
HAL Id: hal-00854318
https://hal.science/hal-00854318

Submitted on 27 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Computations in Time-Varying Graphs:
Broadcasting under Unstructured Mobility

Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro

To cite this version:
Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro. Deterministic Computations in
Time-Varying Graphs: Broadcasting under Unstructured Mobility. 6th IFIP International Conference
on Theoretical Computer Science (IFIP TCS), Sep 2010, Australia. pp.111-124. �hal-00854318�

https://hal.science/hal-00854318
https://hal.archives-ouvertes.fr

Deterministic Computations in Time-Varying Graphs:
Broadcasting under Unstructured Mobility

Arnaud Casteigts1, Paola Flocchini1, Bernard Mans2, and Nicola Santoro3

1 University of Ottawa, Ottawa, Canada,
{casteig,flocchin}@site.uottawa.ca

2 Macquarie University, Sydney, Australia,
bernard.mans@mq.edu.au

3 Carleton University, Ottawa, Canada,
santoro@scs.carleton.ca

Abstract. Most highly dynamic infrastructure-less networks have in common that the assumption of con-
nectivity does not necessarily hold at a given instant. Still, communication routes can be available between
any pair of nodes over time and space. These networks (variously called delay-tolerant, disruptive-tolerant,
challenged) are naturally modeled as time-varying graphs (or evolving graphs), where the existence of an
edge is a function of time. The existing theoretical research on these networks and graphs has focused
on probabilistic assumptions and analysis. The few deterministic results have been restricted to the well
structured mobility patterns described by the class of periodically-varying graphs. In this paper we study de-
terministic computations under unstructured mobility, that is when the edges of the graph appear infinitely
often but without any (known) pattern. In particular, we focus on the problem of broadcasting with termi-
nation detection. We explore the problem with respect to three possible metrics: the date of message arrival
(foremost), the time spent doing the broadcast (fastest), and the number of hops used by the broadcast (short-
est). We prove that the solvability and complexity of this problem vary with the metric considered, as well
as with the type of knowledge a priori available to the entities. These results draw a complete computability
map for this problem when mobility is unstructured.

Keywords: time-varying graphs, evolving graphs, dynamic networks, distributed algorithm, broadcast, ter-
mination detection, recurrent edges.

1 Introduction

1.1 The Framework

The past few years have seen increasing research efforts devoted to the study of infrastructure-
less highly dynamic networks, whose topologies change as a function of time. Most of
these networks, variously called delay-tolerant, disruptive-tolerant, challenged, opportunis-
tic, have in common that the assumption of connectivity does not necessarily hold at a given
instant. The network may even be disconnected at every time instant. Still, communication
routes can be available over time and space, and make broadcast and routing feasible. In-
deed an extensive amount of research has been devoted, mostly by the engineering commu-
nity, to the problems of broadcast and routing in such highly dynamical environment (e.g.
[3,4,13,14,15,19,21,22,23,24]).

The highly dynamic features of these networks can be described by means of time-varying
graphs (also called evolving graphs), where links exist only at some times, a priori unknown
to the algorithm designer (see [2,7,9,12]). Thus, in these graphs, the set of edges existing at

2 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

a given time might not form a connected graph. Due to the complexity of these systems, it
is not surprising that very few analytical results exist, all obtained under a set of restrictive
assumptions that make the investigated problems amenable to analysis. An example of basic
assumption is that the existence of these graphs is continuous over time; that is, the network
does not suddenly cease forever to exist.

Almost all the work in this area considers these computations in time-varying graphs from
a probabilistic standpoint [6,7,8,16], assuming e.g. that the edge schedule obeys a Markovian
process. The design and analysis of deterministic solutions has been carried out under very
strong assumptions. For example, knowing the complete edge schedule ahead of time in a
central entity allows to compute optimum solutions to the broadcast and routing problems [2].
Intermediate assumptions have been investigated, such as the fact that the network is always
connected [20]. A hierarchy of basic assumptions for distributed algorithms in dynamic net-
works is discussed in [5].

Clearly any a-priori knowledge about the edge schedule can be employed in the design
and analysis of (possibly deterministic) solutions. This is also true from a practical point of
view, and indeed an intensive investigation exists on mobility patterns [1,18,17,10]. Some
classes of infrastructure-less networks have indeed specific mobility patterns. For example,
in networks such as public transports with fixed timetables, low earth orbiting (LEO) satellite
systems, security guards’ tours, etc. the edge-schedule is periodic, and deterministic protocols
for routing and exploration of such networks have been devised (e.g., [12,11,19]). Periodicity
is interesting not only because it models several classes of dynamic systems, but also be-
cause the infinite mobility pattern defining it is highly structured. The existing results show
that the existence of such a structure allows the development of deterministic solutions to
fundamental problems.

The question immediately arises of what happens when the mobility is unstructured. More
precisely, what happens if encounters between mobile entities occur infinitely often but with-
out any (known) pattern? what happens if there is no known pattern but there is a time bound
on the re-appearance of edges? What can be done deterministically in such cases?

In this paper we address these questions and provide some answers on the computability
and complexity aspects with regards to the basic problem of broadcasting with termination
detection.

