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Introduction

In the past few years, intensive research efforts have been devoted to the study of highly dynamic networks, whose topologies change as a function of time, and the rate of changes is too high to be reasonably modeled in terms of network faults or failures; in these systems changes are not anomalies but rather integral part of the nature of the system.

They include, but are not limited to, dynamic mobile ad hoc networks where the network's topology changes dramatically over time due to the movement of the network's nodes; sensor networks where links only exist when two neighbouring sensors are awake and have power; vehicular networks where the topology changes continuously as vehicles move. These highly dynamic infrastructure-less networks, variously called delay-tolerant, disruptive-tolerant, challenged, opportunistic, etc. (e.g., see [START_REF] Burgess | Maxprop: Routing for vehicle-based disruption-tolerant networks[END_REF][START_REF] Casteigts | Measuring temporal lags in delaytolerant networks[END_REF][START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF][START_REF] Jain | Routing in a delay tolerant network[END_REF][START_REF] Ramanathan | Towards a formalism for routing in challenged networks[END_REF][START_REF] Zhang | Study of a bus-based disruption-tolerant network: mobility modeling and impact on routing[END_REF][START_REF] Zhang | Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: Overview and challenges[END_REF]), have in common that the assumption of connectivity does not necessarily hold, at least with the usual meaning of contemporaneous end-to-end multihop paths between any pair of nodes. The network may actually be disconnected at every time instant. Still, communication routes may be available over time and space, and make broadcast and routing and other computations feasible.

An extensive amount of research has been devoted, mostly by the engineering community but also by computer scientists, to the problems of operating and computing in such highly dynamical environments. As part of these efforts, a number of important concepts have been identified, often named, sometimes formally defined. In particular, most of the basic graph concepts were extended to a new temporal version, e.g, path and reachability [START_REF] Berman | Vulnerability of scheduled networks and a generalization of Menger's Theorem[END_REF][START_REF] Kempe | Connectivity and inference problems for temporal networks[END_REF], distance [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF], diameter [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF], or connected components [START_REF] Bhadra | Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks[END_REF]. In several cases, differently named concepts identified by different researchers are actually one and the same concept. For example, the concept of temporal distance, formalized in [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF], is the same as reachability time [START_REF] Holme | Network reachability of real-world contact sequences[END_REF], information latency [START_REF] Kossinets | The structure of information pathways in a social communication network[END_REF], and temporal proximity [START_REF] Kostakos | Temporal graphs[END_REF]; similarly, the concept of journey [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF] has been coined scheduleconforming path [START_REF] Berman | Vulnerability of scheduled networks and a generalization of Menger's Theorem[END_REF], time-respecting path [START_REF] Holme | Network reachability of real-world contact sequences[END_REF][START_REF] Kempe | Connectivity and inference problems for temporal networks[END_REF], and temporal path [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF][START_REF] Tang | Characterising temporal distance and reachability in mobile and online social networks[END_REF]. Hence, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formalisms proposed so far to express them as fragments of a larger formal description of this universe.

As the notion of graph is the natural means for representing a standard network, the notion of time-varying graph is the natural means to represents these highly dynamic infrastructure-less networks. All the concepts and definitions advanced so far are based on or imply such a notion, as expressed even by the choices of names; e.g., Kempe et al. [START_REF] Kempe | Connectivity and inference problems for temporal networks[END_REF] talk of a temporal network (G, λ) where λ is a time-labeling of the edges, that associates to every edge a date corresponding to a punctual interaction; Leskovec et al. [START_REF] Leskovec | Graph evolution: Densification and shrinking diameters[END_REF] talk of graphs over time; Ferreira [START_REF] Ferreira | Building a reference combinatorial model for MANETs[END_REF] views the dynamic of the system in terms of a sequence of static graphs, called an evolving graph; Flocchini et al. [START_REF] Flocchini | Exploration of periodically varying graphs[END_REF] and Tang et al. [START_REF] Tang | Characterising temporal distance and reachability in mobile and online social networks[END_REF] independently employ the term time-varying graphs; Kostakos uses the term temporal graph [START_REF] Kostakos | Temporal graphs[END_REF]; etc. 4The main contribution of this paper is to integrate the existing models, concepts, and results found in the literature into a unified framework that we call TVG (for timevarying graphs). This formalism, presented in Section 2, essentially consists of a set of compact and elegant notations and the possibility to switch between graph-centric and edge-centric perspectives on the dynamics. It is extended in Section 3, where we present the most central concepts identified by the research (e.g. journeys, temporal distance, connectivity over time and further concepts built on top of them). We identify in Section 4 several classes of dynamic networks defined with respects to basic properties on TVGs. Some of these classes have been extensively studied in the literature; e.g., one of them coincides with the family of dynamic graphs over which population protocols [START_REF] Angluin | The computational power of population protocols[END_REF] are defined. We examine the (strict) inclusion hierarchy among the classes. As a given class typically corresponds to necessary or sufficient conditions for basic computations, the inclusion relationship implies the transferability of feasibility results (e.g., protocols) to an included class, and impossibility results (e.g., lower bounds) to an including class. Finally, Section 5 reviews recent efforts to study dynamic networks from a stochastic perspective, including modeling aspects (e.g. with edge-markovian evolving graphs), then we conclude with some remarks and open questions.

