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Abstract

This article focuses, in the context of epidemic models, on rare events that may possibly correspond
to crisis situations from the perspective of Public Health. In general, no close analytic form for their
occurrence probabilities is available and crude Monte-Carlo procedures fail. We show how recent
intensive computer simulation techniques, such as interacting branching particle methods, can be
used for estimation purposes, as well as for generating model paths that correspond to realizations
of such events. Applications of these simulation-based methods to several epidemic models are also
considered and discussed thoroughly.
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1 Introduction

Since the seminal contribution of [20, 6], the mathematical issues raised by the modelling and statistical
analysis of the spread of communicable infectious diseases have never ceased to receive attention in
the applied probability and statistics communities. Given the great diversity of situations encountered
in practice (impact of demographic phenomena, presence of control strategies, endemicity, population
heterogeneity, time-varying infectivity, etc.), a wide variety of stochastic epidemic models have been
introduced in the literature, striving to incorporate more and more relevant features in order to account
for real-life situations, while remaining analytically tractable. The study of the properties of the related
stochastic processes (branching approximations, long-term behavior, large population asymptotics, etc.)
and the design of efficient inference methods tailored for (generally partially observed) epidemic data
are still stimulating research on mathematical epidemiology. Beyond considerations of purely academic
nature, many notions and techniques developed in this field are important for practitioners. Epidemic
models are used to understand and control infectious diseases and their theoretical analysis sheds some
light on how to come up with figures such as the reproduction number R0 of the epidemics (when well-
defined). From a public health guidance perspective, they can be deployed in order to simulate the likeliest
scenarios or compute the probability of certain events of interest, and plan control measures to stanch a
disease outbreak in real-time. However, in most situations, no close analytical form is available for these
probabilities and the latter are related to events that occur very rarely, for which Crude Monte-Carlo
(CMC) estimation fails.

It is the main purpose of this paper to review possible techniques for rare event simulation and
inference in the context of epidemic models. Motivated by practical issues in Public Health, we are
concerned here with critical events such as an exceedingly long duration for an epidemic, an extremely
large total number of positive diagnoses (i.e. large final size of the epidemic) in non endemic cases,
the occurrence of a severe outbreak at a short horizon, etc. Here we list a number of events that
may correspond to crisis situations and express the latter as excesses of a (very large) threshold by a
random variable or a (randomly stopped) stochastic process for a general class of SIR epidemic models.
Importance Sampling and Particle Filtering methods are next adapted to tackle the problem of estimating
the occurrence probabilities of these events, as well as that of simulating realizations of the latter. Beyond
the description of the methodological aspects, application of these techniques for analyzing a collection
of rare events related to several numerical epidemic models, some of them being fitted from real data, is
also discussed.
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The article is structured as follows. Section 2 introduces a general class of epidemic models, to which
the simulation/estimation techniques subsequently described apply and next review events related to
these models, that may correspond to health crisis situations and generally occur very rarely. Simulation-
based procedures for estimating the probability of occurrence of these events are described in Section 3,
while practical applications of these techniques, based on real data sets in some cases, are considered in
Section 4 for illustration purpose. Some concluding remarks are finally collected in Section 5. In this
work, it is shown that crude Monte-Carlo method often fail to provide good estimates of rare events.
Importance sampling methods are a well-known alternative to estimate the occurrence probabilities of
rare events. However, their efficiency relies on the choice of proper instrumental distributions, which is
very complicated for most probabilistic models encountered in practice. Particle systems with genealogical
selection offer an efficient computationally-based tool for estimating the targeted small probabilities.

2 Background

It is the goal of this section to introduce a general class of epidemic models to which the computer-
intensive estimation techniques described in the subsequent section apply. The (rare) events that shall
be next statistically analyzed are formulated in terms of path properties of stochastic processes.

2.1 Epidemic models

The vast majority of (stochastic) epidemic models considered in the literature are of the compartmental
type. They assume that the population of interest is divided into several strata or compartments, corre-
sponding in particular to the various possible serological statuses, and stipulate a probabilistic framework
that describes the transitions from one compartment to another.

The Reed-Frost model. One of the simplest epidemic models is the discrete-time chain-binomial
model, generally referred to as the Reed-Frost model, that describes the spread of an infectious disease in a
homogeneous and homogeneously mixing population. New infectious are assumed to occur in generations,
t = 0, 1, . . . and immunity is gained by the infectives of generation t at generation t+ 1. Denoting by St
and It the numbers of individuals at the t-th generation who are susceptible and infective respectively,
and by 1−q the probability that an infective transmits the disease to a given susceptible at any generation
(infections being assumed to occur independently from each other), the sequence {(St, It)}t∈N with initial
state (s0, i0) ∈ N∗2 is a Markov chain with transitions as follows: for all t ∈ N, (st, it) in N2 and it+1 in
{0, 1, . . . , st},

P {It+1 = it+1 | (St, It) = (st, it)} =

(
st
it+1

)
(1− qit)it+1(qit)st−it+1 (1)

and
St+1 = St − It+1. (2)

The set N × {0} is absorbing for the Markov chain (St, It), meaning that the epidemics ceases as soon
as the chain reaches this set (and then stays there forever), one may refer to [25] for an account of the
Markov chain theory.

