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Steady-state and stability analysis of a population balance based
nonlinear ice cream crystallization model

C. Casenave, D. Dochain, G. Alvarez, H. Benkhelifa, D. Flick and D. Leducq

Abstract— The process of crystallization can be modelled by
a population balance equation coupled with an energy balance
equation. Such models are highly complex to study due to the
infinite dimensional and nonlinear characteristics, especially
when all the phenomena of nucleation, growth and breakage
are considered. In the present paper, we have performed the
stability analysis on a reduced order model obtained by the
method of moments, which remains still highly complex. The
considered model has been developed by the Cemagref and
validated on experimental data. After computation, we get a
scalar equation whose solutions correspond to the equilibrium
points of the system. This equation is finally solved numerically
for a concrete physical configuration of the crystallizer. We
show that in most instances, there is only one steady state. The
possibility of multiple steady-states is discussed.

I. INTRODUCTION

Crystallization (e.g. [1]) is encountered in many processes,
in particular in the pharmaceutical industry and the food
industry [2]. In crystallization processes, an important chal-
lenge is to control the quality of the product while mini-
mizing the energy consumption of the system. To achieve
this goal, it is important to rely on a model that adequately
describes the key phenomena of the crystallization process.
In ice cream crystallization, it is well known that the quality
of the product, that is the hardness and the texture of the ice
cream, depends on the ice crystal size distribution (CSD).
Indeed, the smaller the crystals are, the smoother the ice
cream is. It is therefore of importance to consider a model
that describes the evolution of the CSD : this can be achieved
for instance by considering a population balance equation
(PBE) [3]. This model is coupled with an energy balance
equation which can either be expressed as an equation of the
volumetric internal energy or of the temperature. To control
such a system, one possible solution consists in designing
a control law on the basis of a reduced order model (late
lumping). This one may be obtained by applying the method
of moments, which transforms the PBE in a set of ordinary
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differential equations (ODEs). As the first four moment
equations are independent of the ones of lower order, and
as the energy balance equation only involves moments of
order 3 or less, the system we consider is reduced to a set
of 5 ODEs. As a preliminary step before the control design,
we first analyse the process model in order to emphasize
the key dynamical properties of the model and to evaluate
if the reduced model is sufficiently reliable and precise to
design efficient control laws. The analysis of such a reduced
system has already been made in some simplified cases. In
[4] for example, the authors consider the isothermal case and
assume that there is no breakage, and show that apart from
the trivial equilibrium point, there is only one steady-state.

In this paper, we consider a complete mathematical model
described in [5], [6]. This model has been developed by
a research team of the Cemagref and has been validated
on experimental data obtained from a pilot plant located
at Cemagref. In this paper, we analyse the stability of the
corresponding reduced model. This work was conducted as
a part of the European CAFE project (Computer-Aided Food
processes for control Engineering) in which four case studies
are considered among them the one of the ice crystallization
process. The final objective is to design some efficient laws
to control the quality (texture, viscosity) of the ice cream at
the outlet of the freezer.

The paper is organized as follows. In section II the crys-
tallization model we consider is described. Then, we show
in section III how the computation of the equilibrium points
can be reduced to the resolution of a scalar equation. In
section IV, the equation is solved numerically for a concrete
physical configuration of the crystallizer and the results are
commented.

II. MODEL DESCRIPTION
The model we consider in this paper is the one described

in [5], [6]. The ice cream crystallizer is a scraped surface
heat exchanger which is assumed to behave as a plug flow
reactor. The population balance of the crystal size distribution
considers transport, crystal growth, nucleation, breakage and
possible radial diffusion. If the radial diffusion is assumed to
be negligible, and if the plug flow reactor is approximated,
from an input-output point of view, by a Continuous Stirred-
Tank Reactor (CSTR) with a transport delay (to account for
the fluid transport in the freezer), then we get the following
simplified model :

∂Ψ

∂t
= − q

V
Ψ︸ ︷︷ ︸

transport

− ∂(GΨ)