1.2 Problems and Contributions

Consider the class R of recurrent time-varying graphs whose edges appear infinitely often;
that is if an edge (x, y) between nodes x and y exists at time t (i.e., entities x and y are able to
communicate at time t), then there exists a time t′ > t when (x, y) also exists (let us assume
the set of apparition of a given edge as enumerable). Let B ⊂ R be the class of time-bounded
recurrent time-varying graphs, where two successive appearance of a same edge is bounded
by some duration. We consider the basic problem of broadcasting with termination detection
in R and in B: there is a node (the source, also called emitter) that has a message that must
be distributed to all other nodes; the source must be notified when the entire process has been
completed. This problem is more difficult than simple broadcast, and is required in more

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 3

complex operations, e.g. sequence transmission, where the i-th sequence item must only be
transmitted after the (i− 1)th item has been received by all nodes.

We explore the problem with respect to the three possible metrics discussed in [2]: the
date of message arrival (foremost); the number of hops used (shortest); and the time spent
doing the effective broadcast (fastest). Interestingly, the solvability and complexity of the
problem vary with the type of metric considered, as well as with the knowledge available
to the nodes. Note that broadcasting with termination detection involves two processes: the
actual dissemination of information achieved by exchange of information messages, and ter-
mination detection achieved by exchange of (typically smaller) control messages. In the paper
we make a distinction between these two types of messages and we analyze them separately.
Also notice that a byproduct of a broadcast algorithm might be the construction of a (delay-
tolerant) spanning tree of the underlying graph, which could possibly be reused for subse-
quent broadcasts, sometimes for the dissemination process (thus reducing the information
messages), sometimes for termination detection (impacting the number of control messages),
or for both. In each setting we discuss also the consequences on subsequent broadcasts in
order to highlight the variation of benefits in reusability.

We first provide some impossibility results showing that broadcasting with termination
detection cannot be solved in R without any knowledge of the underlying graph, nor in
B without either the same knowledge or a bound on the recurrence time. We then analyze
solvability and complexity of the problem in the various settings providing algorithms when
it can be solved. The solvability results are summarized in Table 1 and the complexity results
in Table 2, where n is the number of nodes, and ∆ a bound on the recurrence time.

Metric Class Knowledge Feasibility
Foremost R ∅ no

n yes
B ∅ no

n yes
∆ yes

Metric Class Knowledge Feasibility
Shortest R ∅ no

n no
B ∅ no

n no
∆ yes

Fastest R or B n or ∆ no

Table 1. Summary of contributions - Solvability.

Metric Class Knowl. Time Info. msgs Control msgs Info. msgs Control msgs
(1st run) (1st run) (next runs) (next runs)

Foremost R n unbounded O(m) O(n2) O(m) O(n)
B n O(n∆) O(m) O(n2) O(m) O(n)

∆ O(n∆) O(m) O(n) O(m) 0
n&∆ O(n∆) O(m) 0 O(m) 0

Shortest B ∆ O(n∆) O(m) O(n) : 2n− 2 O(n) 0

either of{ n&∆ O(n∆) O(m) O(n) : n− 1 O(n) 0
n&∆ O(n∆) O(m) 0 O(m) 0

Table 2. Summary of contributions - Complexity (for solvable cases)

4 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

2 Model and Basic Properties

2.1 Definitions and Terminology

Consider a system composed of a set of entities V that interact with each other over a (pos-
sibly infinite) time interval T, called lifetime of the system (a subset of either Z (discrete
time) or R (continuous time); our results hold in either case). The set of the times when the
entities are in contact defines a time-varying graph (TVG, for short) G = (V,E, ρ), with
E ⊆ V × V being the set of intermittently available edges such that (u, v) ∈ E ⇔ u and v
have at least one contact overlapping with T, and ρ : E × T → {0, 1} indicates whether a
given edge is present at a given time. In the following the terms entity and node will be used
interchangeably.

This model is equivalent in substance to that of evolving graphs [9], where G is repre-
sented by the sequence of graphs G1, G2, ..., Gi, ... each providing a snapshot of the system
whenever a change (edge appearance/disappearance) takes place. In comparison, the def-
inition used in this paper offers an interaction-centric view of the network evolution (the
evolution of each edge can be considered irrespective of the global time sequence), which
proves more convenient to express several properties.

An edge e ∈ E is said to be recurrent if it appears infinitely often; that is, for any date t,
ρ(e, t) = 0 =⇒ ∃t′ > t | ρ(e, t′) = 1. When all the edges of a TVG G are recurrent, we
say that G is recurrent. LetR denote the class of recurrent TVGs. The recurrence of an edge
e is said to be time-bounded (or simply bounded), if there exists a constant ∆(e) such that
the time between any two successive appearances of e is at most ∆(e). When the recurrence
of all the edges of a graph G is time-bounded, we say that G is time-bounded recurrent, call
∆(G) = max{∆(e) : e ∈ E}, and denote by B ⊂ R the class of time-bounded recurrent
TVGs.

Given a TVG G = (V,E, ρ), the underlying graph G = (V,E) is assumed simple (no
self-loop nor multiple edges) and connected4. Each node v has a local function λv associating
labels (or port numbers), to its incident edges (or ports). For each edge e there are two labels:
λu(e) local to u and λv(e), local to v. These labels are locally unique and do not change from
one appearance to another. The set of edges being incident to a node u at time t is noted It(u)
(or simply It, when the node is implicit). Finally, we note G[ta,tb) the temporal subgraph of a
TVG G with restricted lifetime [ta, tb).