The standard stochastic SIR model. The most basic continuous-time stochastic epidemic model,
generally referred to as the standard (Markovian) SIR model in a closed population of size n (see the
seminal contribution of [6] for instance), counts three compartments: the susceptible class S, the infective
class I and the removed/recovered class R. This corresponds to the situation where the epidemic is
of short duration, making acceptable the assumption of a closed population, and the disease provides
immunity against a possible re-infection. Fig. 1 below depicts the diagram flow of this simple epidemic
model (taking µ = ρ ≡ 0). For clarity, we index the events E through which the sizes S(t), I(t) and
R(t) of the three compartments that form the population evolve temporarily: we write E = 1 when the
event that occurs is an infection, E = 2 when it corresponds to the removal of an infective. Taking
by convention T0 = 0 as time origin, the (continuous-time) dynamics of the model stipulates that all
durations in competition are independent, infections and removals occur at time t ≥ 0 with the rates
λ(S(t), I(t)) = λS(t)I(t)/n and γ(I(t)) = γI(t), where (λ, γ) ∈ R∗+, respectively. Hence, the process
Z = {(S(t), I(t), R(t))}t≥0 evolves in a Markovian fashion, by jumps at random times 0 < T1 < T2 < . . .,
when events E1, E2, . . . in {1, 2} successively occur. The dynamics can be described by stochastic
differential equations driven by Poisson point measures.
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Figure 1: Diagram flow of a basic SIR stochastic model with demography.

Variants of the standard SIR model. When the epidemic under study acts on a large temporal
scale, it may be necessary to incorporate additional features in the model (cf rates µ and ρ featured in
Fig. 1) accounting for the demography of the population over which the disease spreads in an endemic
manner. The number and the nature of the compartments involved in the epidemic models may also
vary, depending on the infectious disease considered. For instance, the SIRS model corresponds to the
situation, where immunity is lost after some time, while some AIDS epidemic models count numerous
compartments, in order to account for the (non exponentially distributed) AIDS incubation period (this
approach is usually referred to as stage modelling, see [19]). Additionally, the possible heterogeneity of
the population may lead to remove the assumption of uniform mixingness and consider instead multitype
epidemic models (refer for instance to Chapter 6 in [2] for a review of SIR models where the population
is segmented into a finite number of subcommunities) or a population structured by continuous variables
(see [12] for such a measure-valued stochastic process and the references therein) or spreading on random
graphs which represent the underlying social network structure of the population (e.g. [14, 28]). Indeed
there are many variants of the model described above, much too numerous to be listed here exhaustively.
For clarity, the problem of estimating the probability of rare events related to the spread of a transmittable
disease shall be addressed in the context of simple or even simplistic models, where the epidemics is
described by a discrete-time Markov chain or a jump Markov process, extensions to more general situations
being straightforward in most cases.

2.2 Rare/dramatic events in infectious disease epidemics

In the management of epidemics of communicable infectious diseases, the following events and quantities
are of particular interest to Public Health decision makers. Here and throughout, we set inf ∅ = +∞
by convention. The event of interest is denoted by E . We will see that pertinent events often take the
form E = {τA ≤ T } where A is a subset of the space N3 where the epidemics process Z takes its values
and where τA = inf{t ≥ 0 : Z(t) ∈ A} and T are almost-surely finite stopping times. Hence, we are
interested in level-crossing probabilities of the form:

P {τA ≤ T } . (3)

• Duration of the epidemics. In non endemic situations, the epidemics starts at a time arbitrarily
set to t = 0 and ends at a short term horizon, described by the (almost-surely finite) stopping time

τ = inf{t ≥ 0 : I(t) = 0}.

Sharply estimating the probability pd(T ) = P {τ > T} that the epidemics lasts more than a (very
long) period of time [0, T ], with 0 < T < +∞, is an essential concern from the Public Health
perspective. The computation of 1 − pd(T ) correspond to (3) in the case where T = T and
A = N× {0} × N.

• The final size of the epidemics. The final size of the epidemics corresponds to the total number
of infected individuals between times 0 and τ it is thus defined as the random variable R(τ). The
probability pf (Nc) = P{R(τ) ≥ Nc} that the size R(τ) exceeds a (critical) threshold value Nc ≥ 1
smaller than n in the case of a closed population of total size n ≥ 1) is of vital interest to quantify
the means to be put in place (quarantine measures, supply of medications, number of hospital beds,
etc.). Considering the stopping time τR,Nc

= inf{t ≥ 0 : R(t) ≥ Nc}, notice that one may write:

pf (Nc) = P {τR,Nc
≤ τ} . (4)

pf (Nc) reduces to (3) with T = τ and A = N× N× {Nc, Nc + 1, . . .}.
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• The incidence of the epidemics. In order to handle in real-time a crisis situation, it is
relevant to consider time-dependent quantities such that the probability that the (non cumulative)
number of infectious individuals reaches a critical value NI at a certain time horizon T < ∞. Let
τI,NI

= inf{t ≥ 0 : I(t) ≥ NI} be the corresponding stopping time, the probability one seeks to
estimate is then given by:

pI(T,NI) = P {τI,NI
≤ T} . (5)

The quantity pI(T,NI) corresponds to (3) when T = T and A = N× {NI , NI + 1, . . . } × N.

Along these lines, since Public Health decision-makers often adjust their policies, depending on the
number of recently diagnosed cases, one may also be interested in the following quantity, related to
removed individuals (assuming by convention that, once detected, an infected individual is removed from
the subpopulation of infectives): the probability that the number of cases diagnosed between times t
and t+ u increases by more than a threshold value NR ≥ 1, that is given by P {R(t+ u)−R(t) ≥ NR}.
Although many other rare events of this type, related to an excessively duration or an exceeding of a large
threshold, are of potential interest, given the wide variety of epidemic models (echoing the great diversity
of real situations), methods for simulating rare events and estimating their probability of occurrence shall
be investigated here through the examples listed above in the context of basic SIR models for the sake
of simplicity.

