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We investigate the set of quantum channels acting on a single qubit. We provide an

alternative, compact generalization of the Fujiwara-Algoet conditions for complete positivity

to non-unital qubit channels, which we then use to characterize the possible geometric forms

of the pure output of the channel. We provide universal sets of quantum channels for all

unital qubit channels as well as for all extremal (not necessarily unital) qubit channels, in the

sense that all qubit channels in these sets can be obtained by concatenation of channels in

the corresponding universal set. We also show that our universal sets are essentially minimal.
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I. INTRODUCTION

The science of quantum information has attracted tremendous interest over the last twenty

years after it was realized that certain computational tasks might be solvable more efficiently on a

quantum computer than on a classical computer [1]. For example, a quantum algorithm exists that

can factorize a large integer in a time polynomial in the number of digits, whereas no such classical

algorithm is known [2]. Other examples of quantum speed-up include algorithms for searching an

unsorted database [3], the hidden subgroup problem [4], the approximation of Jones polynomials

[5], or the solution of linear systems of equations [6] with a recent application to data fitting [7].

Traditionally, quantum information science was mostly concerned with unitary time evolution,

which is appropriate for well isolated quantum systems. An important step in the development of

quantum information theory was the realization that all unitary operations in the exponentially

large Hilbert space of many qubits can be broken down into elementary unitary operations that act

on only one or two qubits at the same time [8]. In fact, the combination of a single fixed entangling

unitary gate that can be applied on any two qubits and the continuous set of all unitary operations

on all single qubits form a “universal gate set”, which is at the heart of the circuit paradigm of

quantum computing [9–13].

However, in reality no quantum system is perfectly isolated from its environment. At the very

least, the need of state-preparation and the read-out of the results require interaction with the
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external world. Interactions with the environment lead typically to decoherence and destroy the

quantum effects such as interference [14–16] and entanglement which are vital for the quantum

computational speed-up [17]. But couplings to the environment can also have beneficial effects.

In particular, it is possible to create entanglement through purely dissipative processes [18–20].

Dissipative processes may be used to effectively confine the dynamics to a part of Hilbert space

where decoherence is strongly reduced (“decoherence-free subspaces”, see [21–25]) and at the same

time enable entangling quantum gates in a simple fashion [26, 27]. Indeed, non-unitary propagation

of quantum states opens up a much larger field of operations, and it is desirable to achieve a

thorough understanding of the set of these “quantum channels”, defined quite generally as linear,

completely positive trace preserving maps of a density matrix [1, 28]. Quantum channels have

also played an important role in terms of error models and for the development of quantum error

correction [29–31].

Given the importance of universal unitary gate sets for unitary quantum computation, one

might expect that simple universal sets of quantum channels might become equally important for

exploring the full power of the most general quantum operations allowed by nature. However, the

set of quantum channels is much larger and has more complicated geometry than the set of unitary

operations [32]. Important early work, long before the rise of quantum information theory, has

provided us with powerful tools that allow us to assess the crucial complete positivity of a channel,

such as the Kraus decomposition [33], the Choi matrix [34], or the Lindblad form of Markovian

equations of motion [35–37]. But the full understanding of completely positive maps, especially

with respect to composition, remains a formidable mathematical problem.

Here we will restrict ourselves largely to single qubit channels. Ruskai and co-workers [38, 39],

and Wolf and Cirac [40] have made important contributions which we will heavily use. Fujiwara and

Algoet provided simple inequalities that characterize the set of all unital qubit channels, i.e. qubit

channels that map the identity matrix on itself [41]. We provide a compact generalization of

these conditions to the general non-unital case where the Bloch sphere is mapped to an ellipsoid

contained in the Bloch sphere. These new conditions have more natural geometric interpretation

than (equivalent) conditions presented in [39] and allow us to classify qubit channels in terms

of their pure output (PO). We show in particular that a PO in the form of a circle of non-zero

radius on the Bloch sphere is forbidden by the requirement of complete positivity. For unital qubit

channels we derive a universal set of qubit channels in the sense that all unital qubit channels can

be obtained by concatenation of channels from the universal set. Furthermore, we provide a set of

universal channels for extremal (but not necessarily unital) qubit channels. Since all qubit channels
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can be obtained by simple convex combination (i.e. random classical sampling) of extremal ones,

this essentially solves the problem of a universal channel set for a single qubit.

Very recently, a different approach to universal families of qubit quantum channels has been

pursued in [42]. The authors use universal unitary gates to approximate the unitary appearing in

the Stinespring dilation of a qubit channel (realizing the channel as a unitary evolution on a larger

space). Our approach is more intrinsic, since we do not refer to any dilations of channels. Our

universal set contains only single qubit operations, whereas the CNOT gate, acting on 2 qubits, is

used in [42]. However, the mathematical objects used in [42] are similar to ours: the superoperator

matrix T (3) and the description of extreme channels, see Proposition V.2.

We begin with the introductory Section II. and III.A, where we recall well-known facts about

qubit channels and their geometry. In Sections III.B and III.C we present new results about the

minimal set of universal channels for all unital qubit channels. In Section IV.A we derive an

alternative necessary and sufficient inequality that characterizes all non-unital qubit channels. In

Section IV.B we classify all qubit channels by the number of PO that they have 1. In Section V.

we present new results on universal sets of channels for all extremal qubit channels.

II. PARAMETRIZATION OF QUBIT CHANNELS

Let Md(C) be the set of complex d× d matrices, and Dd ⊂ Md(C) the set of density matrices,

that is, positive Hermitian d× d matrices with trace one. We denote by Pd ⊂ Dd the set of pure

states (density matrices of rank one), and by Ud the set of all d × d unitary matrices. A channel

Φ : Md(C) → Md(C) is a completely positive and trace preserving linear map; in particular,

it maps density matrices to density matrices. We denote by Cd the set of channels acting on a

d-dimensional quantum system.

An important class of channels is the class of unitary channels. These are linear mappings

ΦU : Md(C) → Md(C) which map ρ ∈ Md(C) by a unitary conjugation to ΦU (ρ) = UρU †, where

U ∈ Ud. Slightly abusing notation, we shall write Ud for the set of unitary channels.

It is known that for a d-dimensional Hilbert space (of, say, k qubits, d = 2k), an arbitrary

unitary operation can be obtained by concatenation of the controlled-NOT (CNOT)-gate and the

continuous set of all single qubit unitaries [8, 10–13]. Our aim is to find a minimal set such that any

channel can be realized by iterated application of channels from that minimal set. More specifically,

1 After finishing this work we have learned that the main result in Section IV.B essentially follows from the result

on the number of POs of quasi-extreme channels presented in [39] (we would like to thank Mary-Beth Ruskai for

pointing that out). Our presentation of this result only involves elementary geometric considerations.
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we have the following definition.

Definition II.1. A set of quantum channels Fd ⊂ Cd is said to be universal for a set of channels

C̃d ⊂ Cd if for all channels Φ ∈ C̃d there exist channels Φ1, . . . ,Φn ∈ Fd such that

Φ = Φn ◦Φn−1 ◦ · · · ◦ Φ2 ◦ Φ1. (1)

The two subsets C̃d ⊂ Cd that we will investigate are unital qubit channels and extremal qubit

channels, to be defined below. The CNOT gate together with single qubit unitaries form a universal

set of unitary quantum channels in the case C̃ = Ud.
For any set of channels F , we denote by 〈F〉n the set of channels generated by n concatenations

of elements from F (as in (1)), and by 〈F〉 the set of all channels generated by F , with no

restriction on the number of concatenations. Our aim is to find a set F , as small as possible, such

that 〈F〉 = C̃d.

A. Qubit channels

From now on we fix d = 2 and we consider qubit channels Φ ∈ C2. Any state ρ ∈ M2(C) can

be expanded in the basis of Pauli matrices σi as ρ = 1
2

∑3
i=0 riσi, where ri ∈ R and σ0 = I2 is the

identity matrix in M2(C). Normalization of the trace trρ = 1 implies r0 = 1. The components

ri, i = 1, 2, 3, form the Bloch vector r = (r1, r2, r3). Pure states have ||r|| = 1 and form the

Bloch sphere, whereas the set of all other states inside the Bloch sphere correspond to mixed states

(trρ2 < 1).

Any linear map Φ ∈ C2 acting on ρ = 1
2I2 +

1
2r.σ, with σ = (σ1, σ2, σ3) ≡ (σx, σy, σz), can be

represented by a real 4× 4 matrix T that maps the components of ri to new ones,

(1, r′1, r
′
2, r

′
3)
t = TΦ (1, r1, r2, r3)

t . (2)

The most general linear completely positive map of ρ is then given by [32, 38, 39]

TΦ =





1 01×3

tΦ MΦ



 (3)

with 01×3 = (0, 0, 0), MΦ is a real 3 × 3 matrix, and tΦ ∈ R a vector. It induces an affine map

r′ =MΦr+ tΦ on the Bloch vector. Composition of two channels, Φ = Φ2 ◦ Φ1, implies

MΦ =MΦ2
MΦ1

, (4)

tΦ =MΦ2
tΦ1

+ tΦ2
. (5)
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In the following we drop the index Φ when it is clear what channel tΦ and MΦ refer to. Qubit

channels can thus be seen as maps acting on Bloch vectors thanks to the isomorphism

SU(2)/Z2
∼= SO(3). (6)

In particular, the channel ΦU corresponding to unitary conjugation with U = exp(iφn.σ) =

cos(φ)I2 + i sin(φ)n.σ is equivalent to a rotation RU ∈ SO(3) of the Bloch vector about axis n by

an angle 2φ.