∂L︸ ︷︷ ︸
growth

+Nδ(L−Lc)︸ ︷︷ ︸
nucleation

+ Bb︸︷︷︸
breakage

(1)



where Ψ is the number of crystals per meter (of the freezer)
per cubic meter of the solution at the outlet of the freezer, t
is the time variable, L and Lc are the crystal length variable
and the initial crystal length, q is the inlet flow rate, V is
the volume of the freezer, and G, N , Bb are the growth
rate, nucleation rate, and net increase of crystals number by
breakage, respectively. δ denotes the Dirac function.
The growth and nucleation rates are expressed by1 [6]:

G = β(Tsat − T ), and N = αS (Tsat − Te)
2
, (2)

where Tsat is the saturation temperature, and α, β are some
kinetic parameters.
Because of the scraper, the crystals can also be broken. We
assume that a particle of size L′ is broken into two particles
of the same length L. The volume of ice is considered
unchanged by the fragmentation and a spherical shape is
assumed (as in [6]). Under this assumption, the net increase
of particles by breakage Bb, can be expressed as2 [6]:

Bb = εNscrap φ
ν
i

(
2 22/3 LΨ(

3
√
2L)− LΨ(L)

)
, (3)

with Nscrap the dasher rotation speed, ε a breakage coeffi-
cient, φi the ice fraction and ν the breakage power coefficient
which is taken equal to 0, as in [7].

Under the same hypotheses, the energy balance equation
is written as follows :
dU

dt
= − q

V
(U − U0)︸ ︷︷ ︸

transport

+ heS(Te − T )︸ ︷︷ ︸
wall heat transfer

+ µγ̇2︸︷︷︸
viscous dissipation

(4)

where U and T are the respective volumetric internal energy
and temperature at the outlet of the freezer, U0 is the
volumetric temperature at the inlet of the freezer, Te is the
evaporation temperature, he is the convective heat transfer
coefficient and µ is the viscosity. The effective shear rate γ̇
is given by γ̇ = 2πχNscrap with ,χ the viscous dissipation
coefficient. The quantity S = 2Re

R2
e−R2

i
is the ratio of the

circumference over the surface of the section of the freezer,
Re and Ri denoting the maximum and minimum diameters
of the cylindrical freezer respectively.

Applying the method of moments3 to equation (1), we get,
for all j > 0 [7] :

dMj

dt
= − q

V
Mj +j GMj−1+N Lj

c+B
(
21−

j
3 − 1

)
Mj+1

where the jth order moment Mj is given by :

Mj(t) =

∫ ∞

0

LjΨ(L, t)dL (5)

and B = εNscrapφ
ν
i .

The saturation temperature Tsat = Tsat(M3) is supposed
to depend only on M3. We so have: G = G(M3, T ) and
N = N(M3, Te).

1Only heterogeneous nucleation at the freezer wall (r = Re) is consid-
ered here.

2Under these assumptions, the relation between L′ and L is given by
L′ = 21/3L.

3The method of moments consists in multiplying the population balance
equation by Lj and then integrating it from L = 0 to L = ∞.

If we consider the ice crystals as spherical particles (as
in [6]), then we have φi =

π
6M3 and equation (4) can be

rewritten with the temperature T as the state variable by
using the following relation :

U = −∆Hρiφi + ρs (ω0Cs + (1− ω0)Cw)T (6)

where ∆H,ω0, Cs, Cw, ρi and ρs are the specific fusion
latent heat, the initial mass fraction of solute, the solute and
water specific heat capacities, and the mass densities of ice
and solution, respectively.