3 Simulation methods for rare event analysis

The use of Monte-Carlo simulation techniques is widespread in mathematical epidemiology, see [23] for
instance. However, crude Monte-Carlo methods (CMC) completely fail when applied to rare events such
as those listed in Section 2.2. We first provide in §3.1 two illustrations showing the limits of CMC. An
alternative in rare event simulation is known as Importance Sampling (IS), presented in §3.2. Roughly
speaking, it consists in simulating under a different probability distribution (refered to as the instrumental
distribution, equivalent to the original probability measure along a certain filtration) under which the
event of interest E is more frequent. However, in absence of large deviation results for the vast majority
of stochastic SIR models in the literature, proper instrumental distributions are difficult to obtain. In
§3.3, we present the IBS method. We describe the method and perform in Section 4 numeric experiments.

3.1 Illustrations of the numerical inadequacy of CMC for simulating rare
events

We study numerically two examples to illustrate the low quality of CMC for estimating the probabilities
of rare events.

First, let us consider the basic Markovian SIR model without demography (see §2.1). For this simple
model, the distribution of the final size R(τ) is proved to be the unique solution of a triangular linear
system (see Theorem 2.2 in [2] for instance, or [22] for exact results of the same type in a more general
framework), making the exact computation of the quantity pf (Nc) feasible (neglecting numerical stability
issues, occurring even for moderate values of the population size n), whatever the threshold Nc ≥ 1. As
shown by Fig. 2, for this particular example, the accuracy of CMC estimates of the probability pf (Nc)
rapidly deteriorates when Nc takes very large values (close to the total size of the population), very
few (or even no) realizations of the stochastic process achieving the event {R(τ) ≥ Nc}, leading to a
significant underestimation of pf (Nc), in spite of a large number of Monte-Carlo replications. Additional
comments can be found in Section 4, when discussing the results.

3.2 Importance sampling

A standard approach to rare event simulation is known as Importance Sampling, see [9] or [4]. The
(unbiased) estimate of the probability of occurrence of the rare event is obtained by multiplying the
empirical frequency of the simulations under the instrumental distribution by the likelihood ratio φ,
referred to as the importance function. For instance, when considering the standard Markovian SIR
model described in the preceding section, a natural way of accelerating the occurrence of the events
listed in §2.2 is to speed up the infection process, while slowing down the removal (i.e. increasing
the value of the parameter λ and decreasing that of the parameter γ). More precisely, let P be the
probability measure under which the process {(S(t), I(t), R(t))}t≥0 is a standard Markovian SIR model
with parameters (λ, γ) ∈ R∗2+ and such that (S(0), I(0)) = (s0, i0) ∈ N∗2. Let Pnew correspond to the
pair (λnew, γnew) ∈ R∗2+ , such that λnew ≥ λ and γnew ≤ γ. Clearly, these probability measures are
absolutely continuous with respect to each other along the canonical filtration F = {Ft}t≥0 (i.e. Ft is
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Figure 2: In a Markovian SIR model with (s0, i0) = (40, 1) and parameters λ = 1 and γ = 1, crude
Monte-Carlo estimate (based on 10 000 replicates of the epidemics process) of the probability pf (Nc)
that the size of the epidemics takes a given value are plotted as a function of Nc. True values are also
computed.

the σ-algebra generated by the collection of random variables {(S(u), I(u))}u∈[0,t] for all t ≥ 0): on Ft,
the importance function (i.e. the likelihood ratio dP/dPnew |Ft

) is given by:

φt = exp

(
−
∫ t

0

(λ− λnew)S(s)I(s)/n+ (γ − γnew)I(s)ds

)
(λ/λnew)

N(t)−R(t)
(γ/γnew)

R(t)
,

where N(t) denotes the number of events E ∈ {1, 2} occurring between times 0 and t, and TN(t) is
the last time when an event of this type occurs before time t. This extends to the situation where t
is a F-stopping time, such as the times of exceedance considered in §2.2. Hence, if E ∈ Ft, we have:
P{E} =

∫
φt · 1l{E}dPnew, denoting by 1l{E} the indicator function of the event E .

The success of IS crucially depends on the choice of the instrumental distribution (the specification
of the instrumental parameters (λnew, γnew) in the example previously mentioned). Ideally, it should
be selected so as to reduce drastically the variance of the random variable φt · 1l{E}, otherwise the IS
approach may completely fail. Optimal choice of probability changes can be based on large-deviation
techniques, when the latter are tractable for the stochastic model considered (see Chapter 5 in [9] for
further details). However, in absence of large deviation type results for the vast majority of the stochastic
SIR models considered in the literature, one faces significant difficulties for selecting importance sampling
estimators with small variance in practice. Recently, a number of refinements of the IS strategy have been
proposed (sequential Monte-Carlo methods in particular), involving an iterative search of a nearly optimal
instrumental distribution, see [17]. All these methods are said intrusive, insofar as their implementation
requires to call for simulation routines related to modified versions of the distribution of interest.
Cross entropy method for IS. In the framework of estimating rare events, the cross-entropy method
(CE) introduced in [26] can be used to modify iteratively the instrumental distribution for estimating the
occurrence probability of E , see [13, 8] or [1]. In the cases that are considered here, the law of the Markov
processes depend on parameters: for instance q in the Reed-Frost model or (λ, µ) in the continuous
time SIR model. Let us denote by φ the set of parameters and by L(Z, φ) the likelihood of the path
Z = (St, It)t∈N in the Reed-Frost case or Z = (S(t), I(t), R(t)) in the continuous time SIR model. The
idea is to choose as instrumental distribution the law L(, v) with the parameter v that minimises the
entropy with respect to the original distribution (with parameter φ) conditioned on the rare event E . We
describe the algorithm in the discrete case. The methodology also applies to the standard continuous time
Markovian SIR model when it comes to estimate the quantity (4). Indeed, considering the embedded
Markov chain Z = (S(Tk), I(Tk))k∈N, where the Tk’s denote the successive times when the epidemics
process jumps, one may also write pf (Nc) = P{ZτΛ ∈ A}.