Complete positivity of a qubit channel can be characterized by the positivity of its Choi matrix

CΦ. The Choi matrix of a channel Φ is defined by

CΦ = [Φ⊗ I2](|Bell〉〈Bell|), (7)

where |Bell〉 = 1√
2
(|00〉 + |11〉) is one of the Bell states for two qubits. Alternatively, the Choi

matrix can be defined by a reshuffling of the indices of the propagator in the computational basis

[32]. A channel is completely positive, if and only if the Choi matrix is non-negative [34]. The

eigenvectors of the Choi matrix yield, after reshaping them to a matrix and multiplication with

the square root of the corresponding eigenvalue, the Kraus operators Ai of the channel, defined

through Φ : ρ 7→ ∑r
i=1AiρA

†
i . The minimal number r of Kraus operators is equal to the number

of non-zero eigenvalues of the Choi matrix and is called the Kraus rank [32].

B. Signed singular values for qubit channels

For any matrix MΦ, there exist two orthogonal matrices M1,M2 such that the singular value

decomposition (SVD) of MΦ reads MΦ = M1DM2, with D a diagonal matrix with non-negative

entries. Any orthogonal matrix M is such that either M or −M is in SO(3) (in the latter case

M corresponds to an improper rotation, i.e. a concatenation of a proper rotation with a central

inversion). Let Ui ∈ SU(2) be a unitary matrix corresponding to Mi via the isomorphism (6) if

Mi ∈ SO(3), or corresponding to −Mi otherwise. Then MΦ = RU1
ΛRU2

with Λ = D if both M1

and M2 are in SO(3) or Λ = −D if exactly one of the Mi is in SO(3). The channel Φ can thus

be decomposed into Φ = ΦU1
◦ ΦΛ ◦ ΦU2

, where ΦUi
are unitary conjugations and ΦΛ a channel

whose matrix M = Λ is diagonal. We call the diagonal values of Λ = diag(λ1, λ2, λ3) the “signed

singular values” of Φ [43]. There is of course arbitrariness in the order in which the signed singular

values are labeled. Changing the order of the λi just amounts to changing the order in which the

eigenvectors of MΦ appear in matrices RUi
. More precisely, for a permutation of three elements,
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say σ = (123), we consider the permutation channel Φσ defined by

Mσ =











0 0 1

1 0 0

0 1 0











(8)

and tσ = 0. This channel allows to permute the eigenvalues of a matrix M . Namely, if Λ =

diag(λ1, λ2, λ3), we get MσΛM
†
σ = diag(λ3, λ1, λ2). Moreover, one can simultaneously change the

signs of (exactly) two singular values of D by concatenating with a unitary channel. For example,

concatenation with eiπσz/2 = diag(−1,−1, 1) changes the signs of λ1 and λ2.

Summarizing, up to unitary rotations, any qubit channel can be written as

TΦ =

















1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

















, (9)

where λΦ = (λ1, λ2, λ3) is the vector of (signed) singular values of the matrix M from (3) and

tΦ = (t1, t2, t3) are the coordinates (in the Pauli basis) of Φ(I2/2). In the next section we consider

the simpler case of unital qubit channels, for which tΦ = 0. We shall turn to non-unital channels

in Section IV.

III. UNIVERSAL SET OF UNITAL QUBIT CHANNELS

A. Geometry of unital channels

Unital qubit channels Φ are defined as channels which leave the fully mixed state ρ0 = I2/2

invariant. In the representation (3), a channel Φ is unital if and only if tΦ = 0. Using Φ(σi) = λiσi

for i = 0, 1, 2, 3 with λ0 = 1, we obtain the Choi matrix (7) in the computational basis for unital

qubit channels,

CΦ =
1

4

















1 + λ3 0 0 λ1 + λ2

0 1− λ3 λ1 − λ2 0

0 λ1 − λ2 1− λ3 0

λ1 + λ2 0 0 1 + λ3

















. (10)
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Using the obvious block-structure of CΦ, its eigenvalues q0, q1, q2, q3 are easily computed as

q0 = (1 + λ1 + λ2 + λ3)/4 (11)

q1 = (1 + λ1 − λ2 − λ3)/4 (12)

q2 = (1− λ1 + λ2 − λ3)/4 (13)

q3 = (1− λ1 − λ2 + λ3)/4 . (14)

According to Choi’s theorem [34], the linear map Φ is completely positive iff its Choi matrix CΦ is

positive, i.e. qi ≥ 0, i = 0, 1, 2, 3. These four inequalities are exactly equivalent to the celebrated

Fujiwara-Algoet conditions (FAC) for the complete positivity of a unital qubit channel [41],







1 + λ3 ≥ |λ1 + λ2|
1− λ3 ≥ |λ1 − λ2|.

(15)

The FAC (15) provide four inequalities; equality in any one of them is equivalent to qi = 0 for

some i. Note that similar conditions were obtained in [41] for a particular subclass of non-unital

channels, but we shall address this question in Section IVA.

To each channel of the form (9) one can associate a point in R
3 specified by its coordinates

(λ1, λ2, λ3). Let V1 ≡ (1, 1, 1), V2 ≡ (1,−1,−1), V3 ≡ (−1, 1,−1), and V4 ≡ (−1,−1, 1) be four

points in R
3. Point V1 corresponds to the identity channel; points Vi, 2 ≤ i ≤ 4, correspond

respectively to deterministic bit flip, bit-phase flip, and phase flip [32]. The vertices V1, V2, V3, V4

define a regular tetrahedron T . Rewriting relations (11)-(14) as











λ1

λ2

λ3











= q0











1

1

1











+ q1











1

−1

−1











+ q2











−1

1

−1











+ q3











−1

−1

1











(16)

= q0V1 + q1V2 + q2V3 + q3V4, (17)

one can interpret the FAC (15) geometrically by saying that the signed singular values λi of a

quantum channel Φ must lie inside the tetrahedron T . Equality in one of the four inequalities (15)

defines a face of T .

Because of the arbitrariness in the ordering of the λi mentioned in the previous section, distinct

points of T can be exchanged with one another via permutation channels. Moreover, rotation by

an angle π about any of the three coordinate axes x, y or z flips the signs of the two coordinates

corresponding to the directions perpendicular to the rotation axis. Starting from the identity

channel represented by V1, concatenations with unitary channels allow to reach the channels Φi
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represented by points Vi. Therefore, the four vertices of T are equivalent up to unitary transfor-

mations. Note that an ”inversion channel” with λ = −V1 cannot exist, since the corresponding

Choi matrix is not positive. However, there are channels with all entries negative, e.g. the one with

λ = (−1,−1,−1)/3 [40].

There is a connection between the Kraus rank of a channel Φ, defined in IIA, and the dimension

of the boundary on which its representing point lies:

Proposition III.1. For all unital qubit channels Φ, the Kraus rank of Φ is one plus the dimension

of the face of the tetrahedron T to which the point λ = (λ1, λ2, λ3) belongs. Namely, rank-one

channels (unitary conjugations) correspond to the vertices of T , rank-2 channels correspond to

interior of edges, rank-3 channels correspond to interior of faces and full-rank channels to the

interior of T .

Proof. Since positivity of the Choi matrix is equivalent to complete positivity of the qubit channel,

a single vanishing qi defines a face of the tetrahedron. Two vanishing qis give the intersection of

the corresponding two faces, i.e. an edge, and three vanishing qis a vertex. If no qi is zero, we have

a generic point inside the tetrahedron. Since at the same time the number of non-vanishing qis is

the Kraus rank of the channel (the rank of its Choi matrix) the result holds.

In the following subsections, we investigate the decomposition of qubit channels with given

Kraus rank.

B. Edges of tetrahedron

As mentioned above, all edges of T are equivalent up to permutation of the vertices. Therefore

we only need to consider one of the edges, e.g. the edge V1V4. Points belonging to this edge

correspond to channels ΦPF(t) given by M = diag(1 − 2t, 1 − 2t, 1), t ∈ [0, 1]. These are phase

flip channels, where the probability for a phase flip (conjugation with σz) is equal to t. This

follows from the fact that the vertex V1 corresponds to the identity channel, whereas the vertex V4

corresponds to a unitary conjugation by the σz Pauli matrix, giving

ΦPF(t) : ρ 7→ (1− t)ρ+ tσzρσz. (18)

The entire edge represents the set FPF = {ΦPF(t), t ∈ [0, 1]}. More generally, for 0 < T < 1/2, we

define the restricted set

FPF(T ) = {ΦPF(t) , t ∈ [0, T ]} (19)
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Note that the set {ΦPF(1 − t) , t ∈ [0, T ]} can be obtained from the set FPF(T ) by unitary conju-

gation with U = exp (i π2σz). Since unitary channels are included in our minimal set F , it suffices

to generate channels corresponding to the half-axis T = 1/2. In the case of phase flip channels, we

have the following technical result.

