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The photonic bandgap of periodic multilayers with diffuse interfaces is calculated by considering an empirical
model for the interdiffusion profile. The model for the diffuse profile is based on the error function Erf and a
characteristic parameter σ. The model is valid for multilayer structures with an arbitrary layer thickness. It is
shown that the width of the bandgap varies with the value of σ and the Brillouin zone boundary. Numerical
examples are presented. It is suggested that measuring the ratio of the width of the bandgaps at different orders,
that is, determining experimentally the ratio of the widths of the different Bragg peaks on a reflectivity curve, can
allow estimation of the thickness of the interdiffusion layer. © 2013 Optical Society of America
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1. INTRODUCTION
Periodic multilayer structures used in optics can be regarded
as one-dimensional photonic crystals. It is well known that
this kind of structure presents photonic bandgaps that are fre-
quency domains where no propagating mode is allowed [1].
For ideal structures with sharp and flat interfaces, the calcu-
lation of the locations and widths of the forbidden bandgaps is
standard [1–3]. However, generally the interfaces between the
layers are not ideal but present roughness or interdiffusion or
both. It has been recognized that these imperfections can af-
fect the width or even the occurrence of the bandgaps [4,5]. In
[5], the authors consider the propagation of waves (not
necessarily electromagnetic waves but spin, elastic, and other
waves) in a multilayer structure with a finite thickness of the
interfaces; the interfaces are modeled by a Jacobian
elliptic sine function, and it is shown that in this case, the
dependence of the widths of the bandgaps can differ
significantly for the different Brillouin zones.

Nevertheless the model of [5] does not deal with the struc-
ture of arbitrary layer thicknesses. One-dimensional photonic
crystals of nanometric scale are now largely implemented as
monochromators in soft x-ray optics [6], a fact that has largely
inspired the present work. Note that the introduction of
interdiffusion in perfect multilayer structures (with step-like
interfaces) leads to a structure where the dielectric constant
is varied continuously as in the so-called rugate filters [7]. This
means that one could envisage implementing the theory given
in this paper to the study of a rugate filter with a periodic
profile.

In the present work, we consider the case of an electromag-
netic wave in a bilayered periodic structure with an arbitrary
ratio of layer thicknesses, despite which we could consider
applying a generalization of this work to a rugate filter. The
interfaces are diffuse and considered as transition layers,

the shape of which is described by a function (error function)
validated by a lot of experimental data. In Section 2, we give
the theory required to determine the dispersion curves and
subsequently the widths of the bandgaps; in Section 3, we
present the model for the diffuse interfaces. The Section 4
gives the expression of the widths of the bandgaps in the
two-wave approximation, and in Section 5, we present
numerical examples.

2. DISPERSION CURVE IN A PERIODIC
MULTILAYER
We consider the propagation of a harmonic electromagnetic
wave of frequency ω with a wave vector k, within a periodic
multilayer structure. The z axis is the direction of stratifica-
tion, and the waves travel in the y–z plane, as shown in Fig. 1.
The wave vector k can be decomposed into an invariant
tangential component k∥ lying in the x–y plane and a normal
component k⊥ along the z axis.

According to Snell’s law, one has

k2∥ � k2
⊥
� k2 � ε�z�k20; (1)

where ε�z� is the dielectric constant at the location z and k0 �
ω∕c is the wavenumber in vacuum, c being the light speed in
vacuum. As usual, the field can be decomposed into a trans-
verse electric (TE) field, for which the electric field E is only
one nonvanishing component Ex � U�z� exp�ik∥y�, and a
transverse magnetic (TM) field, for which the magnetic field
H is only one nonvanishing component Hx � U�z� exp�ik∥y�.
In both cases, the amplitude U�z� obeys the following
differential equation:

d2F�z�
dz2

� h2�z�F�z� � 0; (2)
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where h2�z� � k2
⊥
�z� � ε�z�k20 − k2∥ and F�z� � U�z� for the