For clarity, we recall below the general principle of the CE method in the purpose of estimating the
quantity θ = P{ZτΛ ∈ A}, the latter serving as a benchmark case in the experimental section, see §4.1.
Here Z is a Markov chain started at z0 and whose distribution is parameterized by φ and we denote
by L(Z, φ) its likelihood. As alternative adaptive IS methods have lead to very similar results in our
experiments, they are not considered here (refer to [17]).
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Adaptive Importance Sampling through the CE method

1. Initialization. Set v(0) = φ.

2. Iterations. For k = 1, . . . , K,

(a) Draw N sample paths starting from x0 with the parameter v(k−1):

Z(i) =

(
z0, Z

(i)
1 , . . . , Z

(i)

τ
(i)
Λ

)
, for 1 ≤ i ≤ N.

(b) Compute the IS estimate

θ̂k,N =
1

N

N∑
i=1

L(Z(i), φ)

L(Z(i), v(k−1))
· 1l
{
Z

(i)

τ
(i)
Λ

∈ A
}
,

(c) Define the new parameter v(k) as the maximum in v of

L(v) =
1

N

N∑
i=1

1l

{
Z

(i)

τ
(i)
Λ

∈ A
}

L(Z(i), φ)

L(Z(i), v(k−1))
lnL(Z(i), v).

3. Output. Produce the estimate θ̂K,N of the target probability.

3.3 Interacting and branching particle system methods

In contrast to the IS strategy and its variants, Interacting Branching Particle System methods (IBPS
in abbreviated form) for rare event simulation are non intrusive in the sense that no modification of
the code to run for simulating paths Z = {(S(t), I(t), R(t))}t≥0 of the (epidemic) model under study is
required. Roughly speaking, the IBPS principle as follows. We start with a population of N trajectories
Z(1), . . . , Z(n) (that we call particles) and modify the latter in an iterative manner: paths for which
the event of interest E ”almost occurs” (in a sense that shall be specified, depending on the nature of
the event E) are “multiplied”, while the others are “killed”, following in the footsteps of the celebrated
ReSTART algorithm (for Repetitive Simulated Trials After Reaching Thresholds) originally introduced
in the context of teletraffic data models, see [27].

So-termed splitting techniques (refer to [18]), thoroughly investigated in [16] (see also [11]), are fully
tailored for estimating the rare event probability (3), as well as the conditional law of the epidemics
process Z given the rare event of interest {τA ≤ T } is realized. The idea is to consider a sequence of
increasing subsets of the state space, A0 ⊃ A1 ⊃ AK+1 = A, describing more and more difficult obstacles
the process Z must pass over, before reaching the target set A. Consider the related hitting times, defined
by the recurrence relation:

T0 = inf {t ≥ 0 : Z(t) ∈ A0} and Tk = inf {t ≥ Tk−1 : Z(t) ∈ Ak} for k ≥ 1.

We assume that Z(0) ∈ A0 with probability one, so that T0 = 0 almost-surely. Clearly, the rare event
probability (3) factorizes the following manner,

P {TK+1 ≤ T } = P {TK+1 ≤ T | TK ≤ T } × . . .× P {T1 ≤ T | T0 ≤ T } , (6)

in a product of conditional probabilities of events (hopefully) much less rare and whose realizations can
be more easily simulated. The technique described subsequently precisely permits to estimate each factor
in (6) and build progressively epidemics paths realizing the rare event {τA ≤ T } as well.

In many situations, the Ak’s are determined by a collection of increasing levels (the choice of the
number K of intermediate levels and that of the levels themselves will be discussed later, see Remark
3.2). For instance, when it comes to estimate the probability pI(T,NI) that the number of infectives
exceeds a critical threshold value NI before a certain time T < ∞, one may consider a sequence of

sublevels 0 = N
(0)
I < . . . < N

(K+1)
I = NI , that defines subsets Ak = N × {N (k)

I , N
(k)
I + 1, . . .} × N for

k = 0, . . . , K + 1.
More precisely, the particle population model evolves according to the following genealogical structure,

see [15]. At generation k ∈ {1, . . . , K}, a particle Z having reached the k-th level before time T (i.e.

6



such that Tk ≤ T ) are kept while the other are deleted (selection stage) and replaced by new particles
(mutation stage), see Fig. 3. A new particle is a novel epidemics path Znew whose path segment on
[0, Tk] coincides with that of a particle Z chosen randomly among the particles such that Tk ≤ T , and
whose trajectory on [Tk, T ] (or on [Tk, T

new
k+1 ] from a practical perspective) is simply sampled from the

distribution of the epidemic process when the initial condition is Z(Tk). Of course, the algorithm stops
(and is restarted) if no particle survives. Adaptive variants are described below. The selection stage is
implemented by means of weight functions ωk defined on the path space by ωk(Z) = 1 when Tk ≤ T and
by ωk(Z) = 0 otherwise. The method is then performed in k steps as follows.

A quite similar approach can be considered for the estimation of the probability pf (Nc) that the total
size of the epidemics rises above a large threshold Nc ≥ 1.

