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FROM LOCAL TO GLOBAL EQUILIBRIUM STATES: THERMODYNAMIC

FORMALISM VIA AN INDUCING SCHEME

RENAUD LEPLAIDEUR

Abstract. We present a method to construct equilibrium states via induction. This method
can be used for some non-uniformly hyperbolic dynamical systems and for non-Hölder continuous
potentials. It allows to prove the occurrence of phase transition.

1. Settings

1.1. Goal. We consider a dynamical system (X, f), where X is a compact metric space and f is
topology mixing and local homeomorphism. For x in X , f−1

x is the inverse branch defined by x.
It is a homeomorphism defined on a neighborhood of f(x) onto its image which is a neighborhood
of x.

If φ : X → R is a continuous function or at least a Borel function, the pressure of φ is

P := sup

{
hµ(f) +

∫
φdµ

}
,

where hµ(f) is the Kolmogorov entropy. The supremum is taken over the set of invariant probabil-
ities. A measure which realizes the supremum is called an equilibrium state for φ. In the following
it will be also referred to as a global equilibrium state. In the following, doing the thermodynamic
formalism means study existence, uniqueness and other properties of global equilibrium states.

It is well-known that if (X, f) is uniformly hyperbolic and φ is Hölder continuous, then there exists
a unique equilibrium state (see e.g. [2, 7]). In that case it is also a Gibbs state and has full support.
The main heuristic explanation for this result is that hyperbolicity and Hölder regularity combine
themselves and allow to construct the equilibrium state via the spectral elements of the transfer
operator.

The existence of equilibrium states for less regular potentials and/or for systems with weaker
hyperbolicity properties is a challenging task. In that case, the study of the spectral properties of
the transfer operator is usually much harder. It turns out that, for several cases, one strategy is
to consider induction.

Induction may also be a solution to deal with another question, related to the notion of phase
transition. Beyond the question of existence of some equilibrium state, which can follows from
abstract properties, one may want to get information on that equilibrium state as e.g. if it has or
does not have full support. For this kind of question, induction can be a solution; it is actually a
way to prove that an equilibrium state gives or does not give positive weight to some special set
(see e.g. [3]).
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2 RENAUD LEPLAIDEUR

The goal of this note is to present a method based on induction to answer to these two previous
questions. This method was actually presented in [9] for the case of uniformly hyperbolic dynamical
system and Hölder continuous potential. It was then developed and extended in further works of
the author; the note summarizes here all the principal steps using more general settings.

1.2. Markov set and induced system. We assume there exists some Markov set R: this is a

proper set R = R̊ such that for every n and for every x ∈ R̊ ∩ f−n(R̊), the set Cn,f (x) := f−n
x (R)

is contained in R and fn(Cn,f (x)) = R.

We consider the induced subsystems (R,F ) where F is the first return map:

F (x) = f τ(x)(x) if τ(x) := min{k > 0, fk(x) ∈ R}.

It is not necessarily well-defined everywhere, but it is however defined µ-a.e. for any invariant
probability µ satisfying µ(R) > 0 (Poincaré’s recurrence theorem). The main point is that the

Markov property allows to well define the inverse branches: if x belongs to R̊ and F (x) is well

defined and also belongs to R̊, then we set C1,F (x) := Cτ(x),f(x). It is called the 1-cylinder of x
(with respect to F ). The integer τ(x) is called the return-time of the 1-cylinder. By construction
C1,F (x) is a proper set, and the intersection of two different 1-cylinders has empty interior. They
also form a partition of R,

• up to points which never return to R by iterations of F ,
• and up to the fact that two 1-cylinders may have non-empty intersection (on their borders).

For x in the interior of a 1-cylinder C, τ(x) is well-defined and coincides with the return-time of
the cylinder; this may not hold for point in ∂C. However we set F (x) = fn(x) if x belongs to ∂C
and the return time for C is n. We point out that F may thus be multi-valued on these points,
but these definitions coincide with the inverse branches.

Therefore, the Markov property yields that for each x in R and for each 1-cylinder C, there exists
a unique x′ ∈ C such that F (x′) = x. The set of x′’s is denoted as Pre(x).

