is possible to study the thermodynamic formalism for Φ. Hypotheses are listed along the way. We first assume:

(H1) Φ is continuous on each 1-cylinder.

(H2) There exists C such that for x and y in the same 1-cylinder, |Φ(x) -Φ(y)| ≤ C.

For Z ∈ R we set, (1) 
L Z (ψ)(x) := y∈P re(x)
e Φ(y)-Z.τ (y) ψ(y). This is the transfer operator for (R, F ) and for the potential Φ -Z.τ (.).

Question 2. For which Z can we study the thermodynamic formalism ?

Definition 1.1. Any equilibrium state for (R, F ) and for Φ -Z.τ (.) is called a local equilibrium state (associated to the parameter Z). It will be denoted by µ Z (if it exists).

Question 3. Among the measures µ Z , can we recover an equilibrium state for (X, f ) and φ ?

Roughly speaking, Question 3 means that we want to find Z such that the local equilibrium state say µ Z for Φ -Z.τ (.) is the induced measure of a global equilibrium state (for (X, f ) and φ). It is a reformulation of Question 1.

answers to questions

2.1. Local thermodynamic formalism.

Proposition 2.1. There exists a critical Z c ≥ -∞ such that -for every Z < Z c and for every x ∈ R, L Z (1 1 R )(x) = +∞, -and for every Z > Z c , for every ψ : R → R continuous and for every x ∈ R, L Z (ψ)(x) converges1 .

Proposition 2.2. If φ is continuous, then Z c ≤ P.

Proof. Actually, Z c can be realized as the pressure for some measure which does not give positive weight to R. We refer to Prop. 3.10 in [START_REF] Leplaideur | On t-conformal measures and Hausdorff dimension for a family of nonuniformly hyperbolic horseshoes[END_REF] for a proof with a possible discontinuous potential.

In the case of subshift of finite type, we can either get a better characterization for Z c .

Theorem 1 (see [START_REF] Chazottes | Fluctuations of the N th return time for Axiom A diffeomorphisms[END_REF], Lem. 3.4). If (X, f ) is a mixing subshift of finite type and R is a cylinder and φ is continuous, then Z c is the pressure for φ of the set of points whose trajectory avoids R.

Actually, Theorem 1 explains better why this method allows to detect phase transitions: we shall see that knowing if Z c < P holds is a crucial point with respect to the construction of one local equilibrium state which coincides with a global one. In the case Z c = P, there thus exists one equilibrium state which does not give positive weight to R, which means that it is not fully supported. As equilibrium state are "morally" fully supported (if they are Gibbs measure for instance), this means that there is a phase transition.

(H3) From now on, we assume that φ has some regularity such that for every Z > Z c , L Z satisfies the hypothesis of the Ionescu-Tulcea & Marinescu theorem with some Banach spaces

(V, V ) ⊂ C 0 (R): (i) if (ϕ n ) n∈N is a sequence of functions in V which converges in C 0 (R) to a function ϕ and if for all n ∈ N, ϕ n V ≤ C for some C > 0, then ϕ ∈ V and ϕ V ≤ C, (ii) L Z leaves V invariant and is bounded for V ; (iii) there exists M Z > 0 such that sup n { L n Z (ϕ) ∞ , ϕ ∈ V, ϕ ∞ ≤ 1} ≤ M Z < ∞; ( 
iv) there exists an integer n 0 and two constants 0 < a < 1 and 0 ≤ b < +∞ such that for all ϕ ∈ V we have

L n0 Z (ϕ) V ≤ a ϕ V + b ϕ ∞ ; (v) if X is a bounded subset of (V, V ) then L n0 Z (X ) has compact closure in C 0 (R).
Under these hypotheses, L Z is quasi-compact on V: the spectrum is the union of finitely many isolated complex numbers which are eigenvalues with strictly dominating modulus and the essential spectrum contained in an open disk of radius the strictly smaller than the already mentioned isolated eigenvalues. Moreover, the spectral radius λ Z is a dominating eigenvalue (see [START_REF] Leplaideur | Local product structure for equilibrium states[END_REF]).

For instance, if φ is Hölder, one may consider that V is the set of Hölder continuous functions (with same Hölder-exponent). Actually , the spirit of the method is that in some cases, even if φ is less regular, one still may consider that V is the set of function with some Hölder regularity. This is for instance the case if up to a modification of the norm, Φ satisfies some Hölder regularity. See e.g. [START_REF] Leplaideur | Local product structure for equilibrium states[END_REF] or even in [START_REF] Leplaideur | On t-conformal measures and Hausdorff dimension for a family of nonuniformly hyperbolic horseshoes[END_REF] despite the potential not being continuous 2 . Sometimes, inducing is sufficient to ensure that the induced potential Φ recovers true Hölder regularity: this is the case for the Hofbauer potential or for the Manneville-Pomeau map (see [START_REF] Hofbauer | Examples for the nonuniqueness of the equilibrium state[END_REF][START_REF] Pomeau | Intermittent transition to turbulence in dissipative dynamical systems[END_REF] or Subsection 3.3).