N

t

Figure 3: Multi-level splitting: the path in blue does not reach the current level N and is thus killed,
while that in black does and can be selected in order to produce an offspring, generated by sampling
from the time of exceedance (in red)
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The IBPS algorithm

1. Initialization. Start with a collection of N ≥ 1 simulated trajectories
Z

(1)
0 , . . . , Z

(N)
0 of the epidemic process indexed by i ∈ {1, . . . , N},

with the same initial condition Z(0) = (s0, i0, 0), to which the weights

ω
(i)
0 = 1, 1 ≤ i ≤ N , are assigned. Denote by T

(i)
0 = 0 < T

(i)
1 < . . . <

T
(i)
K+1 and T (i) the related stopping times.

2. Iterations. For k = 1, . . . , K,

(a) Let I1,k be the subset of indices i ∈ {1, . . . , N} corresponding to

the epidemics paths Z
(i)
k−1 having reached the subset Ak before time

T (i) and denote by #I1,k its cardinality (the algorithm is stopped
and re-started if it is equal to 0). Set I0,k = {1, . . . , N}\I1,k. For

each path indexed by i ∈ I1,k, set Z
(i)
k = Z

(i)
k−1. We also define Pk

as the proportion of particles Z that have reached the subset Ak
before time T among those which have previously reached Ak−1.

(b) For each path indexed by i ∈ I0,k:

• (Selection step) independently draw a parti-

cle Z
(j)
k from distribution

∑N
j=1 ω

(j)
k · δ

Z
(j)
k

, with

ω
(j)
k = ωk(Z

(j)
k )/(

∑N
l=1 ωk(Z

(l)
k )),

• (Mutation step) Define Z
(i)
k as the path confounded with

Z
(j)
k until time T

(j)
k and prolongate by simulation from the

state Z
(j)
k (T

(j)
k ).

(c) Compute Pj = #I1,k/N and pass onto stage k + 1.

3. Output. Compute the estimate of the target probability π = P{τA ≤
T }:

π̂N = P1 × . . .× PK+1.

Compute also the empirical distribution

LN =
1

N

N∑
i=1

δ
Z

(i)
K+1

,

which may serve as an estimate of the conditional law L of the epidemics
process given the occurrence of {τA ≤ T }.

Before showing how the IBPS performs on a variety of examples, a few remarks are in order.

Remark 3.1. (A more deterministic genetic evolution scheme) It should be first underlined
that alternative choices for the genealogical dynamics, different from that consisting in drawing uni-
formly among the surviving particles, could be possibly pertinent. As proposed in [11] (see subsection
3.2 therein), one may also consider a N -particle approximation model based on the following selec-
tion/mutation scheme: in a deterministic fashion, one keeps at each stage k all paths which have reached
the k-th level, that is Nk particles say. Then the other N −Nk particles are killed and replaced by a par-
ticle whose path segment on [0, Tk] is chosen uniformly at random among the Nk ”successfull” particles
and completed by (independent) sampling on [Tk, T ].

Remark 3.2. (Tuning parameters) Accuracy (consistency and asymptotic normality in particular)
of the estimator π̂N produced by the IBPS algorithm has been established as the number of particles N
increases to infinity in [11, 10]. However, the practical implementation requires to pick several parameters:
the number of intermediate levels and the levels themselves. As explained in [21], they should be chosen,
so that all factors in the product (6) are approximately of the same order of magnitude, and possibly
in an adaptive way during the simulations. When applied to the problem of estimating pI(T,NI) for
instance, the adaptive variant of the multi-level splitting proposed in [10] would consist, at each step,
in sorting all the simulated paths Z(i) by decreasing order of the quantity supt∈[0,T ] I

(i)(t) and take the
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k-th term as current intermediate level with fixed k ∈ {1, . . . , N} (hence killing at each step N − k
trajectories).

Remark 3.3. (Persistence of the epidemics) Observe also that the approach described above can
be extended in order to estimate the probability that the epidemics lasts more than a (long) time T > 0,
pd(T ). Instead of stratifying the state space of the epidemics process Z (along the I- or R- axis), the
idea is to write pD(T ) = P{I(T ) ≥ 1} and split the time axis by introducing successive durations
t0 = 0 < t1 < . . . < tK+1 = T (see Fig. 4). The sequence of decreasing events is then defined by
{I(tk) ≥ 1} for k = 0, . . . , K + 1 and we have:

pD(T ) = P {I(tK+1) ≥ 1 | I(tK) ≥ 1} × . . .× P {I(t1) ≥ 1 | I(t0) ≥ 1} .

In this case, any particle Z produces an offspring, by simulating on [tk, T ] (or on [tk, tk+1] in practice) a
novel path segment starting from Z(tk), when it corresponds to an epidemics path that does not extinct
before tk, and is killed otherwise, see Fig. 4. A detailed description is provided in the appendix.

Remark 3.4. (Discrete-time models) We point out finally that the IPBS approach can be naturally

applied in a discrete-time context, so as to estimate tail probabilities P{
∑t−1
k=0 Ik ≥ Nc}, with Nc ∈ N, at

a given horizon t ≥ 1 in a Reed-Frost model for instance. Selection/mutation steps are then performed
at each intermediate time k ∈ {1, . . . , t − 1}: at stage k, N ≥ 1 discrete paths are selected by means
of a weight function ωk defined on the path space and next mutate, through sampling of N independent
chains from time k to time t. The crucial point naturally consists in a good choice for the weight
functions used in the selection stage (which should be ideally based on an analysis of the variance of
the corresponding estimates, when tractable). Typical choices are of the form ωk(Z) = exp(αV (Ik)) or
ωk(Z) = exp(α(V (Ik)−V (Ik−1))), where V : R→ R is a certain potential function and α ≥ 0, see section
4 for some examples.

t
t0

Figure 4: Time multi-level splitting: the path in blue extincts before time t0 and is thus killed, while
that in black does not and can be selected in order to produce an offspring, generated by sampling from
time t0 (in red)

4 Numerical experiments

Now that a comprehensive description of the IPBS approach has been given, it is the purpose of this
section to provide strong empirical evidence that it is relevant in practice for rare event estimation in the
context of (strongly Markovian) epidemics processes.