The main question we are interested in is :

Question 1. Is there a way to do the Thermodynamic formalism for (R,F ) and to recover (or to
study the properties of) the equilibrium state for (X, f) and φ ?

1.3. Hypothesis on φ. Consider some f -invariant probability measure µ̂. We assume µ̂(R) > 0.

Then, the conditional measure µ :=
µ̂(. ∩R)

µ̂(R)
is F -invariant. We remind the notation

Sn(φ) := φ+ φ ◦ T + . . .+ φ ◦ T n−1.

In particular Sτ(·)(φ)(·) maps x to Sτ(x)(φ)(x).
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By the Abramov formula (see [13] p. 257-258) we get

hµ̂(f) +

∫
φdµ̂ ≤ P with equality iff µ̂ = equil. state

m

hµ̂(f) +

∫
φdµ̂− P ≤ 0 with equality iff µ̂ = equil. state

m

µ̂(R)

(
hµ(F ) +

∫
Sτ(.)(φ)− P .τ(.) dµ

)
≤ 0 with equality iff µ̂ = equil. state

m

hµ(F ) +

∫
Sτ(.)(φ)− P .τ(.) dµ ≤ 0 with equality iff µ̂ = equil. state

This simple sequence of inequalities shows that the thermodynamic formalism for (X, f) and φ is
related to the thermodynamic formalism for (R,F ) and Sτ(.)(φ)(.).

For x in C1,F (y) = Cn,f (y) ⊂ F , we set Φ(x) := Sn(φ)(x). Our main assumptions on φ are that it
is possible to study the thermodynamic formalism for Φ. Hypotheses are listed along the way. We
first assume:

(H1) Φ is continuous on each 1-cylinder.
(H2) There exists C such that for x and y in the same 1-cylinder, |Φ(x)− Φ(y)| ≤ C.

We set for Z ∈ R,

(1) LZ(ψ)(x) :=
∑

y∈Pre(x)

eΦ(y)−Z.τ(y)ψ(y).

This is the transfer operator for (R,F ) and for the potential Φ− Z.τ(.).

Question 2. For which Z can we do thermodynamic formalism ?

Definition 1.1. Any equilibrium state for (R,F ) and for Φ − Z.τ(.) is called a local equilibrium
state (associated to the parameter Z). It will be denoted by µZ (if it exists).

Question 3. Among the measures µZ , can we recover/find an equilibrium state for (X, f) and φ
?

Roughly speaking, Question 3 means that we want to find Z such that the local equilibrium state
say µZ for Φ−Z.τ(.) is the induced measure of a global equilibrium state (for (X, f) and φ). It is
a reformulation of Question 1.

2. answers to questions

2.1. Local thermodynamic formalism.

Proposition 2.1. There exists a critical Zc ≥ −∞ such that
−for every Z < Zc and for every x ∈ R, LZ(11R)(x) = +∞,
−and for every Z > Zc, for every ψ : R → R continuous and for every x ∈ R, LZ(ψ)(x) converges.

Theorem 1 (see [4], Lem. 3.4). If (X, f) is a subshift of finite type and R is a cylinder and φ is
continuous, then Zc is the pressure for φ of the set of points whose trajectory avoids R.
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Proposition 2.2. If φ is continuous, then Zc ≤ P.

Proof. See Prop. 3.10 in [12] for a proof with a possible discontinuous potential. �

From now on, we assume that φ has some regularity such that for every Z > Zc, LZ satisfies the
hypothesis of the Ionescu-Tulcea & Marinescu theorem with some Banach spaces (V , ‖ ‖V) ⊂ C0(R):

(i) if (ϕn)n∈N is a sequence of functions in V which converges in C0(R) to a function ϕ and if
for all n ∈ N, ‖ϕn‖V ≤ C for some C > 0, then ϕ ∈ V and ‖ϕ‖V ≤ C,

(ii) LZ leaves V invariant and is bounded for ‖ ‖V ;
(iii) there exists MZ > 0 such that supn{‖L

n
Z(ϕ)‖∞ , ϕ ∈ V , ‖ϕ‖∞ ≤ 1} ≤MZ <∞;

(iv) there exists an integer n0 and two constants 0 < a < 1 and 0 ≤ b < +∞ such that for all
ϕ ∈ V we have ‖Ln0

Z (ϕ)‖V ≤ a‖ϕ‖V + b‖ϕ‖∞ ;
(v) if X is a bounded subset of (V , ‖ ‖V) then Ln0

Z (X ) has compact closure in C0(R).