When an edge e = (x, y) appears, the entities x and y can communicate. The time ζ
necessary to transmit a message on any edge is called crossing delay, and is known by the
nodes. The TVGs in the rest of this paper are assumed to have recurrent edges with a minimal
duration of 2 × ζ for every edge presence (long enough for a back and forth exchange of
message). This last assumption implies that

Property 1
1. If a message is sent just after an edge has appeared, the message and a potential answer
are guaranteeed to be successfully transmitted.

4 Broadcast, as well as any other global computation, would be impossible otherwise.

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 5

2. If the recurrence of an edge is bounded by some ∆, then this edge cannot disappear for
more than ∆− 2× ζ .

The appearances and disappearances of edges are instantaneously detected by the two ad-
jacent nodes (they are notified of such an event without delay). If a message is sent less than
ζ before the disappearance of an edge, the message is lost. However, since the disappearance
of an edge is detected instantaneously, and the crossing delay ζ is known, the sending node
can locally determine whether the message has arrived or not. We thus authorize the special
primitive send retry as a facility to specify that if the message is lost, then it is automati-
cally re-sent on the next appearance of the edge, and this sending is necessarily successful
(Property 1). Note that nothing precludes this primitive to be called while the corresponding
edge is absent.

A sequence of couple J = {(ea, ta), (eb, tb), ...}, with ei ∈ E and ti ∈ T for all i, is called
a journey in G iff {ea, eb, ...} is a walk in G and for all ti, ρ(ei)[ti,ti+ζ) = 1 and ti+1 ≥ ti + ζ ,
where ζ is the time required to transmit a message on an edge, called crossing delay. Journeys
can be thought of as paths over time from a source node to a destination node (if the journey
is finite). Let us denote by J ∗G the set of all possible journeys in a graph G. We will say that
G admits a journey from a node u to a node v, and note ∃J(u,v) ∈ J ∗G , if there exists at
least one possible journey from u to v in G. Note that the notion of journey is asymmetrical
(∃J(u,v) ∈ J ∗G ; ∃J(v,u) ∈ J ∗G), regardless of whether edges are directed or undirected.

Because no end-to-end connectivity is assumed, the very notion of distance must incorpo-
rate the time factor. In fact, at least three notions of length can be defined for journeys (adapted
from [2]): the hop-count, the arrival date, and the duration of a journey. Given a journey J =
{(e1, t1), (e2, t2) . . . ,
(ek, tk)}, its hop-count |J |h, is the number of couples in J (that is, k). The arrival date
of J , noted |J |a, is tk + ζ . Finally, the duration of J , noted |J |t, is |J |a− t1. Each of these
metrics gives rise to a distinct definition of distance in G.

– The topological distance between a node u and a node v, noted dh(u, v), is defined as
min{|J(u,v)|h : J(u,v) ∈ J ∗G }. A journey J(u,v) whose length is dh(u, v) is qualified as
shortest ;

– The earliest arrival date between u and v, noted da(u, v) is defined as min{|J(u,v)|a :
J(u,v) ∈ J ∗G }. A journey J(u,v) whose arrival date is da(u, v) is qualified as foremost ;

– Finally, the smallest delay between u and v, noted dt(u, v) ismin{|J(u,v)|t : J(u,v) ∈ J ∗G },
and a journey J(u,v) whose duration is dt(u, v) is qualified as fastest.

The eccentricity of a node u is defined as max{dx(u, v) : v ∈ V }, where x is either h,
a, or t, depending on the type of distance considered, and noted εh(u), εa(u), and εt(u),
respectively. Similarly, three notions of diameter of a graph G = (V,E, ρ) can be defined as
max(dx(u, v) : u, v ∈ V), and noted Dh(G), Da(G), or Dt(G). Notice that Dh is closer to
the usual notion of diameter (in hop-count) than Da or Dt, which are both in the temporal
domain. Observe also that all these notions are time-dependent in the sense that they may
vary according to the time when they are considered.

6 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

2.2 Problems and Basic Limitations

The problem of broadcast with termination detection, TDBroadcast, requires all nodes to
receive a message with some information initially held by a single node x, called source or
emitter, and the source to enter a terminal state after all nodes have received the information,
within finite time. A protocol solves TDBroadcast in G ∈ R if it solves it for any source
x ∈ V and time t. We say that it solves TDBroadcast inR if it solves TDBroadcast for
any G ∈ R.

We are interested in three variations of the TDBroadcast problem, following the no-
tions of distance defined above: TDBroadcast[foremost], where each node must receive
the information at the earliest possible date following its creation at the emitter;
TDBroadcast[shortest], where each node must receive the information within a minimal
number of hops from the emitter, and TDBroadcast[fastest], where each node must receive
the information at the earliest possible date following the beginning of its emission. For each
of these problems, we require that the emitter detects termination, but this detection is not
subjected to the same foremost, shortest, or fastest constraint.

Some knowledge of G, the underlying graph, is necessary even for simple broadcast in
recurrent TVGs. In fact we have:

Theorem 2. Without any knowledge of the underlying graph, TDBroadcast in R cannot
be solved.