Time-Varying Graphs

Consider a set of entities V (or nodes), a set of relations E between these entities (edges), and an alphabet L accounting for any property such a relation could have (label); that is, E ⊆ V × V × L. The definition of L is domain-specific, and therefore left open -a label could represent for instance the intensity of relation in a social network, a type of carrier in a transportation network, or a particular medium in a communication network. For generality, we assume L to possibly contain multi-valued elements (e.g. <satellite link; bandwidth of 4 MHz; encryption available;...> ). The set E enables multiple relations between a given pair of entities, as long as these relations have different properties, that is, for any e

1 = (x 1 , y 1 , λ 1 ) ∈ E, e 2 = (x 2 , y 2 , λ 2 ) ∈ E, (x 1 = x 2 ∧ y 1 = y 2 ∧ λ 1 = λ 2 ) =⇒ e 1 = e 2 .
Because we address dynamical systems, the relations between entities are assumed to take place over a time span T ⊆ T called the lifetime of the system. The temporal domain T is generally assumed to be N for discrete-time systems or R + for continuoustime systems. The dynamics of the system can be subsequently described by a timevarying graph, or TVG, G = (V, E, T , ρ, ζ), where ρ : E × T → {0, 1}, called presence function, indicates whether a given edge is available at a given time. ζ : E × T → T, called latency function, indicates the time it takes to cross a given edge if starting at a given date (the latency of an edge could vary in time).

One may consider variants where the presence of nodes is also conditional upon time, by adding a node presence function ψ : V × T → {0, 1}. We do not do it in the general case in this paper, for conciseness of the notations, and mention instead when this could be relevant. The TVG formalism can arguably describe a multitude of different scenarios, from transportation networks to communication networks, complex systems, or social networks. Two intuitive examples are shown on Figure 1. The meaning of what is an edge in these two examples varies drastically. In Figure 1(a), an edge from a node u to another node v represents the possibility for some agent to move from u to v. The edges in this example are assumed directed, and possibly multiple. The meaning of the labels λ 1 to λ 4 could be for instance "bus", "car", "plane", "boat", respectively. Except for the travel in car from Ottawa to Montrealwhich could assumably be started anytime -, typical edges in this scenario are available on a punctual basis, i.e., the presence function ρ for these edges returns 1 only at particular date(s) when the trip can be started. The latency function ζ may also vary from one edge to another, as well as for different availability dates of a same given edge (e.g. variable traffic on the road, depending on the departure time).

The second example on Figure 1(b) represents a history of connectivity between a set of moving nodes, where the possibilities of communication appear e.g. as a function of their respective distance. The two labels λ 1 and λ 2 may account here for different types of communication media, such as WiFi and Satellite, having various properties in terms of range, bandwidth, latency, or energy consumption. In this scenario, the edges are assumed to be undirected and there is no more than one edge between any two nodes. The meaning of an edge is also different here: an edge between two nodes means that any one (or both) of them can (attempt to) send a message to the other. A typical presence function for this type of edge returns 1 for some intervals of time, because the nodes are generally in range for a non-punctual period of time. Note that the effective delivery of a message sent at time t on an edge e could be subjected to further constraints regarding the latency function, such as the condition that ρ(e) returns 1 for the whole interval [t, t + ζ(e, t)).

These two examples are taken different on purpose; they illustrate the spectrum of models over which the TVG formalism can stretch. As observed, some contexts are intrisically simpler than others and call for restrictions (e.g. between any two nodes in the second example, there is at most one undirected edge). Further restrictions may be considered. For example the latency function could be decided constant over time (ζ : E → T); over the edges (ζ : T → T); over both (ζ ∈ T), or simply ignored. In the latter case, a TVG could have its relations fully described by a graphical representation like that of Figure 2.

a b c d [1, 3) [2, 5) [0, 4) [5, 6) ∪ [7, 8)
Fig. 2. A simple TVG. The interval(s) on each edge e represents the periods of time when it is available, that is, ∪(t ∈ T : ρ(e, t) = 1).