Lemma III.2. For any fixed 0 < T < 1/2 and a given maximum number n of concatenations, one

has

FPF(T ) ⊂ 〈FPF(ε)〉n . (20)

with ε = 1
2(1− (1− 2T )1/n).

Proof. Concatenation of n phase flips, ΦPF(ε)
n, leads to the M matrix M = diag((1 − 2ε)n, (1 −

2ε)n, 1). For any fixed T with 0 < T < 1/2, the first two entries are equal to 1 − 2T when

ε = 1
2(1 − (1 − 2T )1/n). Since this is an increasing function of T , for any t ∈ [0, T ] there exists a

ε′ < ε such that ΦPF(t) = ΦPF(ε)
n.

If one does not place any limit on the number of concatenations, the situation is much simpler:

for any ε > 0, we have

{ΦPF(t) , t ∈ [0, 1/2)} = 〈FPF(ε)〉. (21)

Together with unitary channels, this set generates all phase flips along the edge V1V4, apart from

the 1/2-phase flip channel. In fact, ΦPF(1/2) must necessarily be included in the universal channel

set, because of the following result.

Proposition III.3. For any decomposition ΦPF(1/2) = Φ2 ◦ Φ1, at least one of Φ1 or Φ2 is

unitarily equivalent to ΦPF(1/2).

Proof. Let ΦPF(1/2) = Φ2◦Φ1 be such a decomposition, and letM1,2 be the 3×3 matrices defining

the channels Φ1,2. One has

MPF(1/2) =











0 0 0

0 0 0

0 0 1











=M2M1, (22)

and thus 1 = ‖MPF(1/2)‖ ≤ ‖M1‖‖M2‖, where ‖ · ‖ denotes the usual operator norm ‖M‖ =

supx |Mx|/|x|. Since both norms of M1,2 are smaller than or equal to 1, it must be that ‖M1‖ =
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‖M2‖ = 1. Without loss of generality, we can assume that λ3(M1,2) = 1. Using the Fujiwara-Algoet

conditions, this implies that the signed singular values of M1 and M2 are of the form (a, a, 1) and

(b, b, 1) respectively, for some a, b. Taking the determinant in Eq. (22), one gets ab = 0, so that one

ofM1 orM2 must be equal to the initial phase flip channel ΦPF(1/2), up to unitary conjugation.

As mentioned, all the edges are obtained by switching the signs of eigenvalues, permuting

the eigenvalues, or by combination of the two procedures. This way, we only need to include

FPF(ε) ∪ {ΦPF(1/2)} in our universal set of quantum channels. We gather the results in this

subsection in the following proposition.

Proposition III.4. The unital qubit channels situated on the edges of the tetrahedron T can be

obtained by the concatenation of channels from the following edge-universal set (ε is an arbitrarily

small positive constant):

Gεedge = FPF(ε) ∪ {ΦPF(1/2)} ∪ U2. (23)

C. A universal set of unital qubit channels

In the seminal paper [40], the divisibility of quantum channels was investigated. A quantum

channel Φ ∈ Cd was called indivisible if every possible decomposition of the form Φ = Φ2 ◦ Φ1 is

such that one of the Φi is a unitary conjugation. We recall one of the main results from [40].

Proposition III.5 ([40], Theorem 23). A non-unitary qubit quantum channel Φ ∈ C2 is indivisible

if and only if it has Kraus rank 3.

Therefore, any universal set of qubit channels must include the indivisible channels represented

by the faces of the tetrahedron. We shall denote by I2 the set of all indivisible qubit channels

I2 = {Φ ∈ C2 : Φ has Choi rank 3}. (24)

According to Proposition III.5, all channels on the edges of the tetrahedron are divisible. How-

ever, divisibility does not guarantee reduction to a more basic set of channels. For instance,

the phase flip channel ΦPF(1/2) is divisible in the sense of proposition III.5, as ΦPF(1/2) =

ΦPF(1/2) ◦ ΦPF(1/2).

We now state the main result of this section, an ε-small universal set of unital qubit channels.
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Theorem III.6. For any ε > 0, the set

Gε = I2 ∪ Gεedge (25)

= I2 ∪ FPF(ε) ∪ {ΦPF(1/2)} ∪ U2 (26)

is a universal set of unital qubit channels. It is minimal in the sense that all elements of I2 and

{ΦPF(1/2)} are needed, as well as a channel ΦPF(ε
′) where ε′ ≤ ε.

Proof. According to Proposition III.4, the set FPF(ε)∪{ΦPF(1/2)} together with unitaries, gener-

ates all channels on the edges of the tetrahedron, i.e. all Kraus rank 1 and 2 channels. The set I2
contains all Kraus rank 3 channels. It remains to show that the union of these two sets generates

all the Kraus rank 4 channels (interior of the tetrahedron). To this end, consider the four edges

e1, . . . , e4 of the tetrahedron with e1 = V1V2, e2 = V1V3, e3 = V4V2, and e4 = V4V3, connecting

vertices (V1, V4) to vertices (V2, V3). The plane representing the set of channels with fixed λ3 = z,

z ∈ [−1, 1], intersects these four edges in four points A1, . . . , A4, respectively, with A1 = (1, z, z),

A2 = (z, 1, z), A3 = (−z,−1, z), and A4 = (−1,−z, z). These four points form a rectangle, see

Fig. 1.

Consider the set of channels R1 = {Φ(s, z), s ∈ (0, 1)} ⊂ I2, where Φ(s, z) is the channel

associated with the matrix T of the form (3) with t = 0 and M = M(s, z) = diag(1 + s(z −
1), z + s(1 − z), z) defined by the edge A1A2 of the rectangle with given z. The concatenation

Φ(s, z)◦ΦPF(t) with Φ(s, z) ∈ R1 and ΦPF(t) ∈ FV1V4 (top edge) has theM matrixM = diag((1−
2t)(1 + s(z − 1)), (1 − 2t)(z + s(1 − z)), z). At fixed s the two points corresponding to t = 0 and

t = 1 are on the edge A1A2 and A3A4, respectively, and are diametrical with respect to the centre

of the rectangle at (0, 0, z). Because as t varies it linearly interpolates between these two points, it

fills a line connecting the two points. Therefore, when varying s ∈ [0, 1] and t ∈ [0, 1], the channel

Φ(s, z, t) completely fills a bow-tie shape (brown/dark-colored region in Fig. 1), corresponding to

half of the rectangle A1A2A3A4. The other complementary half of the rectangle (green-colored

region in Fig. 1) is obtained in a similar manner by concatenating channels from the edge A2A4

described byM(s, z) = diag(z+s(−1−z), 1+s(−z−1), z) with channels ΦPF(t) from FV1V4 . Varying
s, z, t over their allowed ranges fills the entire tetrahedron. Since Φ(s, z) ∈ I2 for z ∈ (−1, 1) and

s ∈ (0, 1), and since, according to Proposition III.4, all the channels from the top and bottom

edges of the tetrahedron can be obtained from FPF(ε) and ΦPF(1/2), this completes the proof of

the universality part of the theorem.

Regarding the minimality of the set Gε, note that any universal set needs to contain I2 (in-

divisible channels) and ΦPF(1/2) (because of Proposition III.3). All that remains to be shown is
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V1

V2
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A2

A3

A4

-1

0

1

Λ1

-1

0

1Λ2

-1

0

1

Λ3

FIG. 1. The Fujiwara-Algoet tetrahedron T of admissible signed singular values of a quantum channel

with a section A1A2A4A3, corresponding to λ3 = 1/2, and the bow-tie regions obtained by concatenating

channels from the edges. For details see the proof of Theorem III.6.

therefore that any universal set also needs to contain phase flip channels of arbitrarily small param-

eters. To this end, consider a non-trivial decomposition of a phase flip channel ΦPF(ε) = Φ2 ◦ Φ1.

As in Proposition III.3, since the matrix M associated to the phase flip channel ΦPF(ε) has op-

erator norm 1, both Φ1 and Φ2 need to be, up to unitary conjugations, phase flip channels also,

of respective parameters δ1, δ2. Taking the determinant in the equation M = M2M1, we get

(1 − 2ε)2 = (1 − 2δ1)
2(1 − 2δ2)

2, so that at least one of δ1,2 has to be smaller than ε. Therefore,

any universal set needs to contain ΦPF(δ) with δ < ǫ, finishing the proof for the optimality of the

set Gε.

IV. GEOMETRY OF NON-UNITAL QUBIT CHANNELS

We now consider the more general case of non-unital channels. We first provide two relatively

simple forms of generalized Fujiwara-Algoet conditions which allow one to determine the combina-

tions of t andM that represent completely positive maps. We use these conditions to subsequently

classify qubit channels by their pure output (PO). Such classification is useful because concatena-
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tion of channels results in a channel whose number of pure state outputs can be at most equal to

the minimal number of pure state outputs among the used channels.