Proof. By contradiction, let A be a algorithm that solves TDBroadcast in R . Consider
an arbitrary G = (V,E, ρ) ∈ R and x ∈ V . Execute A in G starting at time t0 with x as the
source. Let tf be the time when the source terminates (and thus all nodes have received the
information). Let G ′ = (V ′, E ′, ρ′) ∈ R such that V ′ = V ∪{u}, E ′ = E ∪{(u, v) : v ∈ V },
ρ′(e, t) = ρ(e, t) for all e ∈ E, t ∈ T, ρ′((u, v), t) = 0 for all t0 ≤ t < tf , and ρ′((u, v), t) =
1 for t > tf . Consider the execution of A in G ′ starting at time t0 with x as the source. Since
(u, v) does not appear from t0 to tf , the execution of A at every node in G ′ will be exactly
as at the corresponding node in G. In particular, node x will have entered a terminal state at
time tf with node v not having received the information, contradicting the correctness of A.

Indeed, as we will discuss later, some metric knowledge such as knowing the number of
nodes n = |V | or, in the case of bounded TVGs (class B), knowing an upper bound ∆ on the
recurrence time ∆(G), can play an important role.

Theorem 3. Without any knowledge of the underlying graph nor of ∆,
TDBroadcast in B cannot be solved.

Proof sketch. It follow the same lines as the proof of Theorem 2. The only difference is that
both G = (V,E, ρ) and G ′ = (V ′, E ′, ρ′) are in B, and G ′ is such that ∆(G ′) > tf − t0.

Finally, let us conclude with a general impossibility result for fastest broadcast with ter-
mination, which cannot be solved even if both n and ∆ are known.

Theorem 4. TDBroadcast[fastest] is not solvable in R, nor in B, regardless of the fact
that n or ∆ are known.

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 7

Proof sketch. The argument relates to the very existence of fastest journeys in an unstruc-
tured infinite setting. Indeed, consider any journey which at some point is the fastest journey
that existed heretofore, clearly none of the above knowledge allows to decide that an even
faster journey cannot exist at a future date. Consequently, no broadcast algorithm can recog-
nize a fastest journey, and terminate.

Because of the impossibility of fastest broadcast, the rest of the paper focuses on
TDBroadcast[foremost] and TDBroadcast[shortest] only, and on the impact on solv-
ability and complexity of being inR or B, and knowing n or ∆ (if in B).

3 TDBroadcast[foremost]

The objective is to have all the nodes receive the information at the earliest possible date
following its creation at the emitter (foremost broadcast), then have the emitter detect termi-
nation. Clearly, achieving a foremost broadcast requires to use a flooding-based mechanism.
Indeed, the very fact of probing a neighbor to determine whether it already has the informa-
tion compromises the possibility of sending it in a foremost fashion (in addition to risking the
disappearance of the edge between the probe and the real sending). The problem thus comes
to minimize the number of messages and detect when all the nodes are informed. As we have
seen in Theorem 2, the problem cannot be solved without any metric knowledge. We show
that it becomes possible in the general class R if the number of nodes n = |V | is known.
Knowing n is however not required in the more specific case of B, where the knowledge of
an upper bound ∆ on the recurrence time ∆(G) can also be used to solve the problem. If both
n and ∆ are known in B, the termination detection can even become implicit, thereby saving
a number of control messages.

3.1 TDBroadcast[foremost] in R

In this section we discuss only knowledge of n since ∆ cannot be known being the recurrent
time unbounded by definition.

3.1.1 Knowledge of n
The problem is solvable when n is known, by using the procedures detailed in Algo-

rithm 1, informally described as follows. Every time a new edge appears locally to an in-
formed node, the node sends the information on this edge and remembers it. The first time a
node receives the information, it chooses the sender as parent, transmits the information on
its available edges, and sends back a notification message to the parent. Note that these noti-
fications create a parent-relation and thus a converge-cast tree. The notification messages are
sent using the special primitive send retry discussed in Section 2.1, to ensure that the parent
eventually receives it even if the edge disappears during the first attempt. Each notification
is then individually forwarded in the converge-cast tree using the send retry primitive, and
eventually collected by the emitter. When the emitter has received n−1 notifications, it knows
all the nodes are informed (and the next broadcast can start, for example).

8 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

Algorithm 1 Foremost broadcast inR, knowing n.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbNotifications← 0 // number of notifications received (for the emitter).
3: Set<Edge> informedNeighbors← ∅ // neighbors known to have the information.
4: Status myStatus← ¬informed // status of the node (informed or non-informed).

5: initialization:

6: if isEmitter() then
7: myStatus← informed

8: send(information) on Inow() // sends the information on all its present edges.
9: onAppearance of an edge e:

10: if myStatus == informed and e /∈ informedNeighbors then
11: send(information) on e
12: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

13: onReception of a message msg from an edge e:

14: if msg.type == Information then
15: informedNeighbors← informedNeighbors ∪ {e}
16: if myStatus == ¬informed then
17: myStatus← informed

18: parent← e
19: send(information) on Inow() r informedNeighbors // propagates.
20: send retry(notification) on e // notifies that a new node got the info.