Note that a number of work on dynamic networks simply ignore ζ, or assume a discrete-time scenario where every time step implicitely corresponds to a constant ζ.

Definitions of TVG concepts

This section transposes and generalizes a number of dynamic network concepts into the framework of time-varying graphs. A majority of them emerged independently in various areas of scientific literature; some appeared more specifically; some others are original propositions.

The underlying graph G

Given a TVG G = (V, E, T , ρ, ζ), the graph G = (V, E) is called underlying graph of G.
This static graph should be seen as a sort of footprint of G, which flattens the time dimension and indicates only the pairs of nodes that have relations at some time in T . It is a central concept that is used recurrently in the following.

In most studies and applications, G is assumed to be connected; in general, this is not necessarily the case. Let us stress that the connectivity of G = (V, E) does not imply that G is connected at a given time instant; in fact, G could be disconnected at all times. The lack of relationship, with regards to connectivity, between G and its footprint G is even stronger: the fact that G = (V, E) is connected does not even imply that G is "connected over time", as discussed in more details later.

Point of views

Depending on the problem under consideration, it may be convenient to look at the evolution of the system from the point of view of a given relation (edge) or from that of the global system (entire graph). We respectively qualify these views as edge-centric and graph-centric.

Edge-centric evolution From an edge standpoint, the notion of evolution comes down to a variation of availability and latency over time. We define the available dates of an edge e, noted I(e), as the union of all dates at which the edge is available, that is, I(e) = {t ∈ T : ρ(e, t) = 1}. When I(e) is expressed as a multi-interval of availability I(e) = [t 1 , t 2 ) ∪ [t 3 , t 4 )..., where t i < t i+1 , the sequence of dates t 1 , t 3 , ... is called appearance dates of e, noted App(e), and the sequence of dates t 2 , t 4 , ... is called disappearance dates of e, noted Dis(e). Finally, the sequence t 1 , t 2 , t 3 , ... is called characteristic dates of e, noted S T (e). In the following, we use the notation

ρ [t,t ) (e) = 1 to indicate that ∀t ∈ [t, t ), ρ(e, t ) = 1.

Graph-centric evolution

The sequence S T (G) = sort(∪{S T (e) : e ∈ E}), called characteristic dates of G, corresponds to the sequence of dates when topological events (appearance/disappearance of an edge) occur in the system. Each topological event can be viewed as the transformation from one static graph to another. Hence, the evolution of the system can be described as a sequence of static graphs. More precisely, from a global viewpoint, the evolution of G is described as the sequence of graphs

S G = G 1 , G 2 .. where G i corresponds to the static snapshot of G at time t i ∈ S T (G); i.e., e ∈ E Gi ⇐⇒ ρ [ti,ti+1) (e) = 1. Note that, by definition, G i = G i+1 .
In the case where the time is discrete, another possible global representation of evolution of G is by the sequence S G = G 1 , G 2 , . . ., where G i corresponds to the static snapshot of G at time t = i. Note that, in this case, it is possible that

G i = G i+1 .
Observe that in both continuous and discrete cases, the underlying graph G (defined in Section 3.1) corresponds to the union of all G i in S G .

The idea of representing a dynamic graph as a sequence of static graphs, mentioned in conclusion of [START_REF] Harary | Dynamic graph models[END_REF], was brought to life in [START_REF] Ferreira | Building a reference combinatorial model for MANETs[END_REF] as a combinatorial model called evolving graphs. An evolving graph usually refers to either one of the two structures (G, S G , S T ) or (G, S G , N), the latter used only when discrete-time is considered. Their initial version also included a latency function, which makes them a valid -graphcentric -representation of TVGs.

Subgraphs of a time-varying graph

Subgraphs of a TVG G can be defined in a classical manner, by restricting the set of vertices or edges of G. More interesting is the possibility to define a temporal subgraph by restricting the lifetime T of G, leading to the graph

G = (V, E , T , ρ , ζ ) such that -T ⊆ T -E = {e ∈ E : ∃t ∈ T : ρ(e, t) = 1 ∧ t + ζ(e, t) ∈ T } -ρ : E × T → {0, 1} where ρ (e, t) = ρ(e, t) -ζ : E × T → T where ζ (e, t) = ζ(e, t)
In practice, we allow the notation

G = G [ta,t b ) to denote the temporal subgraph of G restricted to T = T ∩ [t a , t b ), which includes the possible notations G [ta,+∞) or G (-∞,t b ) regardless of whether T is open, semi-closed, or closed.

