
HAL Id: hal-00854339
https://hal.science/hal-00854339

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

h-ubu: An Industrial-Strength Service-Oriented
Component Framework for JavaScript Applications

Clément Escoffier, Philippe Lalanda, Nicolas Rempulski

To cite this version:
Clément Escoffier, Philippe Lalanda, Nicolas Rempulski. h-ubu: An Industrial-Strength Service-
Oriented Component Framework for JavaScript Applications. FSE 2013 - ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Aug 2013, Saint Petersburg, Russia. pp.699-702. �hal-
00854339�

https://hal.science/hal-00854339
https://hal.archives-ouvertes.fr

h-ubu – an industrial-strength service-oriented component
framework for JavaScript applications

Clement Escoffier
Grenoble University

clement.escoffier@imag.fr

Philippe Lalanda
Grenoble University

philippe.lalanda@imag.fr

Nicolas Rempulski
Ubidreams

nrempulski@ubidreams.com

ABSTRACT
In the last years, we developed web applications requiring a large
amount of JavaScript code. These web applications present
adaptation requirements. In addition to platform-centric
adaptation, applications have to dynamically react to external
events like connectivity disruptions. Building such applications is
complex and we faced sharp maintainability challenges. This
paper presents h-ubu, a service-oriented component framework
for JavaScript allowing building adaptive applications. h-ubu is
used in industrial web applications and mobile applications. h-ubu
is available in open source, as part of the OW2 Nanoko project.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – Frameworks, Modules and packages, Patterns.

General Terms
Design, Management, Languages.

Keywords
Adaptation, Service-orientation, Dynamism, JavaScript

1. INTRODUCTION
The web has undergone deep changes in the past few years. Its
popularization, combined with users mobility, has drastically
impacted the way web applications are built. Such applications
were traditionally developed using server-side technologies such
as JavaEE, PHP and ASP.Net. However, to improve usability and
to benefit from the latest browsers features, new architectures
where code is distributed between server and client sides have
emerged. This architectural shift is not without consequences. In
particular, most modern web applications contain a huge amount
of JavaScript on the client side.

JavaScript is an old language[1], often despised by developers. It
exhibits tricky behaviors making runtime evolutions and longer-
term maintenance complex. Browsers’ diversity also increases the
complexity of JavaScript code. Maintaining large codebase
involves dealing with browsers’ incompatibilities and evolutions.

In the last four years, we developed several web applications
requiring a large amount of JavaScript code. These applications
were characterized by stringent adaptation requirements. Indeed,
adaptation capabilities were necessary in order to deal with

heterogeneous running platforms (browsers features, screen size)
and to react smoothly to Internet connection losses. Such
adaptations are complex to implement and involve a large amount
of tricky code. To keep our technical debt under control, we
decided to develop a service oriented component framework for
JavaScript inspired from iPOJO[2] and CDI[3].

This decision was in line with the most recent trends in web
application development. Indeed, a number of JavaScript
component frameworks have emerged to make web applications
easier to develop and maintain. Some of them allow developers to
better structure their code into modules such as require.js
(requires.org) and CommonJs (commonjs.org). However, modules
are strongly coupled, which prevent easy architectural
adaptations. A second approach towards componentization relies
on MVC[4] and MVVM[5] frameworks. Numerous frameworks,
like angular.js (angularjs.org) and backbone.js (backbonejs.org),
allow to structure applications according to these architectural
styles. Applications developed with those frameworks present
reduced maintenance costs, but also exhibit incompatibilities with
other frameworks. Introducing complex logic and adaptability is
also difficult in these frameworks, focused on UI implementation.

In this paper, we present h-ubu, a service-oriented component
framework for JavaScript applications. The purpose of this
framework is to bring modularity to JavaScript code but also
runtime adaptability. This framework was successfully used in
several industrial web and mobile applications. One of these use-
cases is presented in the paper. A study of the impact of h-ubu on
the development is presented as well.

2. SERVICE-ORIENTED COMPONENT
MODELS TO SUPPORT ADAPTATION
Service-oriented component models come from the infusion of
service-orientation[6] inside component models. Unlike
traditional component models where components are linked
before execution, service-oriented component models promote
runtime resolution of service dependencies[7]. Components offer
and require services described as service specifications. This class
of component models was popularized by Service Component
Architecture[8]. To resolve service dependencies, components
look up inside a service registry and select a service provider. One
interest of such approach is the loose-coupling resulting from the
reduced amount of data shared between providers and consumer.