TE polarization case and h2�z��k2
⊥
�z�−��d2Ln�

���������
ε�z�

p
�∕dz2��

�dLn�
���������
ε�z�

p
�∕dz�2� and F�z� � U�z�∕

���������
ε�z�

p
for the TM polari-

zation case [8]. Since the dielectric function ε�z� is a periodic
function of the depth z, Eq. (2) is a Hill equation [9,10], the
solution of which is given by the Bloch–Floquet theorem:
there is a wavenumber K (Bloch wavenumber) and a periodic
function u�z� such that

U�z� � exp�iKz�u�z�: (3)

The Bloch wavenumber satisfies the dispersion formula [10],
but its value is not relevant in the following calculation of the
bandgap width. The periodic function can be expanded in a
Fourier series so that the amplitude becomes

U�z� � exp�iK z�
X∞
n�−∞

un exp�i nGz�: (4)

Taking into account the periodicity of ε�z�, this quantity can
also be expanded in a Fourier series:

ε�z� �
X∞
p�−∞

εp exp�i pGz�; (5)

where G is the reciprocal distance. Substituting Eqs. (4) and
(5) in Eq. (2), one gets the following equation in the TE case:

Xn�∞

n�−∞
exp�i nGz��ε0k20 − ��K − nG�2 � k2∥��un

� k20

�X�∞

p�−∞
ϵp exp�i pG z�

�� X�∞

n�−∞
un exp�i nG z�

�
: (6)

Since each Fourier component must have the same
coefficient in the two members of this equation, it becomes

�ε0k20 − ��K − nG�2 � k2∥��un � k20

�X�∞

t�−∞
utϵn−t

�
: �7�

Expressing un from this equation and reintroducing it into
Eq. (7), one obtains

�ε0k20 − ��K − nG�2 � k2∥��un

� k40
X�∞

t�−∞

X�∞

p�−∞
up

ϵt−pϵn−t
�ε0k2 − ��K − tG�2 � k2∥��

:
�8�

At the first order of the perturbation theory (p � n), the
main branch of the dispersion curve (p � 0) is given by the
formula

�ε0k20 − �K2 � k2∥�� � k40
X�∞

t�−∞

ϵtϵ−t
�ε0k2 − ��K − t G�2 � k2∥��

: �9�

Provided Δε ≪ εa, εb, where Δε � jεb − εaj and εa�εb� is the
dielectric constant of the material constituting the layer
a�b� of the multilayer, the condition for the two-wave approxi-
mation is fulfilled. Under this condition, if one selects from the
sum on the right-hand side of Eq. (12) the term resonant in the
vicinity of the tth Brillouin zone boundary, the dispersion law
reads

�ε0k20 − �K2 � k2∥���ε0k20 − ��K − tG�2 � k2∥�� � k40ϵtϵ−t: �10�

For the TM case, the calculation is formally the same as the
one for the TE case, provided that one replaces the original
dielectric constant ε�z� with the modified one ~ε�z� related to
ε�z� by the relationship

~ε�z� � ε�z� � 1

2ε�z�k20
d2ε�z�
dz2

−
3

4ε�z�2k20

�
dε�z�
dz

�
2
: (11)

This formula is deduced from the expression of h2�z� in the
TM case. The problem of the validity of the two-wave approxi-
mation is beyond the scope of this paper; it has been consid-
ered in [11].

3. MODEL FOR THE IN-DEPTH PROFILE
The purpose of this section is to give a plausible model to de-
scribe the in-depth profile of the periodic structure with dif-
fuse interfaces. We consider a bilayered system with period D
and a duty cycle (so-called gamma ratio) γ (see Fig. 1); the
thickness of the first layer a is γD and the thickness of the
other layer b is �1 − γ�D. The interfaces are not supposed to
be sharp but diffuse, forming a transition layer characterized
by a parameter σ. A lot of experimental data indicate that a
large class of diffuse interfaces can be modeled by the
cumulative distribution function for the normal distribution
~ρ�z; σ� [12,13]:

~ρ�z; σ� � 1
2

�
1� Erf

�
z���
2

p
σ

��
: (12)

In our approach, the parameter σ is a quantity that can be
regarded as the characteristic thickness of an interdiffusion
layer; interdiffusion can be viewed as a one-dimensional inho-
mogeneity. Then, in principle, σ cannot describe the geomet-
rical roughness (GR) at the interface of two layers, since GR is
a two-dimensional inhomogeneity that can give rise to light
scattering (nonspecular reflection). Nevertheless, it is typical
to account for the GR by a transition layer similar to an inter-
diffusion layer modeled by Eq. (12); the thickness of the