4.1 Toy examples

As a first go, we start with experiments based on simplistic epidemics models (see section 3 above), in
order to check the accuracy of the estimates produced by IPBS methods. For comparison purposes, CMC
and (adaptive) IS estimates are also displayed. Monte-Carlo replications have been generated, so as to
estimate the variability of the estimators considered as well.

Reed-Frost model. In this discrete-time model, we consider the probability P(
∑t−1
k=0 Ik > Nc) for

t = 10 and Nc = 90 or Nc = 95. Tables 1 and 2 below display estimates of this probability, together with
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their empirical standard deviation based on N = 1000 Monte-Carlo replications. The IPBS approach
is here implemented with two different potential functions (cf Remark 3.4): the method referred to as
IPBS(1) is based on the weight function ωk(Z) = exp(αV (Ik)) with V (I) = I, while that referred to as
IPBS(2) involves ωk(Z) = exp(α(V (Ik) − V (Ik−1))) with V (I) = I. For both IPBS methods, we test
α = 0.1 and α = 0.01. The levels Ak appearing in the algorithms are set according to the Remark 3.2:
we define these levels such that at each step, a certain proportion of paths are kept (50%, 80% or 95%)
in our numerical example.

Two cases are considered, for Nc = 90 (Table 1) and Nc = 95 (Table 2). In the case Nc = 90 the rare
event has a probability estimated by CMC of 1.44e-2, while this probability is 3.0e-4 for Nc = 95.

Table 1: Estimates of the tail probability θ = P{
∑t−1
k=0 Ik ≥ Nc} in a Reed-Frost model, with Nc = 90

Method θ̂ s.e.
CMC 1.44e-2 (3.7e-3)
CE 1.46e-2 (1.8e-3)
IPBS(1) α = 0.1 50% 9.1e-4 (2.8e-4)
IPBS(1) α = 0.01 50% 1.0e-3 (2.6e-4)
IPBS(1) α = 0.1 80% 1.46e-2 (2.3e-3)
IPBS(1) α = 0.01 80% 9.7e-3 (1.2e-3)
IPBS(1) α = 0.1 95% 1.42e-2 (3.1e-3)
IPBS(1) α = 0.01 95% 1.42e-2 (3.1e-3)
IPBS(2) α = 0.1 50% 1.0e-3 (2.8e-4)
IPBS(2) α = 0.01 50% 9.9e-4 (2.4e-4)
IPBS(2) α = 0.1 80% 1.0e-3 (2.8e-4)
IPBS(2) α = 0.01 80% 9.4e-3 (1.7e-3)
IPBS(2) α = 0.1 95% 1.40e-2 (3.0e-3)
IPBS(2) α = 0.01 95% 1.40e-2 (3.0e-3)

Table 2: Estimates of the tail probability θ = P{
∑t−1
k=0 Ik ≥ Nc} in a Reed-Frost model, with Nc = 95

Method θ̂ s.e.
CMC 3.0e-4 (5.5e-4)
CE 3.0e-4 (1.3e-4)
IPBS(1) α = 0.1 50% 2.0e-4 (8.8e-5)
IPBS(1) α = 0.01 50% 6.7e-5 (4.2e-5)
IPBS(1) α = 0.1 80% 4.1e-4 (3.4e-4)
IPBS(1) α = 0.01 80% 2.2e-4 (2.4e-4)
IPBS(1) α = 0.1 95% 3.2e-4 (4.2e-4)
IPBS(1) α = 0.01 95% 3.2e-4 (4.2e-4)
IPBS(2) α = 0.1 50% 1.0e-3 (5.6e-5)
IPBS(2) α = 0.01 50% 6.6e-5 (4.5e-5)
IPBS(2) α = 0.1 80% 2.5e-5 (2.4e-4)
IPBS(2) α = 0.01 80% 2.1e-4 (2.3e-4)
IPBS(2) α = 0.1 95% 3.1e-4 (4.3e-4)
IPBS(2) α = 0.01 95% 3.1e-4 (4.3e-4)

For both examples, we see that the estimation of CMC match with the estimation obtained by CE or
by the IPBS methods when the levels are chosen such that at each step 95% of the paths are kept. When
Nc = 95, standard deviation of the estimates are high and the obtained values are not always accurate.
Standard Markovian SIR model. We now consider a simple continuous-time Markovian epidemics
model with no demography, as described in §2.1, in the case where the target is again the tail probability
related to the epidemics size, pf (Nc) namely. We use the parameters proposed in the two examples
presented in O’Neill and Roberts [24]. The first set of parameters corresponds to a toy model: s0 = 9,
i0 = 1, µ ≡ 0, λ(S, I) = λSI with λ = 0.12 and γ(I,R) = γI with γ = 1. We compared the results
obtained by means of the CMC, CE and IPBS methods. Here, the method referred to as IPBS(1)
implements the algorithm described in the previous section, while that referred to as IPBS(2) corresponds
to the variant explained in Remark 3.1.
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Table 3: Estimates of the tail probability θ = pf (Nc) of the size of the epidemics in a standard Markovian
SIR model without demography

Method θ̂ s.e.
CMC 2.0e-2 (4.5e-3)
CE 2.0e-2 (2.5e-3)
IPBS(1) - 1% 2.1e-2 (4.5e-3)
IPBS(1) - 5% 2.1e-2 (4.0e-3)
IPBS(1) - 20% 2.5e-2 (3.5e-3)
IPBS(2) - 1% 2.0e-2 (4.5e-3)
IPBS(2) - 5% 2.1e-2 (8.0e-3)
IPBS(2) - 20% 2.4e-2 (2.2e-2)

The second example in [24] comes from Bailey [5, p.125]. It is a smallpox outbreak in a closed
community of 120 individuals in Abakaliki, Nigeria. Here the model is as above with the parameters
s0 = 119, i0 = 1, λ = 0.0008254 and γ = 0.087613. The results are displayed in Table 4.