Service-orientation fits well to dynamic environments as services
can arrive and leave anytime. Such dynamism is a key concern in
web applications as remote services can become unreachable
when the Internet connection disrupts. In addition, components
can select their provider according to the execution environment,
such as the platform. Services can also reify the browser
capabilities. Providers have the ability to withdraw an exposed
service from the service registry if the execution context does not
meet their needs anymore.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ESEC/FSE'13, August 18–26, 2013, Saint Petersburg, Russia.
Copyright 2013 ACM 978-1-4503-2237-9/13/08... $15.00.

In addition to the adequacy between the service paradigm and the
dynamic variability of web execution environment, service-
oriented component models offer several advantages during
development. As the application is decomposed into well-defined
components, the development can be easily shared among
developers and each component can be tested separately.

3. H-UBU
h-ubu is a component framework applying the service-oriented
approach to JavaScript. Its purpose is to bring modularity to
applications and to ease their runtime adaptation. It also leads to a
reduced amount of code since important features are addressed by
the framework itself. h-ubu is based on the notion of components
with provided and required services, and on a hub, a specific
component in charge with runtime components bindings.

3.1 Service-oriented components
h-ubu’s applications are built from service-oriented components.
These components are developed in JavaScript as JavaScript
object (see code sample 1). To be managed by the h-ubu
framework, they must possess three lifecycle callbacks: configure,
start and stop. The configure method contains the code describing
required and provided services. Start and stop methods are called
by the framework when a component is started, resp. stopped.
var minimalComponent = {
 configure : function(hub, conf) {
 this.hub = hub;
 this.name = conf.name;
 },
 start : function() { },
 stop : function() { }
}

Code sample 1 - A h-ubu component and its lifecycle callbacks

h-ubu components interact through services, described with
service contracts. Contracts are also JavaScript objects (see code
sample 2). They define a set of methods (with empty bodies) and
properties.

var myContract = {
 doSomething: function() {}
};

Code sample 2 - Example of service contract

To publish and require services without code overhead involved
in dynamic service-orientation, h-ubu proposes a declarative
approach. Indeed, tracking services and properly handling
interactions with the service registry can be cumbersome. As
stated above, components describe their provided and required
services within the configure method.

As illustrated in the following code, declaring a provided service
is done with the provideService method. The developer provides
the service contract and optionally a set of service properties.
var component = {
 configure: function(hub, configuration) {
 hub.provideService({
 contract : myContract
 properties: {property: "value"}
 });
 },
 doSomething: function() { … } // Contract implementation
 //…
}

Code sample 3 - A component declaring a service

Components providing services must conform to the contracts, i.e
implement all methods and publish the contract’s properties as
service properties. The h-ubu framework verifies this conformity.

Despite this declarative way, components may need to act on their
provided services directly. The provideService function returns an
object allowing components to decide whether the service must be
published or not. This control over service publication is very
handy when a component needs to check whether the execution
environment meets its expectations to serve its service.

To declare a service dependency, a component calls the
requireService method. Service dependencies are characterized by
several attributes, including:

• The target service contract,
• The optionality and cardinality of the dependency. By

default, dependencies are mandatory and scalar,
• An optional filter to select a service provider,
• The type of injection.

When declaring a service dependency, a component chooses
between three injection mechanisms: injection inside a component
field, injection using callbacks (called when a service arrives and
leaves), or no injection. As illustrated by code sample 4, field
injection has the less impact on the code: the service can be
directly used from the injected field. Callbacks allow tracking
service events. When a service provider is arriving or is leaving,
the component is notified and can react. Finally, the last
mechanism let the component ask for an immediate lookup using
the locateService method. It does not track the availability of the
service, so the component must be prepared to receive a null
object. As stated in [9], those mechanisms cover the high majority
of the use case.
var component = {
 configure: function(hub, configuration) {
 hub.requireService({
 contract : myContract, // service contract
 field : "mysvc" // field injection
 });
 },
 //…
 work : function() {
 // using services does not require additional code
 this.mysvc.doSomething();
 }
}

Code sample 4 - A component consuming a service

Components using services have only access to the methods from
the service contracts. Thanks to a proxy generation mechanism, h-
ubu is able to enforce this aspect. Thus, h-ubu applications do not
suffer from the visibility issue of JavaScript.

3.2 The hub
The hub can be seen as a dock for application components. At
runtime, the hub manages plugged components. This includes the
component’s lifecycle and the weaving of bindings between
components. Communication follows service-orientation to
support runtime adaptation. At runtime, the hub is in charge of
publishing, tracking and injecting services.