A. Condition for complete positivity of non-unital channels

The Choi matrix (7) for a general qubit channel with a T matrix of the form (3) is given by [32]

CΦ =

















1
2(1 + λ3 + t3) 0 1

2(t1 + it2)
λ1+λ2

2

0 1
2 (1− λ3 + t3)

λ1−λ2
2

1
2 (t1 + it2)

1
2(t1 − it2)

λ1−λ2
2

1
2 (1− λ3 − t3) 0

λ1+λ2
2

1
2(t1 − it2) 0 1

2(1 + λ3 − t3)

















. (27)

By a simple change of basis RCΦR
†, with

R =
1√
2

















1 0 0 1

0 1 1 0

0 −i i 0

1 0 0 −1

















, (28)

the Choi matrix can be rewritten as

CΦ =
1

2

















4q0 t1 t2 t3

t1 4q1 it3 −it2
t2 −it3 4q2 it1

t3 it2 −it1 4q3

















, (29)

where qi are the linear combinations of λi introduced in (11)-(14). Note that a necessary condition

for CΦ ≥ 0 is qi ≥ 0 for all i = 0, . . . , 3, so that λi still satisfy the original FAC conditions (15).

The following result generalizes the FAC to the case of non-unital channels, beyond the simple case

where only one of the ti is non-zero. Equivalent necessary and sufficient conditions were obtain in

[39, Corollary 2], in the form of three inequalities; we claim that our re-formulation has a more

natural geometric interpretation.

Theorem IV.1 (Generalized Fujiwara-Algoet conditions). Let Φ : M2(C) → M2(C) be a non-

unital linear map whose matrix in the Pauli basis is given by (9). Let t = ‖t‖ and u = t/t the

corresponding unit vector. Then the map Φ is a quantum channel if and only if

qi ≥ 0, i = 0, 1, 2, 3 and

t2 ≤ r −
√

r2 − q, (30)
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where the qi are defined in (11)-(14) and

r = 1−
∑

i

λ2i + 2
∑

i

λ2i u
2
i , (31)

q = 256
3
∏

i=0

qi. (32)

Proof. Since trace preservation of the map Φ follows from (9), the only property that needs to be

checked is complete positivity. By Choi’s theorem, Φ is completely positive if and only if the Choi

matrix CΦ is positive. The characteristic polynomial p(x) = det(CΦ − xI4) of CΦ reads

p(x) = x4 − 2x3 +
a

2
x2 − b

2
x+ detCΦ , (33)

where

a = 3−
∑

i

λ2i − t2 (34)

b = 1−
∑

i

λ2i − t2 + 2λ1λ2λ3 (35)

detCΦ =
1

16
(t4 − 2rt2 + q) . (36)

Since CΦ is Hermitian its roots are real. By Descartes’ rule of signs, all roots xi are positive iff the

coefficients of the powers of x change sign from one coefficient to the next, that is, iff detCΦ ≥ 0,

a ≥ 0, and b ≥ 0. Since qi are diagonal elements of CΦ in (29), a necessary condition for positivity

of CΦ is that qi be all positive, that is, λi lie within the tetrahedron T of admissible values of the

unital case. As qi ≥ 0 (i = 0, . . . , 3) implies |λi| ≤ 1 (i = 1, . . . , 3) and thus |∏3
i=1 λi| ≤ 1, one

always has a ≥ b, thus condition a ≥ 0 is a consequence of b ≥ 0. We are therefore left with just

two generalized Fujiwara-Algoet (GFA) conditions,

detCΦ ≥ 0 ⇔ t4 − 2rt2 + q ≥ 0, and (37)

b ≥ 0 ⇔ t2 ≤ 1−
∑

i

λ2i + 2λ1λ2λ3 . (38)

Note that these conditions only depend on the square of the ti, whereas the signs of the λi

matter. Condition (37) is a polynomial of degree 2 in t2, whose discriminant r2 − q is always

positive. Indeed, let λ3 be the signed singular value with the smallest absolute value; then r, as a

function of u, reaches its minimal value which is rmin = 1− λ21 − λ22 + λ23. Therefore,

r2 − q ≥ r2min − q = 4(λ1λ2 − λ3)
2 ≥ 0. (39)
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Because of positive discriminant the polynomial in (37) has two real roots r ±
√

r2 − q and, due

to positive coefficient in front of t4, the condition (37) is thus satisfied iff

t2 ≤ r −
√

r2 − q or t2 ≥ r +
√

r2 − q. (40)

We shall now show that the condition b ≥ 0 selects the left root as the relevant one.

It turns out that, fixing λj , for any value of the ui two further inequalities hold,

r −
√

r2 − q ≤ 1−
∑

i

λ2i + 2λ1λ2λ3 ≤ r +
√

r2 − q . (41)

To show these, one first notices that the quantities r−
√

r2 − q and r+
√

r2 − q are, respectively,

decreasing and increasing functions of r (r −
√

r2 − q is decreasing because, taking a derivative,

we get the condition
√

r2 − q ≤ r, which is always satisfied within the tetrahedron). Therefore,

r−
√

r2 − q is always smaller than or equal to rmin−
√

r2min − q, while r+
√

r2 − q is always larger

than or equal to rmin+
√

r2min − q, where rmin = 1−λ21−λ22+λ23 is the smallest possible value of r

when ui varies (we again denote by λ3 the one with the smallest absolute value). Inequalities (41)

will therefore follow if we show that

rmin −
√

r2min − q ≤ 1−
∑

i

λ2i + 2λ1λ2λ3 ≤ rmin +
√

r2min − q. (42)

Showing (42) is equivalent to showing f− ≥ 0 and f+ ≤ 0, where we defined f± = 1 − ∑

i λ
2
i +

2λ1λ2λ3 − (rmin ±
√

r2min − q). Plugging explicit expressions for q = (1 + λ1 + λ2 + λ3)(1 + λ1 −
λ2 − λ3)(1− λ1 + λ2 − λ3)(1− λ1 − λ2 + λ3) and rmin = 1− λ21 − λ22 + λ23 into f±, and simplifying,

results in

f− = 2|λ1λ2 − λ3|+ 2λ3(λ1λ2 − λ3),

f+ = −2|λ1λ2 − λ3|+ 2λ3(λ1λ2 − λ3). (43)

As |λ3| ≤ 1, indeed f− ≥ 0 and f+ ≤ 0. Inequalities (42) are therefore true, and so are (41). The

logic of the two directions of the proof of Theorem IV.1 can now be seen summarized as follows:

1.) If Φ is a quantum channel, then CΦ ≥ 0 and thus inequalities (37) and (38) hold. In addition,

since qi are the diagonal matrix elements of CΦ in an appropriate basis (eq.(29)), we also have

qi ≥ 0 and thus q ≥ 0 which implies inequalities (41). Since by (38) t2 ≤ 1−∑

i λ
2
i + 2λ1λ2λ3, we

have from (41) that t2 ≤ 1−∑

i λ
2
i + 2λ1λ2λ3 ≤ r +

√

r2 − q. Therefore, the second inequality in

(40) is satisfied only when t2 = r+
√

r2 − q. This equality implies equality in the second inequality

of (41), which in turn implies that r = rmin. Therefore, f+ = 0 and thus |λi| = 1 which corresponds

to a unitary, and thus unital, channel, which is excluded in the statement of the Theorem. The
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only remaining possibility is that the left inequality in (40) be satisfied. In any case we have that

CΦ ≥ 0 which implies t2 ≤ r −
√

r2 − q and qi ≥ 0.

2.) If t2 ≤ r −
√

r2 − q we have from (40) that detCΦ ≥ 0. Furthermore, since by assumption

qi ≥ 0, inequalities (41) are valid and we have thus t2 ≤ r −
√

r2 − q ≤ 1−∑

i λ
2
i + 2λ1λ2λ3. The

latter chain of inequalities implies by (38) that b ≥ 0, which together with detCΦ ≥ 0 gives CΦ ≥ 0

and thus the complete positivity of channel Φ.

Let us make now some remarks on the conditions appearing in the theorem above. First, note

that we exclude unital channels (t = 0), since in that case the vector u is not defined; one can use

the usual Fujiwara-Algoet conditions (15) in that case. Also, note that for any fixed set of λj, the

condition detCΦ ≥ 0 is necessary, but not sufficient. The set of translation vectors t satisfying

detCΦ ≥ 0 is composed of a bounded part corresponding to t2 ≤ r −
√

r2 − q, and an unbounded

part with t2 ≥ r +
√

r2 − q. The second condition b ≥ 0 then selects t2 ≤ r −
√

r2 − q as the one

resulting in a completely positive map.

Conditions equivalent to (30) were already found in [39, Corollary 2], in the form of three

inequalities. Inequality (30) gives the maximal modulus square of the translation vector t of the

ellipsoid compatible with positivity of CΦ. This has a very natural geometric interpretation: it gives

the maximum displacement of a given ellipsoid in a given direction such that the corresponding

linear map is completely positive. In particular, if one of the qi is zero (i.e., the corresponding

channel is represented by a point on a face of the tetrahedron), then q = 0 and the condition (30)

implies that one must have t = 0. The implication holds in the opposite direction, namely, if the

GFA conditions (30) only allow t = 0, then q = 0. Thus, one of the qi vanishes, implying that λ is

a point on the surface of the tetrahedron. As soon as λ is within the tetrahedron the right-hand

side of the GFA condition (30) is nonzero and also non-unital channels with such λs exist.