Table 4: Estimates of the tail probability θ = pf (Nc) of the size of the epidemics in a standard Markovian
SIR model without demography

Method θ̂ s.e.
CMC 2.5e-3 (1.6e-3)
CE 1.6e-3 (2.3e-4)
IPBS(1) - 1% 2.7e-3 (1.3e-3)
IPBS(1) - 5% 2.9e-3 (9.0e-4)
IPBS(1) - 20% 3.6e-3 (6.7e-4)
IPBS(2) - 1% 2.8e-3 (2.9e-3)
IPBS(2) - 5% 3.1e-3 (5.3e-3)
IPBS(2) - 20% 3.6e-3 (5.8e-3)

In both examples, CMC provides a good estimator of the rare probability (with 90.4% of non-zero
estimates, in the second example, i.e. where the rare event has been observed). We take its results as a
benchmark.

In Table 3, in a population of 10 individuals, we can see that every method provides a good estimate.
Switching to a population of 120 individuals, one observes that CE faces difficult numerical problems
related to the computation of the likelihood ratios. This method is avoided in the sequel.

The IPBS method which turns out to be the more robust is the IPBS method 1, where the levels are
defined so that 1% of the paths are kept. In contrast to the Reed-Frost example, where the IPBS methods
which work best correspond to a high proportion of kept trajectories (95%), here the methods that give
the results which match the best CMC correspond to those where only 1% of the path at each iteration
are kept. This may be explained by the number of iterations needed. IPBS for Reed-Frost model is
implemented with a constant number of iterations, which is the number of time steps until t. Being too
restrictive, we obtain only zero as conditional probability estimates. For the continuous time SIR model,
the number of iterations is directly linked to the proportion of kept paths. The algorithm stops when the
fixed proportion of best paths reaches the level Nc. When keep too many paths, the iteration becomes
lengthy.

4.2 An age-structured HIV epidemic model with contact-tracing

We now consider a numerical individual-centered epidemic model, proposed and studied in the context
of an asymptotically large population by [12], which is effectively used for anticipating the spread of HIV
in Cuba and has been statistically fitted by the means of Approximate Bayesian Computation techniques
(see [7] for further details) based from the HIV data repository described at length in [3]. Experiments
are naturally (and fortunately) impossible in the context of epidemics. The capacity to simulate events of
interest and estimate their probability of occurrence is thus of prime importance, in order to compare the
effects of different control strategies for instance. Here we investigate the impact of the contact-tracing
mechanism on the probability that, by means of the IPBS method described in the previous section.

As most realistic epidemics models really used by practitioners, it is more complex than the standard
Markovian SIR model with demography recalled in subsection 2.1, though based on the same general
concepts. Precisely, this model accounts for the effect of the contact-tracing detection system set-up
since 1986 in order to control the HIV epidemics accross the island by stipulating a structure by age on
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the class R (corresponding to the individuals diagnosed as HIV positive). The R subpopulation is hence
described by a point measure Rt indicating the time points since each individual in the R compartment
has been identified by the public health system as infected, i.e. Rt([a1, a2]) represents the number of
positive diagnoses between times t − a2 and t − a1 for all 0 ≤ a1 < a2 < +∞. Apart from this, the
(Markovian) dynamics of the epidemics process {(S(t), I(t), Rt(da))} is described by the flow diagram

in Fig. 1 with µ ≡ 0, λ(S, I) = λSI and γ(I,R) = γ1I + γ2I
∫ +∞
a=0

exp(−ca)R(da) with λ = 5.4 10−8,
ρ ≡ 0 10−6, γ1 = 0.13, γ3 = 0.19 and c = 1. The second term involved in the rate γ(I,R) models the
way detected individuals contribute to contact-tracing detection (notice incidentally that the smaller the
parameter c, the more difficult the early stages of search for contact, refer to §2.1 in [12]).

Our purpose is to estimate pf (Nc) for various values of Nc: 8500, 8800 and 9000. As previously, IPBS
is obtained with 1000 particles. For the CMC, 10e6 simulations have been performed. This permits to
obtain a good estimate of the small probability pf (Nc) but also to compare CMC to IPBS. Indeed, if we
separate the 10e6 simulations into 1000 runs of 1000 simulations, this allows us to count how many times
the run provides an estimate equal to zero (the rare event has not been observed). As shown in Table
5, the CMC fails for the two last cases: whereas for Nc = 8500, only 2.4% of the simulations lead to an
empirical probability equal to 0, this proportion is 84.4% and 98.6% for Nc = 8800 and Nc = 9000. This
emphasizes the importance of the IPBS methods. CE methods do not give good results on such large
populations, the computation of likelihood ratios being very sensitive numerically.