Fig. 1. Scheme of the bilayer system and geometry used. The period
of the multilayer D is the sum of the thicknesses of the a and b layers.
The γ-ratio is the ratio of the thickness of the a layer to the period.
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transition layer is then equal to 2
���
2

p
σ [6]. At this stage, it is

convenient to introduce the quantity δ as the ratio σ∕D and
the correponding distribution ρ�z; δ� deduced from ~ρ�z; σ�
by replacing σ by δ. In the framework of this model, the
in-depth distribution of the dielectric function ε�z; δ� can be
written as follows:

ε�z; δ� � εa � ΔεΩ�z; δ� (13)

with

Ω�z; δ� � lim
N → ∞

 X�N

n�−N

�
ρ

�
�nD� γD

2
� z; δ

�

�ρ

�
−nD� γD

2
− z; δ

��
− �2N � 1�

!
: (14)

The functionΩ�z; δ� can be expanded in a Fourier series, so
that

ε�z� � εa � Δε
X∞
p�−∞

Ωp exp�−i pGz�; (15)

where Ωp�δ� are the coefficients in the Fourier series of
Ω�z; δ�, which are given by

Ωp�δ� �
i

4pπ
e−�2p

2π2δ2�
�
e−ipπγ

�
Erf

��1� γ�∕δ − 4ipπδ2

2
���
2

p
�

� Erf
��1 − γ�∕δ� 4ipπδ2

2
���
2

p
��

� eipπγ
�
Erf

��−1� γ�∕δ� 4ipπδ2

2
���
2

p
�

− Erf
��1� γ�∕δ� 4ipπδ2

2
���
2

p
���

: (16)

It can be verified that Ωp�δ � 0� � sin�pπγ�∕�pπ�, in agree-
ment with the standard results for ideal multilayers (i.e., with
sharp interfaces) [1–3].

Figure 2 shows the in-depth profile of the dielectric func-
tion ε�z; δ� for the following parameters: D � 1, γ � 0.4,
δ � 0.04, 0.1, 0.3, εa � 1.0, and Δε � 0.2, computed from
the Fourier series Eqs. (15) and (16). Exactly the same profiles
are obtained from the direct computation using Eqs. (13) and
(14). This result tends to prove that Eq. (16) remains relevant
even when ratio δ∕γ becomes close to unity, and then that our
approach remains valid even when the lamellar-like profile
disappears and becomes more sine-like. Of course further in-
vestigations (both theoretical and experimental) would be
necessary to validate this assertion. In this case one could
envisage treating some class of rugate filters with the present
method.

4. PHOTONIC BANDGAPS IN THE TWO-
WAVE APPROXIMATION
To obtain the dispersion curve ω � ω�K�, one has to insert
Eqs. (15) and (16) into Eq. (10); this equation will provide
the shape of ω�K�, in the vicinity of the Brillouin zone boun-
daries for which the value of the Bloch wavenumber takes the
values

K � p
G
2
: (17)

Hence, in the two-wave approximation, one has at the boun-
dary of the pth Brillouin zone:

�
ε0
ω

c2
2
−

�
p2G2

4
� k2∥

��2
� �Δε�2 ω

4

c4
�Ωp�δ��2; (18)

since

Ω−p�δ� � Ωp�δ�: (19)

From Eq. (18), it is seen (see Appendix A) that the width
Δωp, of the pth bandgap, which is at the pth Brillouin zone
boundary, is given by

Δωp � Δε
ε0

ωΩp�δ�: (20)

It follows from Eq. (20) that the bandgap width depends on the
characteristic parameter δ of the interdiffusion layer and on
the order of the bandgap through the term Ωp�δ�. In the next
section we illustrate this phenomenon with some numerical
examples. Finally, let us note that the ratios �Δωp�∕�Δωq�
do not depend on �Δε�∕�ε0�, provided dispersion is not taken
into account.