(this message is to be resent upon the next appearance, in case of failure).
21: else if msg.type == Notification then
22: if isEmitter() then
23: nbNotifications← nbNotifications+ 1
24: if nbNotifications == n− 1 then
25: terminate // at this stage, the emitter knows that all nodes are informed.
26: else
27: send retry(notification) on parent

Theorem 5. When n is known, TDBroadcast[foremost] can be solved in R exchanging
O(m) information messages and O(n2) control messages, in unbounded time. (We call m the
number of edges |E|).
Proof sketch. Since a node sends the information to each new appearing edge, it is easy to
see, by connectivity of the underlying graph, that all nodes will receive the information. As
for termination detection: every node identifies a unique parent and a converge-cast span-
ning tree directed towards the source is implicitly constructed; since every node notifies the
source (through the tree) and the source knows the total number of nodes, termination is
guaranteed. Since information messages might traverse every edge in both directions, and an
edge cannot be traversed twice in the same direction, we have that the number of informa-
tion messages is in the worst case 2m. Since every node but the emitter induces a notifica-
tion that is forwarded up the converge-cast tree to the emitter. The number of notification
messages is the sum of distances in converge-cast tree between all nodes and the emitter,∑

v∈Vr{emitter} dh tree(v, emitter). The worst case is when the graph is a line where we have
n2−n

2
control messages. Note that the dissemination of information itself is performed in opti-

mal time: εa(emitter) in G[t,+∞), because the information is either directly relayed on edges

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 9

that are present, or sent as soon as a new edge appears. However, since the recurrence of
the edges is unbounded, this time, as well as the time required for termination detection, is
necessarily unbounded.

Reusability for the subsequent broadcasts. By nature, a foremost tree is transient and can-
not be re-used as such in subsequent broadcasts. However, it can be re-used by subsequent
broadcasts as a converge-cast tree for the notification process where, instead of sending a
notification as soon as a node is informed, each node notifies its parent in the converge-cast
tree if and only if it is itself informed and has received a notification from each of its children.
This would allow to reduce the number of control messages fromO(n2) toO(n), having only
one notification per edge of the converge-cast tree.

3.2 TDBroadcast[foremost] in B

If the recurrence is bounded, then either the knowledge of n or an upper bound ∆ on the
recurrence time ∆(G) can be used to detect termination.

3.2.1 Knowledge of n. Using the same algorithm as for class R (Algorithm 1) we can
obviously solve the problem in B with the same message complexity, but bounded time.
Moreover, the same observations regarding reusability for the subsequent broadcasts apply.

Theorem 6. When n is known, TDBroadcast[foremost] can be solved in B exchanging
O(m) information messages and O(n2) control messages, in O(n∆) time.

Proof sketch. The arrival-date-based eccentricity of the emitter (εa(emitter) in G[t,+∞)),
which is itself bounded by the arrival-date-based diameter of the graph (Da(G[t,+∞))), is now
clearly bounded by∆(n−1) (the worst case is when the foremost tree is a line). The detection
of termination by the emitter may require an additional ∆(n − 1) for the propagation of the
last notification. The overall time required for the emitter to detect termination is thus at most
εa(emitter) in G[t,+∞) +∆(n− 1), bounded by ∆(2n− 2).

3.2.2 Knowledge of ∆. The information dissemination is performed as in Algorithm 1,
termination detection is however achieved differently and is based on knowledge of ∆. The
code of the algorithm is reported in Algorithm 2 and we describe it here informally. Due
to the time-bounded recurrence, no node can discover a new neighbor after a duration of
∆. Knowing ∆ can thus be used by the nodes to determine whether they are a leaf in the
broadcast tree (if they have not informed any other node after the date they were informed at,
plus∆). This allows the leaves to terminate spontaneously while notifying their parent, which
recursively terminate as they receive the notifications from all their children. Everytime a
new edge appears locally to an informed node, this node sends the information on this edge,
and remembers it. The first time a node receives the information, it chooses the sender as
parent, memorizes the current time (say, in a variable firstRD), transmits the information

10 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

on its available edges, and returns an affiliation message to its parent using the send retry
primitive (starting to build the converge-cast tree). This affiliation message is not relayed
upward in the tree, but only intended to inform the direct parent about the existence of a
new child (so that it knows it will have to wait for a notification by this node during the
hierarchical notification). If an informed node has not received any affiliation message after
a duration of ∆ + ζ (see Figure 1), it sends a notification message to its parent using the
send retry primitive. If a node has one or several children, it waits until having received a
notification message from each of them, then notifies its parent in the converge-cast tree in
turn (using send retry again). When the emitter has received a notification from each of its
children, it knows that all nodes have received the information.

Algorithm 2 Foremost broadcast in B, knowing a bound ∆ on the recurrence.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbChildren← 0 // number of children.
3: Integer nbNotifications← 0 // number of children that have terminated.
4: Set<Edge> informedNeighbors← ∅ // neighbors known to have the information.
5: Date firstRD ← nil // date of the first reception.
6: Status myStatus← ¬informed // status of the node (informed or non-informed).

7: initialization:

8: if isEmitter() then
9: myStatus← informed

10: send(information) on Inow() // sends the information on all its present edges.
11: onAppearance of an edge e:

12: if myStatus == informed and e /∈ informedNeighbors then
13: send(information) on e
14: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

15: onReception of a message msg from an edge e:

16: if msg.type == Information then
17: informedNeighbors← informedNeighbors ∪ {e}
18: if myStatus == ¬informed then
19: myStatus← informed

20: firstRD ← now() // memorizes the date of first reception.
21: parent← e
22: send(information) on Inow() r informedNeighbors // propagates.
23: send retry(affiliation) on e // informs the parent that it has a new child.
24: else if msg.type == Affiliation then
25: nbChildren← nbChildren+ 1
26: informedNeighbors← informedNeighbors ∪ {e}
27: else if msg.type == Notification then
28: nbNotifications← nbNotifications+ 1
29: if nbNotifications == nbChildren then
30: if ¬isEmitter() then
31: send retry(notification) on parent // notifies the parent in turn.
32: terminate // whether emitter or not, the node has terminated at this stage.