After computation, we finally get :

dT

dt
= D (T0 − T )+K2 (Te − T )+µK3+K1

(
3GM2 +NL3

c

)
(7)

with the following quantities :

D =
q

V
, K0 = ρs (ω0 Cs + (1− ω0)Cw) , (8)

K1 =
π

6

∆H ρi
K0

, K2 =
heS

K0
, K3 =

γ̇2

K0
. (9)

If the viscosity µ is assumed to depend only on the third
moment M3 and the temperature T , then the system com-
posed of the first four moment equations and the temperature
equation is closed. In fact all the dynamic quantities of this
system are functions of the moments M0, M1, M2, M3,
the temperature T and the possible control variables Te, q
and Nscrap. In the sequel we shall therefore consider the
following reduced model :

dM0

dt
=−DM0 +N +BM1 (10)

dM1

dt
=−DM1 +GM0 +NLc + c1BM2 (11)

dM2

dt
=−DM2 + 2GM1 +NL2

c + c2BM3 (12)

dM3

dt
=−DM3 + 3GM2 +NL3

c (13)

dT

dt
=D (T0 − T ) +K2 (Te − T ) + µK3

+K1

(
3GM2 +NL3

c

)
(14)

with µ = µ(M3, T ) and the following constants :

c1 = 2
2
3 − 1, c2 = 2

1
3 − 1. (15)

III. STEADY STATES

In this section we concentrate on the determination of the
equilibrium points of the system (10)-(14), that is the points
such that dMi

dt = 0, i = 0 : 3 and dT
dt = 0. We only consider

here the steady states which verify the following physical
conditions:

φi ∈ [0, 1] ⇔ M3 ∈ [0, 6
π ]

M0,M1,M2,M3 > 0 and T > −273.
(16)



A. Expression of M0, M1 and M2

From (10-14), dM1

dt = 0, dM2

dt = 0 and dM3

dt = 0 lead, under
the assumption that G 6= 0, to :

M0 = 1
G (−NLc +DM1 − c1BM2)

M1 = 1
2G

(
−NL2

c − c2BM3 +DM2

)
M2 = 1

3G

(
DM3 −NL3

c

)
that is :

M0 = − 1
6G2

(
3D(NL2

c + c2BM3) + 2c1B(DM3 −NL3
c)
)

+ 1
6G3

(
−6NLcG

2 +D2(DM3 −NL3
c)
)

M1 = 1
6G2

(
−3G

(
NL2

c + c2BM3

)
+D

(
DM3 −NL3

c

))
M2 = 1

3G

(
DM3 −NL3

c

)
.

(17)
As said previously, all the moments Mi are positive

variables. We deduce from this positivity some conditions
on G :

• the positivity of M1 can be written as follows (under
the assumption that (NL2

c + c2BM3) 6= 0) :

D
(
DM3 −NL3

c

)
3 (NL2

c + c2BM3)
> G ; (18)

• the positivity of M2 leads to:

sign(G) = sign(DM3 −NL3
c). (19)

B. Expression of G
Using (17), dM0

dt = 0 gives :

−DM0 +N +BM1 = 0 (20)
⇔ a(M3)G

3 + b(M3)G
2 + c(M3)G+ d(M3)︸ ︷︷ ︸

P (G)

= 0 (21)

with: a(M3) =6N, (22)

b(M3) =6DNLc − 3B(NL2
c + c2BM3), (23)

c(M3) =3D2(NL2
c + c2BM3)

+DB(1 + 2c1)(DM3 −NL3
c), (24)

d(M3) =−D3(DM3 −NL3
c) (25)

Let us denote G1, G2 and G3 the 3 roots of P . We have
under the assumption that N 6= 0 :

−G1G2G3 =
d

a
=

−D3
(
DM3 −NL3

c

)
6N

and so : sign(G1G2G3) = sign(DM3 −NL3
c). (26)

Consequently, either 1 or 3 of the roots can fulfil the
condition (19).
The kind of roots depends on the sign of the quantity ∆
defined by :

∆ = 4
p(M3)

3

27
+ q(M3)

2 (27)

with p(M3) =
c

a
− b2

3a2
(28)

and q(M3) =
d

a
− bc

3a2
+

2b3

27a3
. (29)

Let us consider the different possible cases :
• Case 1, ∆ > 0 : then we have 1 real root G1 and

2 complex roots G2 and G3. The expression of G1 is
given here after :

G1 = − b

3a
+ (s1)

1/3 + (s2)
1/3, (30)

with

s1 =
−q(M3) +

√
∆

2
and s2 =

−q(M3)−
√
∆

2
.