Table 5: Estimates of the tail probability θ = pf (Nc) of the size of the age-structured epidemics model
with contact-tracing for Cuban HIV epidemic

Method θ̂ (s.e.)
Nc = 8500

CMC 3.4e-3 (1.8e-3)
IPBS1 - 1% 3.5e-3 (1.7e-3)
IPBS2 - 1% 3.5e-3 (3.8e-3)

Nc = 8800
CMC 1.7e-4 (4.0e-4)
IPBS1 - 1% 1.5e-4 (3.0e-4)
IPBS2 - 1% 1.7e-4 (9.7e-4)

Nc = 9000
CMC 1.4e-5 (1.2e-4)
IPBS1 - 1% 4.3e-6 (4.4e-5)
IPBS2 - 1% 8.4e-6 (2.1e-4)

5 Conclusion

Though (fortunately) rare, crisis situations related to the spread of a communicable infectious disease, are
of great concern to public-health managers. However, proper use of simulation-based statistical methods
tailored for the estimation of such rare events is not well-documented in the mathematical epidemiology
literature. Indeed, the vast majority of analyses focus on the likeliest scenarios, on events occurring
with large or even overwhelming probability (e.g. a large outbreak when the basic reproduction number
is larger than one). In contrast, the present article provides an overview of recent techniques for rare
event probability estimation and simulation in the context epidemics models and show how they can be
used practically in order to provide efficient risk assessment tools for public-health management. The
numerical results displayed in this paper provides strong empirical evidence that simulation methods
based on interacting and branching particle systems are quite promising for this specific purpose.

Remark 5.1. The authors are grateful to Prof. H. de Arazoza for his helpful comments. The authors
acknowledge support by the French Agency for Research under the grant funding the research project
Viroscopy (ANR-08-SYSC-016-02). A.C. and V.C.T. have additional support by the Labex CEMPI
(ANR-11-LABX-0007-01). The PhD of A.C. is supported by the Agence Nationale de Recherches sur le
Sida et les hpatites virales (ANRS) through the project 12376.

Appendix - Temporal multilevel splitting

Here we show that the branching particle model sketched in Remark 3.3 can be used for estimating
the probability pd(T ) introduced in §2.2. More generally, we consider a continuous-time strong Markov
process Z = {Z(t)}t≥0 taking its values in a measurable space E with initial state z0 ∈ E and a Harris
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recurrent set B ⊂ E. Let τB = inf{t > 0 : Z(t) ∈ B} denote the hitting time to the set B. Our goal is
here to estimate the tail probability π = P{τB > t}, i.e. the probability that the hitting time τB exceeds
the (large) threshold value t > 0, by the means of time sublevels t0 = 0 < t1 < . . . < tK < tK+1 = t.
At each stage k, the selection step simply consists in drawing with replacement among the paths Z that
have not reached B before time tk: we set ωk(Z) = 1 in this case and ωk(Z) = 0 otherwise.

Temporal multilevel splitting

1. Initialization. Start with a collection of N ≥ 1 simulated trajectories
Z

(1)
0 , . . . , Z

(N)
0 of the Markov process indexed by i ∈ {1, . . . , N}, with

the same initial condition z0 and the same weights ω
(i)
0 = 1, 1 ≤ i ≤ N .

Denote by τ
(i)
B the corresponding hitting times.

2. Iterations. For k = 1, . . . , K,

(a) Let I1,k be the subset of indices i ∈ {1, . . . , N} corresponding to

the paths Z
(i)
k−1 which have not reached the subset B before time

tk, i.e. such that τ
(i)
B > tk, and denote by #I1,k its cardinality

(when it is equal to 0, the algorithm is stopped and re-started).
Set I0,k = {1, . . . , N} \ I1,k. For each path indexed by i ∈ I1,k,

set Z
(i)
k = Z

(i)
k−1.

(b) For each path indexed by i ∈ I0,k:

• (Selection step) independently draw a particle Z
(j)
k from

distribution
∑
j∈I1,k

ω
(j)
k · δZ(j)

k

, with ω
(j)
k = 1/#I1,k.

• (Mutation step) Define Z
(i)
k as the concatenation of the path

Z
(j)
k on [0, tk] with a path simulated from the state Z

(j)
k (tk)

for times larger than tk.

(c) Compute Pj = I1,k#/N and pass onto stage k + 1.

3. Output. Compute the estimate of the target probability π = P{τB >
t}:

π̂N = P1 × . . .× PK+1,

where PK+1 is defined as the proportion of particles Z that have not
reached the subset B before time t among those which had not reached
A before time tK .
Compute also the empirical distribution

LN =
1

N

N∑
i=1

δ
Z

(i)
K+1

,

which may serve as an estimate of the conditional law L of the epidemics
process given the event {τB > t} occurs.

We highlight the fact that the probability P{τB > t} is actually of the same form as (3). Indeed,
this corresponds to the situation of the bivariate Markov process {(Z(t), t)}t≥0 with the (rare) set A =
N∗ × [T, +∞[ and T as the extinction time τ . Therefore, works by [10] may be adapted to prove
consistence and asymptotic normality when the number of particles N tends to infinity. In particular, an
adaptive variant of the temporal multilevel splitting is as follows.

Adaptive variant. The method described above requires to fix in advance the number of time points
and the time-points themselves, whereas, ideally, they should be determined in an adaptive fashion. We
start by running N independent paths of the epidemics and rank them by decreasing durations T (i),
1 ≤ i ≤ N . The first threshold t1 can be chosen as the duration of the k− 1-th longest epidemics, so that
k paths are kept and N −k are killed. For each killed path, we resample from the k paths that have been
kept and resimulate the part of the path after t1. This allows to define recursively a system of longer and
longer epidemic paths.
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