33: when now() == firstRD +∆+ ζ: // tests whether the underlying node is a leaf.

34: if nbChildren == 0 then
35: send retry(notification) on parent
36: terminate

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 11

Theorem 7. When ∆ is known, TDBroadcast[foremost] can be solved in B exchanging
O(m) information messages and O(n) control message, in O(n∆) time.

Proof sketch. Correctness follows the same lines of the proof of Theorem 5, where however
the correct construction of a converge-cast spanning tree is guaranteed by knowledge of ∆
(the leaves of the tree recognize to be so because no new edges appear within ∆ time) and
where notification starts from the leaves and is aggregated before reaching the source. The
number of information messages is O(m) as the exchange of information messages is the
same as in Algorithm 1. However, the number of notification and affiliation messages de-
crease to 2(n − 1). Each node but the emitter sends a single affiliation message; as for the
notification messages, instead of sending a notification as soon as it is informed, each node
notifies its parent in the converge-cast tree if and only if it has received a notification from
each of its children resulting in one notification message per edge of the tree. The time com-
plexity of the dissemination itself is the same as for the version where n is known, that is,
optimal with εa(emitter) in G[t,+∞). The time required for the emitter to subsequently detect
termination is an additional ∆ + ζ + ∆(n − 1) (the value ∆ + ζ corresponds to the time
needed by the last informed node to detect that it is a leaf, and ∆(n − 1) corresponds to the
worst case of the notification process, chained from that node to the emitter).

a

b

firstRD +∆ +∆+ζ

1 2
3

Fig. 1. Reasons why a node waits ∆ + ζ for receiving potential affiliation messages. First of all, note that information
messages cannot be lost when they are sent on an appearing edge, neither can their potential affiliation answer (Prop. 1).
The loss of such messages can only occur when the information is directly relayed by a node who received it (say, node a,
relaying at time firstRD the information to node b). If the information message is lost, then this is not a problem (it simply
means that this edge at that time did not have to be used). If the affiliation message is lost, however, it must be sent again. In
the worst case, the common edge disappears just before the affiliation message is delivered, and reappears only ∆− 2× ζ
later (Prop. 1). Affiliation messages can thus be received until firstRD +∆+ ζ.

Reusability for the subsequent broadcasts. Clearly, the number of nodes n, which is not
apriori known here, can be obtained through the notification process of the first broadcast
(by having nodes reporting their number of descendants in the tree, while notifying hierar-
chically). All subsequent broadcasts can thus behave as if both n and ∆ were known, which
is discussed next and allows solving the problem with O(m) information messages and no
control messages.

3.2.3 Knowledge of both n and∆
In this case, the emitter knows an upper bound on the broadcast termination date; in fact,

the broadcast cannot last longer than n∆ (the worst case is when the foremost tree is a line).
The termination detection can thus become implicit after this amount of time, which allows

12 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

us to do without any control message (whether of affiliation or notification kinds). Note that
subsequent broadcasts will have the same complexity.

Theorem 8. When ∆ and n are known, TDBroadcast[foremost] can be solved in B ex-
changing O(m) info. messages and no control messages, in O(n∆) time.

4 TDBroadcast[shortest]

The objective is to have all nodes receive the information within a minimal number of hops
from the emitter (shortest broadcast), then have the emitter detect termination. We show
below that contrarily to the foremost case, knowing n is not enough to perform a shortest
broadcast (even in B). Considering only the two kind of knowledge we considered in this
paper, it requires ∆ to be known (and thus also to be in B). In the following we then consider
only the case of B. Note that, contrarily to the foremost case, if a given tree is shortest for
some particular emission date, then it is also shortest for any other emission dates (thanks to
the recurrence of edges). Put it differently, the shortest quality of a tree is not time-dependent
in recurrent TVGs. This allows shortest trees to be reused as is in subsequent broadcasts.

4.1 TDBroadcast[shortest] in B

We first show that knowledge of n is not sufficient to perform shortest broadcast with termi-
nation detection in B and we then describe how to solve the problem when ∆ is known or
when both n and ∆ are.

4.1.1 Knowledge of n

Theorem 9. If n is the only knowledge available TDBroadcast[shortest] cannot be solved
in B.

Proof. By contradiction, letA be a algorithm that solves TDBroadcast[shortest] in B with
knowledge of n only. Consider an arbitrary G = (V,E, ρ) ∈ R and x ∈ V . Execute A in G
starting at time t0 with x as the source obtaining a shortest tree T . Let tf be the time when the
algorithm terminates and all nodes have entered the terminal state. Let G ′ = (V ′, E ′, ρ′) ∈ R
such that V ′ = V , E ′ = E ∪ {(x, v) : v ∈ V, (x, v) /∈ E}, ρ′(e, t) = ρ(e, t) for all
e ∈ E, t ∈ T, ρ′((u, v), t) = 0 for all t0 ≤ t < tf , and ρ′((u, v), t) = 1 for t > tf .
Consider the execution of A in G ′ starting at time t0 with x as the source. Since (u, v) does
not appear from t0 to tf , the execution of A at every node in G ′ will be exactly as at the
corresponding node in G and terminate with v having received the information in more than
one hop, contradicting the correctness of A.