Note also that in the particular case discussed in [41], where t1 = t2 = 0 (so that, in our

notation, u1 = u2 = 0 and u3 = 1), the quantity
√

r2 − q appearing in the second equation in (30)

simplifies to

√

r2 − q = 2|λ3 − λ1λ2|, (44)

in such a way that (30) is equivalent to the (generalized) FAC

t23 ≤ (1± λ3)
2 − (λ1 ± λ2)

2. (45)
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B. Classifying channels by their pure output

The goal of this subsection is to classify all qubit channels by the number of pure outputs

that they can have. Our main result, Theorem IV.9, prohibits qubit channels (apart from unitary

conjugations) that would have more than 2 pure outputs. We prove the theorem by elementary

geometric means, however, note that it follows also from the results presented in [39]. Namely,

it has been shown [39] that extreme or quasi-extreme channels (i.e., those from the interior of

tetrahedron edges) that are not unitary conjugations can have at most 2 pure outputs. Because

every channel can be written as a convex combination of extremal channels, as soon as one of the

channels in the convex sum is not a unitary conjugation, at most 2 pure outputs are possible. If we

have a convex combination of unitary conjugations only, then we know that a convex combination

of two unitary conjugations is a quasi-extremal channel, again having at most 2 pure outputs,

leading to the same conclusion.

Definition IV.2. The pure output (PO) of a quantum channel Φ is the set of pure states in the

image of Φ:

PO(Φ) = Φ(Dd) ∩ Pd . (46)

Recall that Dd is the set of density matrices and Pd ⊂ Dd the set of pure states.

The pure output of a unital channel inherits the central symmetry of the output ellipsoid in the

following precise sense:

Lemma IV.3. The pure output of a unital channel Φ is centrally symmetric, i.e.

ρ(r) =
1

2
(I2 + r.σ) ∈ PO(Φ) ⇔ ρ(−r) =

1

2
(I2 − r.σ) ∈ PO(Φ). (47)

Proof. Since both Φ(Dd) and Pd are centrally symmetric, so is their intersection.

In the following we show that quantum channels can be classified according to their pure output.

An arbitrary single qubit channel maps the input states – a Bloch ball – to output states within

a shifted ellipsoid [38, 39]. Therefore, we start by proving the following elementary Euclidean

geometry results that will help us understand possible intersections between a sphere and an

ellipsoid. In what follows, we shall abuse language and say that a set is contained inside a circle

(resp. a sphere) if it is a subset of the corresponding disc (resp. ball).

Lemma IV.4. Let C be a circle in R
2 and consider an ellipse E contained inside the circle. If

the intersection C ∩ E contains three distinct points M,N,O, then E = C.
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Proof. This immediately follows from the fact that an ellipse (and, more generally, a conic section)

is uniquely determined by the condition that it passes through three non-collinear points and is

tangent to two given lines passing through two of these points (for a proof, see [44], p. 114).

Since the hypothesis implies that both E and C have this property, one must have E = C by

uniqueness.

Lemma IV.5. Let S be the unit sphere in R
3 and consider an ellipsoid E contained inside the

sphere. If the intersection S ∩E contains three distinct points M,N,O, then it contains the circle

determined by those three points.

Proof. Consider the plane determined by the points M,N,O. Its intersection with the sphere S

defines a circle C and its intersection with the ellipsoid E defines an ellipse F . Obviously,M,N,O ∈
C ∩ F and F is inside in C. Using lemma IV.4, we have C = F , which is the conclusion.

Proposition IV.6. Let S be the unit sphere in R
3 and consider an ellipsoid E contained inside

S. Then, the intersection S ∩ E is one of the following:

1. the empty set;

2. a point;

3. two points;

4. a circle;

5. the whole sphere S.

Proof. Using the previous lemma, we only need to consider the case when the intersection contains

4 non-coplanar points M,N,O,P and to show that the ellipsoid coincides with the sphere. By the

results already proved, the intersection contains in fact the whole circle C determined by M,N,O.

Let Q be any point on the sphere; we will show that Q belongs to the intersection S ∩ E. To this

end, consider the plane determined by the points P,Q and F , where F is the center of the circle

C. This plane cuts the sphere in a circle C ′, which intersects C in two points X and Y . Since

X,Y and P belong to the intersection S ∩E, so does the circle C ′ (by Lemma IV.5), and thus, in

particular, the point Q, finishing the proof.

The case of an intersection in the form of a circle can be further restricted. First, we state the

following lemma, which is Theorem LXXIII in the Supplement of [45].
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Lemma IV.7. Let C be a circle and E an ellipse contained inside the circle and touching the circle

from the inside in exactly two points P,Q. Then the large ellipse axis is parallel to PQ, while the

line of the small axis bisects the segment PQ.

A circle intersection is now of the following type.

Lemma IV.8. The only way for an ellipsoid E with half axes 0 < a, b, c ≤ 1 to touch the sphere S

from the inside in the form of a circle of non-zero radius, is to have an ellipsoid that is rotationally

symmetric about one of its three axes and displaced in the direction of this axis.

Proof. Let us call P the plane containing the touching circle and C the circle centre. We orient

the z-axis of R3 so that it is perpendicular to P and passes through C, while the origin O of R3

is the center of the sphere S. First, we shall show that one of the ellipsoid’s axes has to be the

z-axis. Then we will show that the ellipsoid has to be rotationally symmetric about the z-axis.

Let us consider an arbitrary plane R containing the z-axis. Such a plane cuts the sphere S in

a circle, while it cuts the ellipsoid E in an ellipse. It also contains two points M and N from the

intersecting circle C. Therefore, in plane R one has an ellipse that touches a circle from inside in

exactly two points, M and N . Note that the z-axis bisects the segment MN perpendicular to it.

From Lemma IV.7, it follows that the small ellipse axis is the z-axis. We shall consider now two

such particular planes R.

First, choose R1 to be the plane containing the z axis and the center L of the ellipsoid. It is a

known fact that the intersection of the ellipsoid E with the plane passing through its center L is

an ellipse with center L. Since the small axis of the ellipse is Oz, we infer L ∈ Oz, so the center of

the ellipsoid lies on the z axis.

Let us now choose a second plane R2, containing the z axis (and thus the center L of E) and

the smallest axis of the ellipsoid E. The intersection E∩R2 contains the points X,Y which are the

antipodal points (L is the middle of XY ) closest to each other of E. They are also the points closest

to each other and symmetric with respect to L of the ellipse E ∩R2. It follows that X,Y ∈ Oz so

that one of the axes of the ellipsoid is the z axis.

Points on the surface of the ellipsoid E therefore satisfy

x2

a2
+
y2

b2
+

(z − z0)
2

c2
= 1, (48)

while the touching circle can be parametrized as (r cosφ, r sinφ, z1) with some nonzero r and fixed

z1. For any φ these points should lie on the surface of the ellipsoid, therefore

r2 + (a2/b2 − 1)r2 sin2 φ = a2 − a2

c2
(z1 − z0)

2 (49)
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FIG. 2. Different ellipsoids inside the Bloch sphere with, respectively, empty, 1 point, 2 points and circular

pure outputs that could be possible from purely geometrical considerations. The circular case does not

correspond to the output of a completely positive quantum channel.

should hold. The RHS is independent of φ and so should be the LHS. Therefore, we conclude that

a = b. The ellipsoid must be rotationally symmetric, and its displacement can be only along the

symmetry axis Oz.

One might think that qubit channels can realize the five different types of pure output suggested

by Lemma IV.6. However, we will now show that this is not the case. Rather, the following result

holds (see Figure 2):

Theorem IV.9. Let Φ ∈ C2 be a qubit channel. One of the following holds:

1. PO(Φ) = ∅, the channel has no pure output, all output states are mixed;
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2. PO(Φ) = {ξ}, ξ ∈ P2, the channel has a unique pure output ξ;

3. PO(Φ) = {ξ, ζ}, ξ, ζ ∈ P2, the channel has exactly two pure outputs ξ, ζ;

4. PO(Φ) = P2, all pure states are outputs of Φ. In this case, Φ is a unitary conjugation

Φ(X) = UXU †, for some unitary matrix U .

Proof. The only allowed forms of pure outputs have the geometric forms given in Proposition IV.6.

Examples of pure outputs different from a circle are easily found [32]: The fully mixing channel

ρ → I2/2 maps the entire Bloch sphere to its center so that the pure output is the empty set. A

decaying channel leads to an ellipsoid that touches the sphere in the South pole and nowhere else.