5. NUMERICAL EXAMPLES
Figure 3 displays the ratios �Δω2�∕�Δω1� and �Δω3�∕�Δω1� for
the following parameters: D � 1 and γ � 0.3 versus the
parameter δ for the TE case, assuming dispersionless media.
We observe that the ratios decrease when the value of δ in-
creases, in agreement with the results obtained with the model
of [5]. We have computed these ratios using the transfer-
matrix method [2,8] for δ � 0; for �Δω2�∕�Δω1��at δ � 0�,

Fig. 2. In-depth profile of the dielectric function ε�z; σ� for the fol-
lowing parameters: D � 1, γ � 0.4, δ � 0.04 (solid line), 0.1 (dashed
line), and 0.3 (dotted line), εa � 1.0, and Δε � 0.2, computed from the
Fourier series by means of Eqs. (15) and (16).
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we find 0.335 and for �Δω3�∕�Δω1��at δ � 0�, we get 0.067.
These values can be compared to the values given from
Eq. (20), which are 0.294 and 0.042, respectively (see Fig. 3).
These discrepancies (12% for �Δω2�∕�Δω1� and 37% for
�Δω3�∕�Δω1�) can be attributed to the two-wave approxima-
tion, since the condition Δε ≪ εa, εb is not really satisfied in
our example:Δε � 0.2 and εa � 1. The discrepancy falls down
to 7% (for �Δω2�∕�Δω1�) and 32% (for �Δω3�∕�Δω1�). When
Δε � 0.05. This result is in agreement with the fact that the
validity of the two-wave approximation increases when the
ratio Δε∕εa decreases [11].

6. CONCLUSION AND PERSPECTIVES
Our theory allows the bandgap widths to be determined for
periodic multilayers with diffuse interfaces and arbitrary layer
thicknesses. The empirical model used to describe the inter-
diffusion profile is in agreement with a great number of exper-
imental results, which greatly validates of our approach.

This theory shows that it could be possible to find the
parameter σ of a diffuse interface, that is, to determine the
effective thickness of the interfacial transition layer, by meas-
uring the ratio between the widths of the bandgaps at the
boundaries of several Brillouin zones. Experimentally, this
means that measuring the ratio of the widths of the Bragg
peaks on a reflectivity curve should allow the determination
of the width of the transition layer in a multilayer where in-
terdiffusion is present. Provided that the conditions of validity
of the two-wave approximation are fullfilled, this operation
can be done by means of Eq. (20); otherwise tranfer-matrix
approach can be implemented. However, the present model
is developed without considering absorption. Let us also note
that the instrumental broadening is not taken into account. So,
in order to compare with the present model, experimental
data should be obtained in the hard x-ray range where absorp-
tion is minimal and with a reflectometer with good angular
resolution. The scattering effects arising from interface rough-
ness are not considered in this paper; as outlined in Section 3,

the transition layer is assumed to come from interdiffusion,
not from lateral inhomogeneities. Moreover, the separation
of the effect of roughness with that of interdiffusion on the
width of the bandgap must be carefully considered; this prob-
lem is not a simple task.

The model can be extended without difficulty to systems
with asymmetric interfaces that have been often observed;
see [14,15] for example. Nevertheless, in the case of an asym-
metric transition layer, the inverse problem consisting in find-
ing the two parameters σa∕b and σb∕a from the measurements
of the ratios of the bandgap widths becomes a more difficult
task. The extension to the complex values of the dielectric
constant is also of interest in treating the case of multilayers
in the spectral regions where absorption becomes important,
as in the extreme UV ranges.

APPENDIX A
This appendix gives the proof of Eq. (20). From Eq. (18),

ε0ν� − β � �αν�; (A1)

where

ν� �
�
ω�
c

�
2
;

α � ΔεΩp�δ�;

β �
�
p2G
4

2

� k2∥

�
:

It follows that

ε0�ν� − ν−� � α�ν� � ν−� (A2)

or

ω� − ω− � α

ε0

�
ω2� � ω2

−

ω� � ω−

�
: (A3)

With

ω� � ω0 �
1
2
Δω; (A4)

we obtain

�ω� − ω−� � Δω0 �
α

ε0

2ω2
0 � 1

2Δω
2

2ω0
; (A5)

that is,

Δω0 ≈
�
Δε
ε0

�
ω0Ωp�δ�: (A6)
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