4.1.2 Knowledge of∆
The idea is to propagate the message along the edges of a breadth-first spanning tree of

the underlying graph. We report in Algorithm 3 the actual code, with the following informal
description.

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 13

Algorithm 3 Shortest broadcast in B, knowing a bound ∆ on the recurrence.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).
2: Date roundStart← +∞ // date when the underlying node starts informing new nodes.
3: Set <Edge> children← ∅ // set of children from which a notification is expected.
4: Integer nbNotifications← 0 // number of children that have sent their notification.
5: Set<Edge> informedNeighbors← ∅ // set of neighbors known to have the info.
6: Status myStatus← ¬informed // status of the node (informed or non-informed).

7: initialization:
8: if isEmitter() then
9: roundStart← now() // causes the procedure ”when now() == roundStart:” (below) to execute.

10: onAppearance of an edge e:
11: if myStatus == informed then
12: if e /∈ informedNeighbors then
13: send(roundStart+∆− now()− ζ) on e // time until the end of the round.
14: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

15: onReception of a message msg from an edge e:
16: if msg.type == Duration then
17: informedNeighbors← informedNeighbors ∪ {e}
18: if parent == nil then
19: parent← e
20: roundStart← now() +msg
21: send retry(affiliation) on e
22: else if msg.type == Affiliation then
23: children← children ∪ {e}
24: else if msg.type == Notification then
25: nbNotifications← nbNotifications+ 1
26: if nbNotifications == |children| then
27: if ¬isEmitter() then
28: send retry(notification) on parent
29: terminate

30: when now() == roundStart:
31: myStatus← informed

32: send(∆-ζ) on Inow() r informedNeighbors // nodes that receive this message and
have no parent yet will take this node as parent and wait ∆-ζ before informing new nodes.

33: when now() == roundStart+∆+ ζ: // tests whether the underlying node is a leaf.
34: if |children| == 0 then
35: send retry(notification) on parent

Assuming that the message is created at some date t, the mechanism consists of authoriz-
ing nodes at level i in the tree to inform new nodes only between time t+ i∆ and t+(i+1)∆
(doing it sooner would lead to a non-shortest tree, while doing it later is pointless because all
the edges have necessarily appeared within one ∆). So the broadcast is confined into rounds
of duration ∆ as follows: whenever a node sends the information to another, it sends a time
value that indicates the remaining duration of its round (that is, the starting date of its own
round plus ∆ minus the current time minus the crossing delay, see Figure 2 for an intuitive
explanation), so that the receiving node knows when to start informing new nodes in turn (if
it had not the information yet). If a node has not informed any other node during its round, it

14 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

notifies its parent. When a node has been notified by all its children, it notifies its parent. Note
that this requires parents to keep track of the number of children they have, and thus children
need to send affiliation messages when they select a parent (with the same complication as
already discussed in Figure 1). Finally, when the emitter has been notified by all its children,
it knows that the broadcast is terminated.

a

b

roundStart now() roundStart+∆

roundStart

ζ

Fig. 2. Reasons why nodes transmit their own starting date plus ∆ minus the current date minus ζ, when they attempt to
become parent of a node (here, when a attempts to become b’s parent). This duration corresponds to the exact amount of
time the child would have to wait, if the relation is established, before integrating other nodes in turn.

Theorem 10. When ∆ is known, TDBroadcast[shortest] can be solved in B exchanging
O(m) info. messages and O(n) control messages, in O(n∆) time.

Proof sketch. The fact that the algorithm constructs a (time-varying) breadth-first (and thus
shortest) spanning tree follows from connectivity of the underlying graph and from knowl-
edge of ∆. The bound on recurrence is in fact used to guarantee synchronization of rounds
and correct identification of levels in the breadth-first spanning tree. The number of infor-
mation messages is 2m as the dissemination process exchanges at most two messages per
edge. The number of affiliation and notification messages are each of n − 1 (one per edge
of the tree). The time complexity for the construction of the tree is: ((εh(emitter)) − 1)∆
to reach the last node, plus ∆ + ζ at this node, plus ((εh(emitter)) − 1)∆ to forward its
notification. (The additional periods of ζ caused by the waiting of affiliation messages matter
only for the last round, since the construction continues in parallel otherwise.) The total is
((2×εh(emitter))− 1)∆+ ζ , which is upper bounded by (2n− 1)∆+ ζ .

Reusability for subsequent broadcasts. Thanks to the fact that shortest trees remain short-
est regardless of the emission date, all subsequent broadcasts can be performed within the
tree built during the first broadcast, which reduces the number of information message from
O(m) toO(n) in these subsequent broadcasts (assuming the nodes memorized the set of their
children during the first broadcast). Moreover, if the depth d of the tree is reported through
the first notification process, then all subsequent broadcasts can have an implicit termination
detection which is optimal in time (after d∆ time), and no control message is needed.

4.1.3 Knowledge of n and∆
When both n and ∆ are known a possibility is to apply the same dissemination procedure

as in Algorithm 3 and to use an implicit termination detection. In fact, as already discussed

Deterministic Computations in Time-Varying Graphs: Broadcasting under Unstructured Mobility 15

in Section 3.2.3 n∆ is an upper bound on the termination time. This allows the nodes to
exchange no control messages at all.

Theorem 11. When n and ∆ are known, TDBroadcast[shortest] can be solved in B ex-
changing O(m) info. messages and no control messages, in O(n∆) time.