(31)
As the coefficients of the polynomial are real, the two
complex roots are necessarily conjugate that is : G2 =
G3, and so G1G2G3 = G1|G2|2. From (26), it can then
be shown that the root G1 verifies the condition (19).

• Case 2, ∆ 6 0: then we have 3 real roots G1, G2, G3

given by :

G1 = − b

3a
−
√
3Im(s)−Re(s), (32)

G2 = − b

3a
+
√
3Im(s)−Re(s), (33)

G3 = − b

3a
+ 2Re(s), (34)

with:

s =

(
−q(M3) + i

√
−∆

2

)1/3

. (35)

We can show that (the proofs are given in appendix
VI) :
Proposition 1: G1 < G′

1 < G2 < G′
2 < G3 with :

G′
1 =

−2b−
√
∆′

6a
and G′

2 =
−2b+

√
∆′

6a
(36)

and ∆′ = 4
[
b2 − 3ac

]
.

We also have :
Proposition 2: D − 2c1BLc > 0 ⇒ G1, G2, G3 > 0.
Remark 3: The condition D− 2c1BLc > 0 is not very
restrictive. It is indeed often verified in practice (see
section IV).
Consequently, the three roots fulfil the condition (19).
Nevertheless, it can be shown that there is at the most
only one of the 3 roots which verify the condition (18).
More precisely, we have :
Proposition 4: G2 and G3 do not fulfil the condition
(18).
Finally, only G1 can be a possible value of G at
equilibrium.

As a conclusion, we have :

G =

{
− b

3a + (s1)
1/3 + (s2)

1/3 when ∆ > 0

− b
3a −

√
3Im(s)−Re(s) when ∆ 6 0

(37)

with s1, s2 and s expressed by (31) and (35), respectively.
Remark 5: This expression of G guarantees the positivity

of M2 but not necessarily the one of the other moments,
which will have to be tested numerically.

Remark 6: The continuity of G, as a function of M3, can
be shown.



C. Expressions of T and M3

After having computed the possible values of G, we can
deduce the value of T from (2) :

T = Tsat(M3)−
1

β
G (38)

Then, by replacing T by (38) in dT
dt = 0 and because dM3

dt =
0 ⇔ 3GM2+NL3

c = DM3, we finally get a scalar equation
that only depends on M3 :

F (M3) = 0

with F (M3) = D (T0 − T (M3) +K1M3)
+K2 (Te − T (M3)) + µ(M3, T (M3))K3.

(39)
The number of physical equilibrium points of the system

equals to the number of solutions of (39) which verify
the physical conditions (16). Due to the complexity of the
equation and because it depends on the expressions of Tsat

and µ, neither the values nor the number of equilibrium
points can be analytically computed.

IV. NUMERICAL SIMULATIONS

In this section, we compute numerically the solutions
of equation (39) for a particular case of model (10)-(14).
The values of the parameters correspond to an pilot plant
ice cream crystallizer located at Cemagref and described in
[6]. The crystallizer is a cylinder with a 0.40m length and
whose maximum and minimum diameters are respectively
given by: Re = 25mm and Ri = 16mm. The values of
Lc, α, β, ε, χ, ξ and he are the same as the ones considered
in [6]. For the others parameters, we have taken the following
values :

ω0 = 0.3, ρi = 1000kgm−3, ρs = 1120 kgm−3

Cs = 1676 J kg−1 ◦C−1, Cw = 4187 J kg−1 ◦C−1

∆H = 336.6 103 J kg−1, T0 = 5◦C

The expression of Tsat is given by (see [7]) :

Tsat = −7.683ω + 8.64ω2 − 70.1ω3 with ω =
ω0

1− ρi

ρs
φi

.