A phase flip channel ΦPF (see eq.(18)) shrinks the Bloch sphere in x and y-directions, but leaves

the z-direction untouched, such that the resulting ellipsoid touches the Bloch sphere in the North

and South poles and nowhere else. Finally, unitary conjugation corresponds to a rotation of the

Bloch sphere, and thus has as pure output all pure states P2. It remains to be shown that a pure

output in the form of a circle on the Bloch sphere does not correspond to a completely positive

qubit quantum channel. According to Lemma IV.8, the demonstration can be reduced to quantum

channels with t1 = t2 = 0 and |λ1| = |λ2| = a, |λ3| = c. Note that a, b, c are geometrical quantities

(half-axes of the ellipsoid) and are always positive, whereas the signed singular values λi can have

either sign. In order for the ellipsoid to touch the sphere in a circle (and thus at x2 + y2 > 0),

one needs c < a. Due to rotational symmetry we need only consider the plane y = 0 in order to

obtain a relation between t3, a, c required for the ellipsoid to touch the sphere from inside. The z

coordinates of the ellipsoid and sphere in the upper half space read, respectively,

zE = c

√

1−
(

x− t1
a

)2

−
(

y − t2
b

)2

+ t3 (50)

zS =
√

1− x2 − y2 . (51)

If E touches S in a point x, y, z, we must have zE = zS = z in that point, and the tangential planes

to S and E in that point must be identical. Two non-trivial solutions of the touching condition

dzE/dx = dzS/dx are then found as x = ±
√

c2−a4
c2−a2 . In order that the solutions be real, we need

c < a2. Reinserting this into the second touching condition zE = zS leads to the shift

t3 =

√

(1− a2)(a2 − c2)

a
. (52)

The GFA condition (30) in the present case reads t2 ≤ (c± 1)2 − 4a2, where ± comes from the two

possible signs of λ3. Since here t2 = t23 and

(c± 1)2 − 4a2 − t23 =
c2 ± 2ca2 − 3a4

a2
≤ 0 (53)
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for any c < a2, the GFA condition can never be satisfied, and thus the solutions are not qubit

channels. Therefore there is no quantum channel with a pure output in the form of a circle on the

Bloch sphere.

Note that when comparing Proposition IV.6 with Theorem IV.9, one sees that the case of the

circle is not physical, i.e. there is no completely positive map which has a circle as the pure output

set. This is a generalization of the “no pancake” theorem, which states that there is no qubit

quantum channel that maps the Bloch sphere to a disk touching the sphere (see [46]).

Channels of type 3 in Theorem IV.9 can be either unital or non-unital. For distinguishing the

two the following proposition is useful.

Proposition IV.10. If the two output states ξ, ζ in type 3 states from Theorem IV.9 are orthogonal

(i.e. antipodal on the Bloch sphere), then the channel is unital, otherwise it is non-unital.

Proof. The two most distant points on an ellipsoid are on its largest axis, so the center of the

ellipsoid is the middle of the segment ξζ, i.e. the center of the Bloch sphere, if ξ, ζ are antipodal.

It follows that the channel must be unital, t = 0.

The other direction follows from Lemma IV.3: the pure output is non symmetric, so the channel

cannot be unital.

Lemma IV.3 can be used to show that all channels with one PO, i.e. of type 2 in Theorem IV.9,

are non-unital. Channels with zero PO can be either unital or non-unital.

V. UNIVERSAL SET FOR EXTREMAL QUBIT CHANNELS

We investigate in this section the important role extremal quantum qubit channels have to play

with respect to divisibility and universal families.

For general dimensions, necessary and sufficient conditions for a quantum channel to be extreme

have been found by [47], using ideas from [34].

Theorem V.1 ([47]). A quantum channel Φ having Kraus operators {Ai}ki=1 is an extremal point

of the convex set of quantum channels iff the set of matrices {A†
iAj}ki,j=1 is linearly independent.

This result was used in Ref. [39] to provide a more geometric picture in the qubit case, which

we recall below.
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Proposition V.2 ([39]). A map Φ : M2(C) → M2(C) as in (9) is an extremal quantum channel

if, up to some permutation of indices,

λ3 = λ1λ2, (54)

t23 = (1− λ21)(1− λ22), t1 = t2 = 0. (55)

This is equivalent to the existence of angles u ∈ [0, 2π) and v ∈ [0, π) such that

λ1 = cos u,

λ2 = cos v,

λ3 = cos u cos v,

t3 = sinu sin v. (56)

Without sacrificing generality one can assume |λ1| ≥ |λ2| in the above parametrization. Channels

with u = 0 and v 6= 0 are the phase flip channels considered in Section IIIB; they are not extremal

channels and must be excluded from the set of parameters above.

For generic angles such a channel maps the Bloch sphere to a shifted ellipsoid that touches the

sphere in two points (the two points might degenerate to one point for some special values of the

angles). As shown in Ref. [39], two pure input states at points (± cos θ, 0, sin θ) are mapped to

two pure output states at points (± cosω, 0, sinω). Angles θ and ω can be interpreted as latitudes

of the pure inputs and outputs. They are related to u and v by sin θ = tanu/ tan v and sinω =

sinu/ sin v, or, inversely, channel matrix elements are cos u = cosω/ cos θ, cos v = tan θ/ tanω and

t3 = (cos2 θ−cos2 ω)/(cos2 θ sinω). Sometimes it will be more useful to use a parametrization with

angles θ and ω instead of u, v.

Regarding the signs of generalized singular values λj we can see that either none or two can

be negative, while t3 can be either positive or negative. Because we are interested in channels

obtained by concatenation, and because we always allow for any number of unitary conjugations,

we can always remove any negative signs in λj or t3 by unitary channels, as the following lemma

shows.

Lemma V.3. Any extremal qubit channel Φ, written in the canonical form of Eq.(56), can be

transformed by unitary conjugations into an extremal channel Φ′ of the same form, but with all λj

and t3 non-negative.

Proof. Let ΦU denote a channel corresponding to a unitary conjugation. Unitary conjugations can

change the sign of arbitrary two λj . First, using the composition rule in Eqs. (4),(5), we observe
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that by composing Φ′ = ΦU ◦ Φ we can change the sign of t3 and the sign of λ3 and either λ1 or

λ2. On the other hand, with Φ′ = Φ ◦ ΦU we can change the sign of any two λj while leaving the

sign of t3 intact. Combining concatenations with a unitary before and after the channel Φ, we can

change any allowed combination of signs. Let us discuss all possible cases: (i) if t3 ≥ 0 and any

two λj are negative we simply change the sign of these two λj by Φ′ = Φ ◦ ΦU ; (ii) if t3 < 0 and

λ3 < 0 as well as one of λ1,2 is negative we can change all signs at once with Φ′ = ΦU ◦ Φ; (iii) if
t3 < 0 and λ1,2 < 0, or t3 < 0 and all λj are non-negative we can, using Φ′ = Φ ◦ ΦU , bring the

channel to the form discussed under (ii).

We therefore see that with unitary conjugations we can always bring an extremal qubit channel

to the form given by Eq. (56) with all λj and t3 being non-negative, that is to the set with angles

u ∈ (0, π/2] and v ∈ (0, π/2] (we must also have u ≤ v due to |λ1| ≥ |λ2|), plus an additional point

u = v = 0. From now on we shall limit our discussion to that subset of extremal qubit channels.

They can be further classified according to the number of different pure output points one gets

for different values of u and v. In addition, it will be useful to classify channels also depending on

whether they represent an injective map.

Definition V.4. A channel Φ is called degenerate iff the determinant of TΦ (3) is zero; otherwise

it is called non-degenerate. Equivalently, a channel is non-degenerate iff all λj are non-zero, i.e.,

iff the volume of the set of output states is nonzero.

Depending on the degeneracy and the number of output pure states, extremal qubit channels

(56) can be classified as follows.

Lemma V.5 ([39]). The set of extremal qubit channels X can be classified according to the number

of pure outputs as X = U2 ∪ X deg
1PO ∪ X nd

1PO ∪ X deg
2PO ∪ X nd

2PO where the pure outputs of the subclasses

are as follows:

1. Unitary conjugations U2 for which PO(Φ) = P2. They correspond to u = v = 0, or ω = θ 6=
π/2.

2. PO(Φ) = {ξ}: the set given by u = v that can be conveniently parametrized as tΦ = (0, 0, 1−
λ2) and λΦ = (λ, λ, λ2). Note that the mapping from u, v to θ, ω is not injective in this case

and all such channels correspond to a single point θ = ω = π/2 in the θ − ω plane (Fig. 3).

(a) Degenerate channels X deg
1PO: λ = 0, i.e., u = v = π/2. The set of output states is a

single point on the Bloch sphere.
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(b) Non-degenerate channels X nd
1PO: the set given by λ ∈ (0, 1), i.e., u = v and u ∈ (0, π/2).

3. PO(Φ) = {ξ, ζ}, with ξ 6= ζ:

(a) Degenerate channels X deg
2PO: the set given by v = π/2 and u ∈ (0, π/2), i.e., θ = 0 and

ω ∈ (0, π/2). The set of output states is a degenerate ellipsoid – a line segment.

(b) Non-degenerate channels X nd
2PO: the set given by 0 < θ < ω < π/2, or, in angles u, v,

the set 0 < u < v < π/2 (u = 0 with v > 0 is excluded). This is the interior of the

shaded triangle in Fig. 3.

We shall investigate these classes of extremal channels and show that any universal set of qubit

quantum channels needs to contain some of these maps. We analyze each individual case in the

next two subsections. Before that, let us state few general statements that will be useful in proving

decompositions.

Lemma V.6. Let Φ : Md(C) → Md(C) be a quantum channel with the property that there exists

a full rank input state ρ such that Φ(ρ) = |ψ〉〈ψ|, a rank-one projector. Then, the channel Φ is

constant, i.e. for all input states σ, Φ(σ) = |ψ〉〈ψ|.