Reusability for subsequent broadcasts. Note that the solution discussed above offers no gain
on the number of information messages in the subsequent broadcasts. An alternative solution
would be to achieve explicit termination for the first broadcast in order to build a reusable
broadcast tree (and learn its depth d in the process). In this case, dissemination is achieved
with O(m) information messages, termination detection is achieved similarly to Algorithm
3 with O(n) control messages (where however affiliation messages are not necessary, and
the number of control messages would decrease to n − 1). In this way we would have an
increase in control messages, however, subsequent broadcasts could reuse the broadcast tree
for dissemination with O(n) information messages, and termination detection could be im-
plicit with no exchange of control message at all after d∆ time. The choice of either solution
may depend on the size of an information message and the expected number of broadcasts
planned.

References
1. C. Bettstetter, G. Resta, and P. Santi. The node distribution of the random waypoint mobility model for wireless ad hoc

networks. IEEE Trans. on Mobile Comp., 2(3):257–269, 2003.
2. B. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks. Intl.

J. of Foundations of Comp. Science, 14(2):267–285, April 2003.
3. J. Burgess, B. Gallagher, D. Jensen, and B.N. Levine. Maxprop: Routing for vehicle-based disruption-tolerant networks.

In Proc. of the 25th Conference on Computer Communications (INFOCOM’06), pages 1–11, 2006.
4. I. Cardei, C. Liu, and J. Wu. Routing in Wireless Networks with Intermittent Connectivity. Encyclopedia of Wireless

and Mobile Communications, CRC Press, Taylor & Francis, 2007.
5. A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological assumptions of distributed algorithms in dy-

namic networks. In Proc. 16th Intl. Conf. on Structural Information and Communication Complexity (SIROCCO’09),
volume 5869 of LNCS, pages 126–140, 2009.

6. A. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding time in edge-markovian dynamic graphs. In
Proc. of the 27th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages 213–222. ACM,
2008.

7. A. Clementi, A. Monti, F. Pasquale, and R. Silvestri. Information spreading in stationary markovian evolving graphs.
In Proc. of the 23rd IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 1–12. IEEE
Computer Society, 2009.

8. T. Dimitriou, S. Nikoletseas, and P. Spirakis. The infection time of graphs. Discrete Applied Mathematics,
154(18):25772589, 2006.

9. A. Ferreira. Building a reference combinatorial model for MANETs. IEEE Network, 18(5):24–29, 2004.
10. M. Fiore and J. Härri. The networking shape of vehicular mobility. In Proceedings of the 9th ACM international

symposium on Mobile ad hoc networking and computing, pages 261–272. ACM, 2008.
11. P. Flocchini, M. Kellett, P. Mason, and N. Santoro. Mapping an unfriendly subway system. In Proc. 5th International

Conference on Fun with Algorithms, 2010. To appear.
12. P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying graphs. In Proc. 20th Intl. Symposium on

Algorithms and Computation (ISAAC’10), 2009.
13. S. Guo and S. Keshav. Fair and efficient scheduling in data ferrying networks. In Proceedings of the 2007 ACM

CoNEXT conference. ACM New York, NY, USA, 2007.
14. P. Jacquet, B. Mans, and G. Rodolakis. Information propagation speed in mobile and delay tolerant networks. In Proc.

of the 28th Conference on Computer Communications (INFOCOM’09), Rio de Janeiro, Brazil, 2009.

16 Arnaud Casteigts, Paola Flocchini, Bernard Mans, and Nicola Santoro

15. S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In Proceedings of the 2004 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, pages 145–158. ACM New York, NY,
USA, 2004.

16. D. Kempe and J. Kleinberg. Protocols and impossibility results for gossip-based communication mechanisms. In 43rd
Symposium on Foundations of Computer Science (FOCS), pages 471–480, 2002.

17. M. Kim, D. Kotz, and S. Kim. Extracting a mobility model from real user traces. In Proceedings of IEEE Infocom,
volume 6, pages 1–13. Citeseer, 2006.

18. J. Leguay, T. Friedman, and V. Conan. Evaluating mobility pattern space routing for DTNs. In Proc. of the 25th IEEE
International Conference on Computer Communications (INFOCOM’06), page 18, 2006.

19. C. Liu and J. Wu. Scalable routing in cyclic mobile networks. IEEE Trans. Parallel Distrib. Syst., 20(9):1325–1338,
2009.

20. R. O’Dell and R. Wattenhofer. Information dissemination in highly dynamic graphs. In DIALM-POMC ’05: Proceed-
ings of the 2005 joint workshop on Foundations of mobile computing, pages 104–110, New York, NY, USA, 2005.
ACM.

21. T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and wait: an efficient routing scheme for intermittently
connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking,
page 259. ACM, 2005.

22. X. Zhang, J. Kurose, B.N. Levine, D. Towsley, and H. Zhang. Study of a bus-based disruption-tolerant network:
mobility modeling and impact on routing. In Proceedings of the 13th annual ACM international conference on Mobile
computing and networking, pages 195–206. ACM, 2007.

23. Z. Zhang. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and
challenges. IEEE Communications Surveys & Tutorials, 8(1):24–37, 2006.

24. W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data delivery in sparse mobile ad hoc networks.
In MobiHoc ’04: Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing,
pages 187–198, New York, NY, USA, 2004. ACM.