Remark 1. We emphasize that in the case that V is the set of Hölder continuous functions, hypothesis (iii) of Ionescu-Tulcea & Marinescu theorem usually results from (H2).

Theorem 2. For every Z > Z c , there exists a unique local equilibrium state for (R, F ) and Φ -Z.τ (.). It is a Gibbs measure (with respect to F ) and the pressure is log λ Z .

For Z = Z c , if L Zc (1 1 R ) converges and hypotheses of Ionescu-Tulcea & Marinescu theorem hold too, then the same result holds.

Remark 2. Construction of local equilibrium only needs the convergence of L Z (1 1 R ) and that L Z is quasi-compact on V. In the case of V is the set of Hölder continuous functions on R, due to the form of the Hölder norm, if L Z acts well on V for Z > Z c it also acts well for Z = Z c provided that 2 Actually in this case the potential is Hölder continuous except on a single point where it is not continuous.

L Zc (1 1 R ) converges. In other words, if V is the set of Hölder continuous functions, local equilibrium can also be constructed for Z = Z c if and only if L Zc (1 1 R ) converges.

Assuming Theorem 2 holds, the local equilibrium state µ Z is then of the form

dµ Z := H Z dν Z with L Z (H Z ) = λ Z H Z and L * Z (ν Z ) = λ Z ν Z . Note that λ Z belongs to [e -C L Z (1 1 R )(x), e C L Z (1 1 R )(x]
for any x in R and is thus a positive real number. Continuity of H Z and positivity of L Z yield that H Z is strictly positive. Actually, one can show that H Z belongs to [e -C , e C ]. The mixing hypothesis also shows that µ Z has full support in R.

2.2.

Local and global equilibria. The main question we are interested in is to know if among these µ Z , one could find the restriction of a/the gobal equilibrium state for (X, f ) and φ.

It is well known (see [START_REF] Dowker | Finite and σ-finite invariant measures[END_REF]) that there exists an f -invariant probability measure µ Z such that

µ Z = µ Z (.) µ Z (. ∩ R)
if and only if

(2) τ dµ Z < +∞.

Now we have

Theorem 3. Inequality (2) holds if and only if for some x ∈ R L Z (τ )(x) converges. This is in particular the case if Z > Z c .

Proof. Note that as H Z (x) ∈ [e -C , e C ], τ dµ Z < +∞ if and only if τ dν Z < +∞. Using conformality and (H2), this is equivalent to convergence of L Z (τ )(x) just for (at least) one x in R. We also emphasize

L Z (τ )(x) = - ∂L Z (1 1 R )(x) ∂Z .
This shows that L Z (τ )(x) converges if Z > Z c .

In this case the measure µ Z has full support (due to mixing) and satisfies

(3)

h µZ (f ) + φ d µ Z = Z + µ Z (R) log λ Z .
Corollary 2.3. For every Z ≥ P, λ Z ≤ 1.

Proof. Equation (3) yields the desired inequality for Z > P ≥ Z c and continuity3 in Z shows it also holds for Z = Z c

One important point is that Z → λ Z is decreasing and analytic on ]Z c , +∞[ or even on [Z c , +∞[ if

L Zc (1 1 R ) converges. Moreover, quasi-compactness shows log λ Z = lim n→+∞ 1 n log L n Z (1 1 R )(x)
for any x and Kač formula yields for Z > Z c (4)

d log λ Z dZ = -1 µ Z (R)
.

It follows that Z → Z + µ Z (R) log λ Z attains its maximum either at the unique point Z where log λ Z = 0, or at Z c if log λ Z < 0 for every Z > Z c .

Then the main theorem is: Moreover, the unique Z such that log λ Z = 0 is Z = P and µ = µ P .

Remark 3. If (X, f ) is a subshift of finite type and φ is continuous, Theorem 1 and existence of the global equilibrium state show that the condition Z c < P yields the existence of some global equilibrium state giving positive weight to R. Consequently, there is uniqueness of the global equilibrium state and it is equal to µ P .

Applications

3.1.