Under these hypotheses, LZ is quasi-compact on V : the spectrum is the union of finitely many
isolated complex numbers which are eigenvalues with strictly dominating modulus and the essential
spectrum contained in an open disk of radius the strictly smaller than the already mentioned
isolated eigenvalues. Moreover, the spectral radius λZ is a dominating eigenvalue (see [9]). The
space V is “morally” the space of Hölder continuous functions. This is for instance the case in [9]
or even in [12] despite the potential not being continuous1. The space of Hölder functions can also
be used for the Hofbauer potential of the Manneville-Pomeau map (see [6, 14] or Subsection 3.3).

Remark 1. We emphasize that in the case that V is the set of Hölder continuous functions,
hypothesis (iii) of Ionescu-Tulcea & Marinescu theorem is a direct consequence of (H2). �

Theorem 2. For every Z > Zc, there exists a unique local equilibrium state for (R,F ) and
Φ− Z.τ(.). It is a Gibbs measure (with respect to F ) and the pressure is logλZ .

The same holds for Z = Zc if LZ(11R) converges for Z = Zc and hypotheses of Ionescu-Tulcea &
Marinescu theorem hold too.

Remark 2. Note that in the case that V is the set of Hölder continuous functions on R, the
hypotheses of Ionescu-Tulcea & Marinescu theorem hold if and only if LZ(11R) converges for Z =
Zc. �

Assuming Theorem 2 holds, the local equilibrium state µZ is then of the form

dµZ := HZdνZ with LZ(HZ) = λZHZ and L∗
Z(νZ) = λZνZ .

Continuity of HZ and positivity of LZ yield that HZ is strictly positive. The mixing hypothesis
also shows that µZ has full support in R.

2.2. Local and global equilibria. The main question we are interested in is to know if among
these µZ , one could be the restriction of a/the gobal equilibrium state for (X, f) and φ.

It is well known (see [5]) that there exists an f -invariant probability measure µ̂Z such that µZ =
µ̂Z(.)

µ̂Z(. ∩R)
if and only if

(2)

∫
τ dµZ < +∞.

1 Actually in this case the potential is Hölder continuous except on a single point where it is not continuous.
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Now we have

Theorem 3. Inequality (2) holds if and only if for some x ∈ R LZ(τ)(x) converges.
This is in particular the case if Z > Zc.

In this case the measure µ̂Z has full support (due to mixing) and satisfies

(3) hµ̂Z
(f) +

∫
φdµ̂Z = Z + µ̂Z(R) log λZ .

Corollary 2.3. For every Z ≥ P, λZ ≤ 1.

Proof. Equation (3) yields the desired inequality for Z > P ≥ Zc and continuity2 in Z shows it
also holds for Z = Zc �

One important point is that Z 7→ λZ is decreasing and analytic on ]Zc,+∞[ or even on [Zc,+∞[
if LZc

(11R) converges. Moreover, for Z > Zc

(4)
d logλZ
dZ

=
−1

µ̂Z(R)
.

It follows that Z 7→ Z + µ̂Z(R) logλZ attains its maximum either at the unique point Z where
λZ = 0, or at Zc if λZ < 1 for every Z > Zc.

Then the main theorem is:

Theorem 4. With the previous assumptions.

• If lim
Z→Zc

log λZ < 1 or lim
Z→Zc

logλZ = 1 but lim
Z→Zc

L(τ) = +∞, then, no global equilibrium

state µ̂ for φ gives positive weight to R.
• If lim

Z→Zc

logλZ > 1 or lim
Z→Zc

logλZ = 1 but lim
Z→Zc

L(τ) < +∞, and if there is one global

equilibrium state µ̂ such that µ̂(R) > 0, then
(1) µ̂ is the unique equilibrium state with full support,
(2) The unique Z such that λZ = 1 is Z = P,
(3) µ̂ = µ̂P .