Journeys

A sequence of couples J = (e 1 , t 1 ), (e 2 , t 2 ) . . . , (e k , t k ), such that e 1 , e 2 , ..., e k is a walk in G is a journey in G if and only if ρ(e i , t i ) = 1 and t i+1 ≥ t i + ζ(e i , t i ) for all i < k. Additional constraints may be required in specific domains of application, such as the condition ρ [ti,ti+ζ(ei,ti)) (e i ) = 1 in communication networks (the edge remains available until the message is delivered).

We denote by departure(J ), and arrival(J ), the starting date t 1 and the last date t k + ζ(e k , t k ) of a journey J , respectively. Journeys can be thought of as paths over time from a source to a destination and therefore have both a topological length and a temporal length. The topological length of J is the number |J | = k of couples in J (i.e., the number of hops); its temporal length is its end-to-end duration: arrival(J )departure(J ).

Let us denote by J * G the set of all possible journeys in a time-varying graph G, and by J * (u,v) ⊆ J * G those journeys starting at node u and ending at node v. If a journey exists from a node u to a node v, that is, if J * (u,v) = ∅, then we say that u can reach v, and allow the simplified notation u v. Clearly, the existence of journey is not symmetrical: u v v u; this holds regardless of whether the edges are directed or not, because the time dimension creates its own level of direction. Given a node u, the set {v ∈ V : u v} is called the horizon of u.

Distance

As observed, the length of a journey can be measured both in terms of hops or time. This gives rise to two distinct definitions of distance in a time-varying graph G:

-The topological distance from a node u to a node v at time t, noted d u,t (v), is defined as M in{|J | : J ∈ J * (u,v) ∧ departure(J ) ≥ t}. For a given date t, a journey whose departure is t ≥ t and topological length is equal to d u,t (v) is qualified as shortest ; -The temporal distance from u to v at time t, noted du,t (v) is defined as M in{arrival(J ) : J ∈ J * (u,v) ∧ departure(J ) ≥ t} -t. Given a date t, a journey whose departure is t ≥ t and arrival is t + du,t (v) is qualified as foremost. Finally, for any given date t, a journey whose departure is ≥ t and temporal length is M in{ du,t (v) : t ∈ T ∩ [t, +∞)} is qualified as fastest.

The problem of computing shortest, fastest, and foremost journeys in delay-tolerant networks was introduced in [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF], and an algorithm for each of the three metrics was provided for the centralized version of the problem (with complete knowledge of G).

A concept closely related to that of temporal distance is that of temporal view, introduced in [START_REF] Kossinets | The structure of information pathways in a social communication network[END_REF] in the context of social network analysis. The temporal view (simply called view in [START_REF] Kossinets | The structure of information pathways in a social communication network[END_REF]; we add the "temporal" adjective to avoid confusion with the concept of view in distributed computing) that a node v has of another node u at time t, denoted φ v,t (u), is defined as the latest (i.e., largest) t ≤ t at which a message received by time t at v could have been emitted at u; that is, in our formalism,

φv,t(u) = Max{departure(J ) : J ∈ J * (u,v) ∧ arrival(J ) ≤ t}.
The question of knowing whether all the nodes of a network could know their temporal views in real time was recently answered (affirmatively) in [START_REF] Casteigts | Measuring temporal lags in delaytolerant networks[END_REF].

Other temporal concepts

The number of definitions built on top of temporal concepts could grow endlessly, and our aim is certainly not to enumerate all of them. Yet, here is a short list of additional concepts that we believe are general enough to be worthwhile mentioning.

The concept of eccentricity can be separated into a topological eccentricity and a temporal eccentricity, following the same mechanism as for the concept of distance. The temporal eccentricity of a node u at time t, εt (u), is defined as max{ du,t (v) : v ∈ V }, that is, the duration of the "longest" foremost journey from u to any other node. The concept of diameter can similarly be separated into those of topological diameter and temporal diameter, the latter being defined at time t as max{ε t (u) : u ∈ V }. These temporal versions of eccentricity and diameter were proposed in [START_REF] Bui-Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF]The temporal diameter was further studied from a stochastic point of view by Chaintreau et al. in [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF].