For non-uniformly hyperbolic dynamics. In [START_REF] Leplaideur | On t-conformal measures and Hausdorff dimension for a family of nonuniformly hyperbolic horseshoes[END_REF][START_REF] Leplaideur | Thermodynamic formalism for a family of non-uniformly hyperbolic horseshoes and the unstable Jacobian[END_REF] the method is used for a horseshoe with homoclinic tangency. The potential is φ(x) :=log J u (x) :=log det Df |E u . It is noncontinuous due to the homoclinic tangency. Authors prove the existence and uniqueness of a global equilibrium state for β.φ and for every β ∈ R.

3.2.

For uniformly hyperbolic dynamics. In [START_REF] Bruin | Renormalization, thermodynamic formalism and quasi-crystals in subshifts[END_REF], the method is used to produce a freezing phase transition at positive temperature with ground state supported on a quasi-crystal. Namely, it is proved that there exists a continuous potential on {0, 1} N , say φ, and some β c > 0 such that the graphs of the pressure function for β.φ is strictly convex for β ∈ [0, β c ] and a half-line for β ≥ β c . Moreover, the exists a unique global equilibrium state for β.φ (may be except for β = β c ). It has full support for β < β c and is supported on some uniquely ergodic and zero-entropy (and different to a periodic orbit) for β > β c .

In [START_REF] Leplaideur | Chaos : Butterflies also generate phase transitions and parallel universes[END_REF] the method is used to construct a mixing system with an non-flat phase transition. It is also proved that after the transition, the system may have co-existence of several global equilibrium states despite the pressure function remains analytic.

In [START_REF] Leplaideur | A dynamical proof for the convergence of Gibbs measures at temperature zero[END_REF], the method is used to prove convergence at temperature zero of the global equilibrium state in a subshift of finite type and for a locally constant potential. Inducing scheme allows to control the different basins of different ergodic ground states, and to estimate how their relative weights vary in function of the inverse of the temperature β.

3.3. Hofbauer potential or Manneville-Pomeau map. To finish with a simple example, we apply the method to the Hofbauer potential in {0, 1} N φ(x) = log(1 + 1 n ) if x = 0 n 1 . . . , -A < 0 if x = 1 . . . .

Theorem 4 .••

 4 With the previous assumptions. No global equilibrium state µ for φ gives positive weight to R if, -either lim Z→Zc log λ Z < 0, -or lim Z→Zc log λ Z = 0 and lim Z→Zc L(τ ) = +∞. If there is one global equilibrium state µ such that µ(R) > 0, then, it is the unique equilibrium state with full support, if either lim Z→Zc log λ Z > 0 (and in that case µ is the unique global equilibrium state), -or lim Z→Zc log λ Z = 0 and lim Z→Zc L(τ ) < +∞.

In the following one will thus simply mention "L Z (1 1 R ) converges".

following from the theorem of monotone convergence.

This case is usually associated to the Manneville-Pomeau map, say e.g.

. One can find in [START_REF] Baraviera | The potential point of view for renormalization[END_REF] a description of why these two cases are associated, and actually similar.

In that case we induce on the cylinder [START_REF] Baraviera | The potential point of view for renormalization[END_REF]. Note that only one orbit does not enter into [START_REF] Baraviera | The potential point of view for renormalization[END_REF], and it is 0 ∞ = 000 . . .. Moreover, for any x ∈ [START_REF] Baraviera | The potential point of view for renormalization[END_REF], and for every β > 0

For every β ≥ 0, this series converges if Z > 0 and diverges for Z < 0. Therefore Z c = 0, and we point-out that

which is the ad'hoc reformulation of Theorem 1. Now, the form of the potential also yields λ β,Z = L β,Z (1 1 [START_REF] Baraviera | The potential point of view for renormalization[END_REF] )(x) for any x in [START_REF] Baraviera | The potential point of view for renormalization[END_REF]. Let us study the critical case Z = Z c :

For β ≤ 1, λ β,0 = +∞. Furthermore, the function β → λ β,0 is decreasing on ]1, +∞[, goes to +∞ if β → 1 and goes to 0 if β → +∞. Therefore, there exists a unique β c such that λ βc,0 = 1.

For β > β c , no equilibrium state gives positive weight to [START_REF] Baraviera | The potential point of view for renormalization[END_REF], which means that δ 0 ∞ is the unique equilibrium state and the pressure is 0.

For β < β c , the map Z → λ β,Z is decreasing, and there is a unique Z = P(β) > 0 such that λ β,P(β) = 1.

As P(β) > 0 = Z c , we are in the case of Theorem 3, and the associated measure µ P(β) satisfies

This last inequality shows that δ 0 ∞ cannot be an equilibrium state, hence, there exists an equilibrium state which gives positive weight to [START_REF] Baraviera | The potential point of view for renormalization[END_REF], and it is µ P(β) .