As shown in code sample 5, components are registered on hubs
when the web page is loaded. Components receive the hub object
on which they are plugged and an optional configuration. This
configuration contain, for instance, a selector on the page element
they need to handle. This externalization improves the reuse of
components between pages and applications. It also allows the
implementation of applications following the MVC or MVVM
patterns.

hub
 .registerComponent(component1)
 .registerComponent(component2, {
 list: "#list"
 })
 .start();

 Code sample 5 - Component registration

The hub manages a service registry as well as a message-oriented
middleware to support communication between components. To
enable hierarchical composition, hubs are also components and so
can be registered on a parent hub. Those hubs can import and
export services from and to the parent hub (see figure 1).
Components from the sub-hub have only access to services from
components plugged on the same hub and imported services. In
addition, services from the sub-hub are not available from the
parent hub, except if they are exported. This architecture style is
close to C2ADL[10], and Enterprise Service Bus[11], but focused
on JavaScript.

component(

sub,hub(

hub(

provided(
service(required(

service(

service(
binding(imported(

service(

exported(
service(

Figure 1. h-ubu application architecture

3.3 Runtime Management and Adaptability
h-ubu components are executed within a container dealing with
service tracking, injection, and publication (figure 2). This
container is configured in the configure method of the component.

!
hub!

container!

component!

Figure 2. h-ubu's container

When the application is started, the containers initialize the
service tracking. When all the service dependencies of a
component are satisfied, the container registers the provided
services.

If, on a service departure, a mandatory service dependency
becomes unsatisfied, the container unregisters the service
published by the component. They will be registered again when
the service dependency will become fulfilled.

Such component-centric dynamic management allows the
applications to exhibit dynamic adaptability thanks to a cascading
effect. As an example, when the Internet connection is lost, the
component tracking the connection withdraws its services. All
components requiring the connection also unregister their services
from the service registry. Facing this change, the component
implementing the UI can decide to disable features requiring
Internet connection or notify the user. As soon as the Internet
connection is restored, the service is published again.
Adaptation can also be platform-based. Components can decide to
publish or not their service according to their execution
environment. Thus, a component may decide whether to publish
its service according to the availability of browser features (like

(geo-localization, SVG support or local storage). So a h-ubu
application can have different configurations on different
platforms. This ability is critical to support web applications
running on a large set of devices (laptop, mobile phones and
tablets) and browsers (Firefox, Chrome, Internet Explorer).

4. INDUSTRIAL APPLICATION
4.1 Context
This section describes an application developed by Ubidreams
(http://ubidreams.com/) for one of its customers, using h-ubu for
variability and adaptability.
Precisely, Ubidreams developed a product catalog (see figure 3)
accessible from regular browsers and from iOS devices (as a
native application). The feature set differs in the web site and in
the iOS application and also depends on the user’s roles. The web
site offers a management system where authenticated users can
add, update and remove products. This part of the application is a
business-driven CMS developed for the project. The iOS
application focuses on products browsing and viewing.

Figure 3. The gourmandise application

The iOS application is used by salesmen for face-to-face meetings
with customers. They must have up to date products but at the
same time can face Internet connection disruption. To deal with
that, the application locally stores the set of products and syncs
when an Internet connection is available. As the catalog is
presented to customers, it displays a modern, fluid and attractive
user interface. The application is used in production.

4.2 Configuration variability
As presented above, the set of features proposed by the
application heavily depends on the platforms (browser or iOS
device) and the users. We identified two types of variability:

1. The application has different purposes for the CMS and
for the iOS devices. But lots of code is common.

2. The feature set changes depending on specific user roles
(administrator, editor, viewer)

The web site and the iOS application are composed by different
sets of components. However, thanks to h-ubu, a large amount of
components are reused. Precisely, the iOS applications are made
of 61 components, while the administration part contains 56
components. 29 components are shared between the two parts. In
addition, the web site and iOS application share a common set of
services. However, implementations differ as the execution
environments are different. For instance, both parts are using a
local storage service. The web site implementation relies on the
browser local storage, while the iOS application wraps the
application file system. The implemented service contract is
identic, enabling the reuse of consumer’s components.

According to the user role the set of available features also
change. Such conditional configuration is implemented directly by
the components themselves. Components decide whether to
publish their service. Thus, the set of published service is different

and changeable. When a user logs in, components react and
register their services. Thanks to these dynamic changes, the user
interface is updated seamlessly, without page reloading.

4.3 Dynamic adaptation
The iOS application is used in mobility. Remote services can
become unreachable due to connectivity disruption. Implementing
dynamism by making these services available or unavailable
makes building adaptable application easier.