It is obtained by interpolation of experimental data and
depends on the commercial mix under consideration.
The viscosity µ of the sorbet is expressed by [6] :

µ = µmix

(
1 + 2.5φi + 10.05φ2

i + 0.00273 ξ e16.6φi
)
,

where µmix, the viscosity of the continuous phase of sucrose
in water solution, is provided by experiments and written as
follows [7] :

µmix = 39.02×10−9×γ̇0.600−1e
2242.38
T+273 ×(100ω)2.557. (40)

In Figure 1 we can see the values of G (expression (37))
and F (expression (39)) as functions of the variable M3,
plotted on [0, 6

π ], in the case of an inlet mass flow rate4 mfr

4We have: q = mfr
ρsol

where ρsol is the volumetric mass of the solution.

of 100 kg.h−1, a scraper rotation speed of 300 rpm and an
evaporation temperature of −20◦C. In that case, we note
that there is only one solution of F (M3) = 0. In fact we can
verify numerically that it is the case for all the admissible
values of mfr, Nscrap and Te [6], that is: 25 kg.h−1 < mfr <
100 kg.h−1, 300 rpm < Nscrap < 1000 rpm and −25 C◦ <
Te < −10 C◦. We also verify that the equilibrium point is
always Lyapunov stable.

We also verify the coherent respective influences of
mfr, Nscrap and Te on the value of the equilibrium point.
Indeed, the values of the moments at equilibrium decrease
with mfr, Te and Nscrap, whereas the temperature increases
with these three quantities. These behaviours are coherent
with the physical signification of the moments; indeed M0

is the number of particles per cubic meter, M1 is the sum of
characteristic lengths per cubic meter, and M2 and M3 are
the images of the total area and volume of crystals per cubic
meter.

In the configuration of the system considered here, equa-
tion F (M3) = 0 admits only one solution. Nevertheless,
we note that function F is not monotonic. There is a peak,
visible in figure 1 (top and bottom), which could enable,
under particular values of parameters, to get configurations
for which there would be three equilibrium points5. This peak
is located around the value of M3 such that Tsat(M3) =
Te, which corresponds to the case where a(M3) = 0 ⇔
N(M3, Te) = 0 (see (22)). Suppose there exists a configu-
ration of the system for which the axis y = 0 cut the curve
of F three times, in the neighbourhood of the peak. The
first intersection point is necessarily located before the peak,
whereas the two other ones are located after. So it implies
that the two corresponding equilibrium points are such that
Te > Tsat. On the other hand, we can easily deduce from the
expression of F (formula (39)), that any solution of equation
F (M3) = 0 are such that T > Te. Indeed, K2(Te − T ) is
the only term of F (M3) which can take negative values.
Finally the two equilibrium points located after the peak are
such that T > Te > Tsat, which implies that G < 0. So
these equilibrium points would correspond to cases where
the crystals are melting.

V. CONCLUSION

This paper focused on an ice cream crystallisation model,
composed of a population balance equation describing the
evolution of the crystal size distribution in the freezer, cou-
pled with an energy balance equation. The key phenomena of
the crystallisation process, that is the nucleation, the growth
and the breakage have been taken into account, leading to
a rather complex model. We have studied the stability of
a differential equations model directly deduced from the
preceding one by the method of moments. The five state
variables were the first four moments and the temperature of
the ice cream at the outlet of the freezer. We show that the

5Such configurations have been observed, in simulation, but only for
parameter values which are not physically realistic (very low value of T0

for instance). But the existence of other realistic configurations remains
possible.
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Fig. 1. Values of G (top) and F (bottom) as function of M3, for an inlet mass flow rate of 100 kg.h−1, a scraper rotation speed of 300 rpm and an
evaporation temperature of −20◦C.