Proof. Let σ be any input state. Since ρ is full rank, there exists a positive constant ε such that

εσ ≤ ρ. Being a quantum channel, the map Φ preserves positivity, hence εΦ(σ) ≤ Φ(ρ) = |ψ〉〈ψ|.
This means that Φ(σ) has support only in the |ψ〉〈ψ| subspace, i.e. Φ(σ) = c|ψ〉〈ψ| with some

c > 0. Using trace preservation, we conclude that c = 1 and thus Φ(σ) = |ψ〉〈ψ|.

Note that the full-rank hypothesis in the above lemma is necessary; taking a direct sum of two

constant channels shows that a mixed input is not enough to guarantee that the channel is constant.

However, for qubits, the notions of mixed state and full-rank state are equivalent. Among qubit

channels such constant channels are exactly channels of the type 2a in Lemma V.5.

Lemma V.7. In a decomposition of a non-degenerate channel there can be only non-degenerate

channels.

Proof. Writing Φ = Φn ◦ · · · ◦ Φ1 and taking the determinant on both sides of TΦ = TΦn
· · ·TΦ1

,

we see that the determinant of the right side can be non-zero (i.e., Φ is non-degenerate) only if all

channels Φj are non-degenerate.
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Proposition V.8. In a decomposition of a non-degenerate extremal channel Φ there can be only

non-degenerate extremal channels.

Proof. Consider a decomposition Φ = Φ1 ◦Φ2. Due to Lemma V.7 we know that both Φ1 and Φ2

must be non-degenerate. Suppose Φ2 is not extremal, that is, we can write it as a nontrivial convex

sum Φ2 = c1Ψ1+c2Ψ2, with Ψ1 6= Ψ2. Using this sum Φ can be written as Φ = c1Φ1◦Ψ1+c2Φ1◦Ψ2.

Because Φ is supposed to be extremal Φ1 ◦ Ψ1 must be equal to Φ1 ◦Ψ2, otherwise Φ would be a

nontrivial convex combination. But because Φ1 is non-degenerate, i.e., an injection, and Ψ1 6= Ψ2,

there is at least one point whose image under Ψ1 is different from its image under Ψ2, and therefore

Φ1 ◦Ψ2 can not be equal to Φ1 ◦Ψ1. Φ2 must therefore be extremal. For the case when Φ1 would

be a convex combination, the argument is analogous. Therefore, neither Φ1 nor Φ2 can have a

nontrivial convex combination.

Finally, let us make a remark regarding the relation between extremal and indivisible channels.

Somewhat unintuitively, all extremal channels are divisible. This follows from the characterization

of extremal [39] and indivisible [40, Theorem 23] channels. Indeed, indivisible channels are unital

and this implies t3 = 0 in Proposition V.2. This, in turn, implies u = 0, which is an excluded

parameter. Most notably, the indivisible channel ρ 7→ (ρt+(trρ)I2)/3 from [40] is not extremal, as

it is unital with λ = (1/3,−1/3, 1/3), which corresponds to the center of a face of the tetrahedron.

A. Extremal qubit channels with one pure output

1. Degenerate channels

Consider a generalized depolarizing (or constant) channel Qρ ∈ Cd defined as

Qρ0(ρ) = (trρ)ρ0, (57)

where ρ0 ∈ Dd is a fixed density operator. The usual depolarizing channel is a particular case

obtained by considering for ρ0 the maximally mixed state Id/d. An important feature of generalized

depolarizing channels is that their image (as quantum channels) is trivial: Qρ0(Dd) = {ρ0}, that
is, all states are mapped onto a single point.

We now look at generalized depolarizing qubit channels (d = 2). If r is the Bloch vector of the

state ρ0 ∈ D2, then MQρ0
= diag(0, 0, 0) and tQρ0

= r. Of special interest to us are channels with

pure ρ0, that is, extremal channels of the form 2a in Lemma V.5.
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Proposition V.9. For a pure state |ψ〉〈ψ| ∈ P2, consider a decomposition

Q|ψ〉〈ψ| = Φ2 ◦Φ1. (58)

Then, at least one of Φ1,2 is a constant channel Q|φ〉〈φ|, for some pure state |φ〉〈φ| ∈ P2.

Proof. Let ρ be an arbitrary mixed (and thus full-rank) input state for the channel Q|ψ〉〈ψ|,

Φ2(Φ1(ρ)) = |ψ〉〈ψ|, (59)

and consider the intermediary state σ = Φ1(ρ). If σ is a pure state, then the channel Φ1 satisfies

the hypothesis of Lemma V.6, and it is therefore constant. Otherwise, σ is a mixed state, but then

Φ2(σ) = |ψ〉〈ψ|, and, by the same Lemma V.6, Φ2 is constant.

Corollary V.10. Any set of universal qubit channels contains at least one generalized depolarizing

channel Qρ for some pure state ρ ∈ P2. As all other generalized depolarizing channels can be

obtained from Qρ by concatenation with some unitary conjugation, it is also sufficient to have

a single generalized depolarizing channel in the universal set for the creation of all generalized

depolarizing qubit channels with pure output.

2. Non-degenerate channels

Let Φ1PO(λ) be an extremal 1PO channel (type 2b in Lemma V.5) with a parametrization

tΦ = (0, 0, 1 − λ2) and λΦ = (λ, λ, λ2) . (60)

We define a set of length ε by X nd
1PO(ε),

X nd
1PO(ε) = {Φ1PO(λ), λ ∈ (1− ε, 1)}, (61)

where ε is any positive number less than 1.

Lemma V.11. The set of all 1PO non-degenerate extremal channels X nd
1PO can be obtained by

concatenation from the 1PO non-degenerate extremal universal set X nd
1PO(ε).

Proof. It is straightforward to check that the following concatenation rule holds for 1PO non-

degenerate extremal channels, Φ1PO(λµ) = Φ1PO(λ) ◦ Φ1PO(µ), λ, µ ∈ (0, 1). Therefore, by a

completely analogous argument as in the case of phase-flip channels, Lemma III.2, we can see that

concatenating at most n channels from X nd
1PO(ε), where ε = 1 − T 1/n, we can get Φ1PO(T ), with

any T ∈ (0, 1).
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The following proposition shows that any universal set must containt at least some element of

the set X nd
1PO(ε).

Proposition V.12. Let Φnd
1PO be a non-degenerate extremal channel with 1 PO and Φnd

1PO =

Φ2 ◦ Φ1 an arbitrary decomposition. Then, up to unitary conjugations, both Φ1,2 must be 1PO

non-degenerate extremal channels.

Proof. According to Proposition V.8 Φ1,2 can be either unitaries, 1PO or 2PO non-degenerate

extremal channels. A 1PO non-degenerate extremal channel in the parametrization (60) maps a

pure input state with θ = π/2, i.e. the North Pole η of the Bloch sphere to itself, Φnd
1PO(η) = η. If

Φ1(η) is a mixed state, then Φ2 maps a mixed state to a pure output, so, by Lemma V.6, it is a

constant, hence degenerate channel. This would contradict the non-degeneracy of Φnd
1PO. Therefore,

we must have that Φ1 maps η to some pure state ζ, Φ1(η) = ζ, and then Φ2(ζ) = η. This shows

that Φ1 and Φ2 have at least one pure output. In order to exclude possible 2PO channels from the

decomposition we shall use a local argument about the curvature of the boundary of output sets

at these pure output points.

The output set of Φnd
1PO as parametrized by (60) is an ellipsoid touching the Bloch sphere at

the north pole. Any plane containing the north pole and the origin intersects this output ellipsoid

in an ellipse with the major axis a = λ and the minor axis b = λ2. The radius of curvature

of an ellipse at its vertices that are closest to the ellipse centre is a2/b and is therefore R = 1

in our case. We also observe that for any extremal channel, i.e., an ellipsoid touching a sphere

from inside, the radius of curvature at the touching point in any plane containing a pure output

state is upper-bounded by the radius of curvature of the Bloch sphere (which is 1). For a plane

containing two pure output points and the origin, where the output set is an ellipse with a major

axis a = cos u and a minor axis b = cos u cos v (56), one can explicitly calculate that the radius of

curvature at the touching point is R = (cos v/ cos u)2. In particular, for unitary conjugations it is

of course 1, whereas for a 2PO non-degenerate extremal channel it is always less than 1. As the

output set of the concatenation must be in the output set of Φ2, the curvatures of the ellipsoid at

a PO can never decrease under concatenation, or, equivalently, the radius of curvature can never

increase. Because the curvature of the final Φnd
1PO must be 1, we conclude that Φ1,2 can never be

non-degenerate 2PO extremal channels.

Combining Corollary V.10, Lemma V.11 and Proposition V.12, we obtain an ε-small universal

set for 1PO extremal channels.
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Corollary V.13. For any ε > 0, the following set is universal for 1PO extremal channels:

X1PO(ε) = {Φ1PO(λ), λ ∈ (1− ε, 1) ∪ {0}}, (62)

where Φ1PO(λ) is a channel with tΦ = (0, 0, 1 − λ2) and λΦ = (λ, λ, λ2).