The iOS application is based on a set of dynamic services. The
application adapts itself according to the available set of services.
For instance, the authentication service is implemented by a
component that tracks the availability of the backend
authentication service. When this service is not reachable, the
component unregisters the service. The application reacts by
hiding all actions requiring authentication. Products are also
synchronized by the application and stored locally. The sync
process is triggered periodically in background when the Internet
connection is established. If syncing fails, it is re-triggered as soon
as the connectivity is reestablished.

4.4 Metrics and Feedbacks
The application presented in this section is composed by 31744
line of code (JavaScript and HTML). This number does not
include the backend application nor the libraries and components
integrated in the application. The code is structured into 88
components assembled differently according to the system.
The application runs without performance penalty. In production,
the proxy injection is disabled, reducing the overhead to be
unsubstantial. The application load and launch time are subjected
to a minimal overhead (less than 5%). This is because of the code
division into more files and the service stabilization on startup.

The application was developed in 12 weeks by a small team of 4
members. The developers didn’t have any experience in
componentization and never used h-ubu. They, as most
developers, feared JavaScript development. The simple model
proposed by h-ubu made them productive after a few days. In
addition, the isolation of all components has made the
decomposition of the work natural. Each component was tested
separately, generating confidence regarding the final application.
The modularization of the application could have been finer. The
lack of experience of service-orientation and componentization
has impacted the architectural choices. The team admitted that
smaller components and more services would have improved code
quality and increased their velocity.

However, tooling, especially build and test tools can be improved.
After having analyzed the usage of h-ubu in this project, we start
foreseeing guidelines and common practices. Understanding these
new patterns would improve the modularization of JavaScript
applications and their dynamic adaptation.

5. CONCLUSION
Mobility and HTML5 are opening a new era for web applications.
However developing such complex, attractive and reactive
applications is not without a high cost. JavaScript is now heavily
used in all these applications. JavaScript code has the reputation
to be unmaintainable and exhibits tricky behaviors. In addition
these new applications often require runtime adaptations, to react
to user actions and environmental changes.

In the last years, we developed several web applications relying
on a large amount of JavaScript code. To keep a decent technical
debt, we developed a service-oriented component framework,
named h-ubu. Its purpose is to bring modularity to applications
and to ease their runtime adaptation. It also leads to a reduced
amount of code since important features are addressed by the
framework itself. h-ubu is based on the notion of components with
provided and required services, and on a hub, a specific
component in charge with runtime components bindings.

As presented in this paper, h-ubu is successfully used in several
industrial applications. h-ubu allows a higher code reuse,
improves the code quality, and supports fine-grained modularity.

h-ubu does not aim to manage dynamic provisioning of
components. These aspects are managed by loaders, such as
Google Loader or JQuery. They are fully functional with h-ubu.

h-ubu is part of the OW2 Nanoko project. The code is licensed
under the Apache License Software 2.0, and is available on
http://nanoko-project.github.io/h-ubu/release/.

6. REFERENCES
[1] ECMA International, “ECMAScript - ECMA-262, 1st

edition,” ECMA International, 1997.

[2] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an
Extensible Service-Oriented Component Framework,”
presented at the IEEE International Conference on Services
Computing, 2007, pp. 474–481.

[3] G. King, “Contexts and Dependency Injection in Java EE 6,”
Contexts and Dependency Injection in Java EE 6, 2009.

[4] R. Tanikella, G. Matos, G. Tai, and B. Wehrwein, “Relating
requirements to a user interface architecture for a rich
enterprise web application,” presented at the 2nd
international conference on Trends in enterprise application
architecture, 2006.

[5] J. Freeman, J. Järvi, and G. Foust, “HotDrink: a library for
web user interfaces,” presented at the 11th International
Conference on Generative Programming and Component
Engineering, 2012.

[6] M. P. Papazoglou, “Service-Oriented Computing : Concepts ,
Characteristics and Directions,” Information Systems
Journal, vol. 3, no. 10, pp. 3–12, 2003.

[7] H. Cervantes and R. S. Hall, “Autonomous adaptation to
dynamic availability using a service-oriented component
model,” presented at the 26th International Conference on
Software Engineering, 2004, pp. 614–623.

[8] OASIS, “Service Component Architecture,” OASIS.
http://oasis-opencsa.org/sca

[9] C. Escoffier, P. Bourret, and P. Lalanda, “Describing
dynamism in service dependencies,” presented at the 10th
International Conference on Services Computing, 2013.

[10] N. Medvidovic, P. Oreizy, and R. N. Taylor, “Reuse of Off-
the-Shelf Components in C2-Style Architectures,” presented
at the International Conference on Software Engineering,
1997.

[11] M. Luo and L.-J. Zhang, “Practical SOA: Service Modeling,
Enterprise Service Bus and Governance,” IEEE International
Conference on Web Services, p. 11, 2008.