computation of equilibrium points of the system is reduced
to the resolution of a scalar equation. This equation has been
solved numerically, for a set of parameters corresponding to
a concrete physical configuration of the freezer. In that case,
only one stable steady state has been found. Nevertheless,
in the mathematical point of view, the existence of 3 steady
states remains possible. We note that, in that case, only one
of the 3 steady states would correspond to a situation where
the crystals are growing. A realistic set of parameters leading
to such a situation has not been found yet.
This work is a preliminary step before the control design.
The objective is to control the quality (texture, viscosity) of
the ice cream at the outlet of the freeezer. This quality can
directly be evaluated from quantities which can be expressed
as functions of the temperature and the first four moments,
which makes the study of the moments equations important.

VI. APPENDIX

In this appendix are detailed the proofs of all the results
of the paper.

Proof of proposition 1
The quantity s defined by (35) is such that Im

(
s3
)

=√
−∆
2 > 0. We so have:

Im(s) > 0, Re(s) > 0 and arg(s) ∈ [0,
π

3
].

As a consequence, 2Re(s) > −
√
3Im(s) − Re(s) and√

3Im(s) > −
√
3Im(s), and so G3 > G1 and G2 > G1.

Furthermore:

arg(s) ∈ [0,
π

3
] =⇒ 0 6 Im(s)

Re(s)
6 tan(

π

3
) =

√
3

As Re(s) > 0, then we have
√
3Im(s) − Re(s) < 2Re(s)

that is G2 < G3. Finally, G1 < G2 < G3.

Let us study the function P . We have P ′(G) = 3aG2 +
2bG+ c. The number of roots of P ′(G) depends on the sign
of the following quantity ∆′ = 4

[
b2 − 3ac

]
. We are in the

case where ∆ 6 0, which implies:

4
p(M3)

3

27
+ q(M3)

2 6 0 ⇒ p(M3) 6 0

⇔ 3ac− b2 6 0. (41)

We so have ∆′ > 0. Consequently, P ′(G) has two real roots
G′

1 and G′
2 expressed by:

G′
1 =

−2b−
√
∆′

6a
and G′

2 =
−2b+

√
∆′

6a

and such that G′
1 6 G′

2. As a ≥ 0, then we have:

P ′(G) −→
−∞

−∞ and P ′(G) −→
+∞

+∞.

Moreover, as there are 3 real roots, we necessarily have
P (G′

1) > 0 and P (G′
2) < 0, and, because G1 < G2 < G3:

G1 < G′
1 < G2 < G′

2 < G3.

�



Proof of proposition 2
As shown previously (see (41)), we have ∆ 6 0 ⇒ 3ac −
b2 6 0. After computations, we get:

3ac− b2 = k1M
2
3 + k2M3N + k3N

2,

with k1 = −9B4c22,

k2 =9B
(
2D2(1 + 2c1 + 3c2) + 2c2BLcD − c2B

2L2
c

)
,

k3 =9L2
c

(
2D2 + 2BLcD(1− 2c1)−B2L2

c

)
.

Assuming that D − 2c1BLc > 0, we can show that
k1 < 0, k2 > 0 and k3 > 0.

Let us compute the discriminant of this polynomial in
M3, that is the quantity δ = (Nk2)

2 − 4k1k3N
2. After

computations, we get δ = 92N2B2δ2 with:

δ2 = 4D3(1 + 2c1 + 3c2)(D(1 + 2c1 + 3c2) + 2c2BLc)

+ c2B
2Lc(4D

2(2− 2c1 − 3c2)− 3B2L2
c + 4DBLc(1− 4c1))

As k1 < 0 and k2, k3 > 0, we can show that δ2 > 0. The 2
real roots of the polynomial then write:

−Nk2 ±
√
δ

2k1
=

N(k2,2 ∓
√
δ2)

2B3c22

with k2,2 = 2D2(1 + 2c1 + 3c2) + c2BLc(2D−BLc) > 0.
As k1 < 0 and k2, k3 > 0, then