Remark 3. If (X, f) is a subshift of finite type and φ is continuous, Theorem 1 and existence of
the global equilibrium state show that the condition Zc < P yields the existence of some global
equilibrium state giving positive weight to R. Consequently, there is uniqueness of the global
equilibrium state and it is equal to µ̂P . �

3. Applications

3.1. For non-uniformly hyperbolic dynamics. In [12, 11] the method is used for a horseshoe
with homoclinic tangency. The potential is φ(x) := − log Ju(x) := − log detDf|Eu . It is non-
continuous due to the homoclinic tangency. Authors prove the existence and uniqueness of a
global equilibrium state for β.φ and for every β ∈ R.

2following from the theorem of monotone convergence.
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3.2. For uniformly hyperbolic dynamics. In [3], the method is used to produce a freezing
phase transition at positive temperature with ground state supported on a quasi-crystal. Namely,
it is proved that there exists a continuous potential on {0, 1}N, say φ, and some βc > 0 such that
the graphs of the pressure function for β.φ is strictly convex for β ∈ [0, βc] and a half-line for
β ≥ βc. Moreover, the exists a unique global equilibrium state for β.φ (may be except for β = βc).
It has full support for β < βc and is supported on some uniquely ergodic and zero-entropy (and
different to a periodic orbit) for β > βc.

In [8] the method is used to construct a mixing system with an non-flat phase transition. It is also
proved that after the transition, the system may have co-existence of several global equilibrium
states despite the pressure function remains analytic.

In [10], the method is used to prove convergence at temperature zero of the global equilibrium
state in a subshift of finite type and for a locally constant potential. Induction allows to control
the different basins of different ergodic ground states, and to estimate how their relative weights
vary in function of the inverse of the temperature β.

3.3. Hofbauer potential or Manneville-Pomeau map. To finish with a simple example, we
apply the method to the Hofbauer potential in {0, 1}N

φ(x) =

{
− log(1 + 1

n
) if x = 0n1 . . . ,

−A < 0 if x = 1 . . . .

This case is usually associated to the Manneville-Pomeau map, say e.g.

f : [0, 1] 	 x 7→





x

1− x
if x ∈ [0,

1

2
],

2x mod 1 if x ∈ [ 12 , 1].

One can find in [1] a description of why these two cases are associated, and actually similar.

In that case we induce on the cylinder [1]. Note that only one orbit does not enter into [1], and it
is 0∞ = 000 . . .. Moreover, for any x ∈ [1], and for every β > 0

Lβ,Z(11[1])(x) = e−β.A

∞∑

n=0

(
1

n+ 1

)β

e−Z.(n+1).

For every β ≥ 0, this series converges if Z > 0 and diverges for Z < 0. Therefore Zc = 0, and we
point-out that

0 = hδ0∞ + β.

∫
φdδ0∞ .

which is the ad’hoc reformulation of Theorem 1.

Now, the form of the potential also yields λβ,Z = Lβ,Z(11[1])(x) for any x in [1]. Let us study the
critical case Z = Zc:

λβ,0 := e−β.A

∞∑

n=0

(
1

n+ 1

)β

.

For β ≤ 1, λβ,0 = +∞. Furthermore, the function β 7→ λβ,0 is decreasing on ]1,+∞[, goes to +∞
if β → 1 and goes to 0 if β → +∞. Therefore, there exists a unique βc such that λβc,0 = 1.

For β > βc, no equilibrium state gives positive weight to [1], which means that δ0∞ is the unique
equilibrium state and the pressure is 0.
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For β < βc, the map Z 7→ λβ,Z is decreasing, and there is a unique Z = P(β) > 0 such that

λβ,P(β) = 1.

As P(β) > 0 = Zc, we are in the case of Theorem 3, and the associated measure µ̂P(β) satisfies

hµ̂P(β)
(σ) + β

∫
φdµ̂P(β) = P(β) > 0.

This last inequality shows that δ0∞ cannot be an equilibrium state, hence, there exists an equilib-
rium state which gives positive weight to [1], and it is µ̂P(β).
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