B. Extremal qubit channels with two pure outputs

Let Φ1,2 be two extremal 2PO channels of form (56) with parameters (ωi, θi) such that ω1 = θ2.

Then, Φ = Φ2 ◦ Φ1 is of the form (56) with parameters (ω2, θ1), that is Φ(ω2, θ1) = Φ2(ω2, ω1) ◦
Φ1(ω1, θ1). Such channels, with parameters (ω, θ) will be denoted by Φ2PO(ω, θ).

1. Degenerate channels

2PO Degenerate extremal channels map two orthogonal pure input states (θ = 0) to two pure

output states with 0 < ω < π/2 (type 3a in Lemma V.5). The set of output states is a line segment

touching the Bloch sphere in two points with an angle ω.

Lemma V.14. For any ε > 0, the set of all 2PO degenerate extremal channels X deg
2PO can be

obtained by concatenation of channels from the set

X deg
2PO(ε) = {Φ2PO(ω, 0), ω ∈ (0, ε)}, (63)

and channels from the set X nd
2PO.

Proof. The statement immediately follows from a general composition rule for two genuine 2PO

extremal channels (those with non-equal 2 POs) saying that Φ2PO(ω, 0) = Φ2PO(ω, x)◦Φ2PO(x, 0),

with any x ∈ (0, ω), and the fact that X nd
2PO contains all Φ2PO(ω, x) with 0 < x < ω < π/2.

Lemma V.15. If a qubit channel Φ maps two orthogonal pure states to two distinct non-orthogonal

pure states, it must be a 2PO degenerate extremal channel, i.e., of the type 3a in Lemma V.5.

Proof. Let us denote two orthogonal pure input states by ξa and ξb, and their pure output states

by ξ′a and ξ
′
b, Φ(ξa) = ξ′a, Φ(ξb) = ξ′b. Φ is an affine map and so it maps a line segment ξaξb to a line

segment ξ′aξ
′
b. The midpoint of ξaξb, which is a centre of the Bloch sphere, is mapped to a midpoint

of ξ′aξ
′
b, which is the centre of the output ellipsoid. Let us denote by P a plane containing the

ellipsoid centre and the points ξ′a and ξ′b. In the plane P the output ellipsoid is an ellipse touching

a circle from inside in points ξ′a and ξ′b. Due to Lemma IV.7 we know that the large ellipse axis
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is parallel to ξ′aξ
′
b and, because it must also pass through the midpoint of ξ′aξ

′
b, we conclude that

the large axis must be equal to ξ′aξ
′
b. If the ellipse is supposed to only touch the circle and not

intersect it, its small axis must be zero. The plane P therefore intersects the ellipsoid in a line

segment of nonzero length. Orienting the coordinate system so that the x axis is parallel to ξ′aξ
′
b,

while the z axis is in the plane P and perpendicular to ξ′aξ
′
b, we have λ3 = 0 as well as t2 = t1 = 0.

Because also t23 + λ21 = 1, we see that the coefficient b, Eq. (35) in the GFA Theorem IV.1, is equal

to b = 1− λ21 − λ22 − t23 = −λ22, which is non-negative only if λ2 = 0. The channel Φ is therefore of

the form 3a in Lemma V.5.

Using that Lemma we can now show that 2PO degenerate extremal channels are also necessary.

Proposition V.16. Let Φ = Φ2 ◦Φ1 be an arbitrary decomposition of a 2PO degenerate extremal

channel Φ. Then exactly one of the channels Φ1,2 must be a 2PO degenerate extremal channel.

Proof. A 2PO degenerate extremal channel Φ maps two pure orthogonal states ξa and ξb to two

pure non-orthogonal states ξ′a and ξ′b, Φ(ξa) = ξ′a, Φ(ξb) = ξ′b. Due to Lemma V.6, and because

the states ξ′a and ξ′b are distinct, we know that neither of Φ1,2 can be a 1PO degenerate extremal

channel, i.e., a channel that would map a mixed state to a pure state. Therefore, the image of pure

states ξa and ξb under Φ1 must be two pure states, say ζa and ζb, Φ1(ξa) = ζa, Φ1(ξb) = ζb. If ζa

and ζb are non-orthogonal, then Φ1 maps two orthogonal states ξa and ξb to two non-orthogonal

pure states and, according to Lemma V.15, must be a 2PO degenerate extremal channel, whereas

Φ2 cannot be a 2PO degenerate extremal channel as it maps two non-orthogonal states to two

non-orthogonal states. If on the other hand ζa and ζb are orthogonal, then Φ2 must in turn map

these two orthogonal pure states to two non-orthogonal pure states and must therefore be a 2PO

degenerate extremal channel, whereas Φ1 maps two orthogonal pure states to two orthogonal pure

states, and is therefore a non-extremal unital channel.

2. Non-degenerate channels

According to Lemma V.5, a channel Φ belonging to class 3b takes the form (56) with parameters

θ and ω such that 0 < θ < ω < π/2 (shaded triangle in Fig. 3). ¿From Proposition V.8, up to

unitary conjugation, such a channel can only be decomposed into channels of the same form. We

obtain in this way a universal set for 2PO non-degenerate channels.
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Proposition V.17. For any ε > 0, the set {Φ2PO(θ, ω); 0 < ω−θ < ε} is a universal set for 2PO-

non-degenerate channels. Moreover, given any non-trivial decomposition of a 2PO-non-degenerate

channel Φ = Φ2 ◦Φ1, both channels Φ1,2 must be extremal 2PO-non-degenerate.

Proof. Any concatenation Φ = Φn◦· · ·◦Φ2◦Φ1 of maps with parameters (θi, ωi) such that ωi = θi+1

is of the form (56) with parameters (θ1, ωn). Concatenating n channels with parameters lying in

the strip {(θ, ω); 0 < ω−θ < ε} (blue area in Fig. 3) allows to reach any final angle ωn ∈ [θ, θ+nε)

from an initial angle θ. Therefore any channel with parameters (θ, ω) can be decomposed into a

sequence of channels with n = ⌊(ω − θ)/ε⌋+ 1.

The second statement follows from Proposition V.8 and the fact that both Φ2 and Φ1 should

have exactly 2 pure outputs.

Combining Lemma V.14 and Proposition V.17, we obtain an ε-small universal set for 2PO

extremal channels.

Corollary V.18. For any ε > 0, the following set is universal for extremal 2 PO channels:

X2PO(ε) = {Φ2PO(ω, 0), ω ∈ (0, ε)} ∪ {Φ2PO(ω, θ), ω − θ ∈ (0, ε)}, (64)

where Φ2PO(ω, θ) is an extremal channel mapping pure input states (± cos θ, 0, sin θ) to pure output

states (± cosω, 0, sinω).

C. A universal set for extremal qubit channels

Finally, we state our main theorem, which is a compilation of Corollaries V.13 for 1PO extremal

channels and V.18 for 2PO extremal channels. Note that, in virtue of Propositions V.9, V.12, V.16

and V.17, our results go beyond extremal channels, showing that any universal set of channels

must contain extremal channels belonging to the each class studied in this section.

Theorem V.19. For any ε > 0, the set X (ε) = U2 ∪X1PO(ε)∪X2PO(ε), where X1PO(ε) is defined

in (62) and X2PO(ε) is defined in (64), is a universal set for extremal qubit channels.

Moreover, any universal set of (general) qubit channels must contain the following extremal

channels:

1. a 1PO degenerate (i.e. constant) channel Q|ψ〉〈ψ|;

2. infinitely many 1PO non-degenerate extremal channels Φ1PO(1− ε);
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FIG. 3. Illustration of extremal qubit channels in the (θ, ω) plane of latitude angles of the input/output pure

states on the Bloch sphere. The inside of the shaded triangle are non-degenerate extremal 2PO channels.

The universal set for 2PO extremal channels is a union of an ε-strip above the diagonal (blue/dark color)

and an ε-interval on the ω-axis (red/bright color). The 1PO extremal channels are in this parametrization

represented by a single point at θ = ω = π/2. For details see classification in Lemma V.5.

3. infinitely many 2PO degenerate extremal channels Φ2PO(ε, 0);

4. infinitely many 2PO non-degenerate extremal channels Φ2PO(ω, θ), with 0 < ω − θ < ε.

VI. CONCLUDING REMARKS

We have investigated the set of quantum channels acting on a single qubit, i.e. linear, trace

preserving, and completely positive maps of the density matrix. We found a compact generaliza-

tion of the Fujiwara-Algoet conditions, i.e. conditions for the complete positivity of the map, to

arbitrary (not necessarily unital) qubit channels. We used these conditions together with purely

geometrical considerations to examine the pure output of the quantum channel. We established

that no qubit quantum channel exists whose pure output is a circle of non-zero radius on the Bloch

sphere, generalizing the “no-pancake theorem”. We derived a universal set of quantum channels for

extremal qubit channels, i.e. a set of quantum channels from which all extremal qubit channels can

be constructed by concatenation. All other qubit channels can be constructed from these extremal

channels by simple classical random sampling. For unital qubit channels we found a universal set
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of quantum channels regardless of whether the qubit channel to be decomposed is extremal or not.

We showed that our universal sets are essentially minimal, and must be contained in any universal

set for arbitrary (not necessarily extremal) qubit channels.
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