√
δ > Nk2 and so

N(k2,2−
√
δ2)

2B3c22
< 0 and N(k2,2+

√
δ2)

2B3c22
> 0. We then deduce:

3ac−b2 6 0 with M3 > 0 ⇒ M3 >
N(k2,2 +

√
δ2)

2B3c22
. (42)

We also have, from (23), b(M3) = 3NLc(2D − BLc) −
3c2B

2M3. As 2D −BLc > 0 and by use of (42), we get:

b < 3Lc(2D −BLc)
2B3c22

(k2,2 +
√
δ2)

M3 − 3c2B
2M3

=
3B2c2

(k2,2 +
√
δ2)

M3

(
2c2BLc(2D −BLc)− k2,2 −

√
δ2

)
= − 3B2c2

(k2,2 +
√
δ2)

M3

[
2D2(1 + 2c1) + 2c2D(3D − 2BLc)

+2c2B
2L2

c +
√
δ2

]
< 0.

We also have d > 0 ⇔ DM3 < NL3
c and so:

k1M
2
3 +k2M3N+k3N

2>k1
NM3L

3
c

D
+k2M3N+k3

DNM3

L3
c

=
NM3

DL3
c

(k1L
6
c + k2DL3

c + k3D
2) > 0

under the assumption that D − 2c1BLc > 0. Finally:

d > 0 ⇒ 3ac− b2 > 0 ⇒ p(M3) > 0 ⇒ ∆ > 0.

As ∆ 6 0, we so have d < 0.
We have: G′

1 = 1
6a

(
−2b−

√
∆′

)
= 1

3a

(
−b−

√
b2 − 3ac

)
.

However:

c = 3D2(NL2
c + c2BM3) +DB(1 + 2c1)(DM3 −NL3

c)

= NDL2
c(3D − (1 + 2c1)BLc) +D2BM3(1 + 2c1 + 3c2).

So, under the assumption that D − 2c1BLc > 0, we have
c > 0. As a > 0, we then have 0 6 b2 − 3ac < b2, which,
because b < 0, gives:

0 6
√
b2 − 3ac < −b ⇔ G′

1 > 0 ⇒ 0 < G2 < G3.

As a conclusion, when ∆ 6 0, we have 0 < G2 < G3 and
G1G2G3 = − d

a > 0 and so G1 > 0. �
Proof of proposition 4

Recall that a > 0, b < 0, c > 0 and d < 0 (see proof of
proposition 2). We will show that:

G3 > G2 >−2b−
√
∆′

6a = G′
1 >

D(DM3−NL3
c)

3(NL2
c+c2BM3)

,

that is:
√
∆′Q1 < −2aDQ2 − 2bQ1, (43)

with Q1 = NL2
c + c2BM3 and Q2 = DM3 −NL3

c .
The two members of the inequality (43) are positive. Indeed,
the right member −2aDQ2−2bQ1 gives, after multiplication
by 3B

2 > 0:

− 3aBDQ2 − 3BbQ1

=− 3aBDQ2 + b2 − 6DNLcb (because of (23))
>− 3aBDQ2 + 3ac− 6DNLcb (because of (41))

=3a
[
3D2Q1 + 2c1BDQ2

]
− 6DNLcb > 0

(because a > 0 and b < 0 ).

As a consequence, inequality (43) is equivalent to:

∆′Q2
1 < (2aDQ2 + 2bQ1)

2

⇔ b2Q2
1 − 3acQ2

1 < a2D2Q2
2 + b2Q2

1 + 2abDQ2Q1

⇔ 0 < aD2Q2
2 + 2bDQ2Q1 + 3cQ2

1

⇔ 0 < 6ND2Q2
2 + 12D2NLcQ2Q1

+ 9D2Q3
1 + 3DB(2c1 − 1)Q2Q

2
1

This inequality is verified because (2c1 − 1) > 0 and Q2 =
− d

D3 > 0, and so the four terms of the right member are
positive. �
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