Clementi et al. introduced in [START_REF] Clementi | Information Spreading in Dynamic Networks: An Analytical Approach[END_REF] a concept of dynamic expansion -the dynamic counterpart of the concept of node expansion in static graphs -which accounts for the maximal speed of information propagation. Given a subset of nodes V ⊆ V , and two dates t 1 , t 2 ∈ T , the dynamic expansion of V from time t 1 to time t 2 is the size of the set {v ∈ V

V : ∃J (u,v) ∈ J * G[t1,t2) : u ∈ V }, that is roughly speaking, the "collective" horizon of V in G [t1,t2) .
The concept of journey was dissociated in [START_REF] Casteigts | Measuring temporal lags in delaytolerant networks[END_REF] into direct and indirect journeys. A journey J = {(e 1 , t 1 ), (e 2 , t 2 ) . . . , (e k , t k )} is said direct iff ∀i, 1 ≤ i < k, ρ(e i+1 , t i + ζ(e i , t i )) = 1, that is, every next edge in J is directly available; it is said indirect otherwise. The knowledge of whether a journey is direct or indirect was directly exploited by the distributed algorithm in [START_REF] Casteigts | Measuring temporal lags in delaytolerant networks[END_REF] to compute temporal views between nodes. Such parameter can also play a role in the context of delay-tolerant routing, indicating whether a store-carry-forward mechanism is required (for indirect journeys).

TVG Classes

This section discusses the impact of temporal properties on the feasibility and complexity of distributed problems, unifying existing works from the literature. In particular, we identify a hierarchy of classes of TVGs based on properties that are formulated using the concepts presented in the previous section. These class-defining properties, organized in an ascending order of assumptions, are important in that they imply necessary conditions and impossibility results for distributed computations. Let us start with the simplest class.

Class 1 ∃u ∈ V : ∀v ∈ V : u v.
That is, at least one node can reach all the others. This condition is necessary, for example, for broadcast to be feasible from at least one node.

Class 2 ∃u ∈ V : ∀v ∈ V : v u.
That is, at least one node can be reached by all the others. This condition is necessary to be able to compute a function whose input is spread over all the nodes, with at least one node capable of generating the output. Any algorithm for which a terminal state must be causally related to all the nodes initial states also falls in this category, such as the election of a leader in an anonymous network or the counting of the number of nodes by at least one node.

Class 3 (Connectivity over time

) ∀u, v ∈ V, u v.
That is, every node can reach all the others; in other words, the TVG is connected over time. By the same discussions as for Class 1 and Class 2, this condition is necessary to be able to broadcast from any node, to compute a function whose output is known by all the nodes, or to ensure that every node has a chance to be elected. These three basic classes were used e.g. in [START_REF] Casteigts | On the assumptions about network dynamics in distributed computing[END_REF] to investigate how relations between TVGs properties and feasibility of algorithms could be canonically proven.

Class 4 (Round connectivity) ∀u, v ∈ V, ∃J 1 ∈ J * (u,v) , ∃J 2 ∈ J * (v,u) : arrival(J 1 ) ≤ departure(J 2 ).
That is, every node can reach all the others and be reached back afterwards. Such a condition may be required e.g. for adding explicit termination to broadcast, election, or counting algorithms. The classes defined so far are in general relevant to the case when the lifetime is finite and a limited number of topological events is considered. When the lifetime is infinite, connectivity over time is generally assumed on a regular basis, and more elaborated assumptions can be considered.

Class 5 (Recurrent connectivity) ∀u, v ∈ V, ∀t ∈ T , ∃J ∈ J * (u,v) : departure(J ) > t.
That is, at any point t in time, the temporal subgraph G [t,+∞) remains connected over time. This class is implicitely considered in most works on delay-tolerant networks. It indeed represents those DTNs where routing can always be achieved over time. It has been explicitly referred to as eventually transportable dynamic networks in [START_REF] Ramanathan | Towards a formalism for routing in challenged networks[END_REF].

As discussed in Section 3.1, the fact that the underlying graph G = (V, E) is connected does not imply that G is connected over time -the ordering of topological events matters. Such a condition is however necessary to allow connectivity over time and thus to perform any type of global computation. Therefore, the following three classes assume that the underlying graph G is connected.

Class 6 (Recurrence of edges) ∀e ∈ E, ∀t ∈ T , ∃t > t : ρ(e, t ) = 1 and G is connected.

That is, if an edge appears once, it appears infinitely often. Since the underlying graph G is connected, we have Class 6 ⊆ Class 5. Indeed, if all the edges of a connected graph appear infinitely often, then there must exist, by transitivity, a journey between any pairs of nodes infinitely often.

In a context where connectivity is recurrently achieved, it becomes interesting to look at problems where more specific properties of the journeys are involved, e.g. the possibility to broadcast a piece of information in a shortest, foremost, or fastest manner (see Section 3.5 for definitions). Interestingly, these three declinations of the same problem have different requirements in terms of TVG properties. It is for example possible to broadcast in a foremost fashion in Class 6, whereas shortest and fastest broadcasts are not possible [START_REF] Casteigts | Deterministic computations in timevarying graphs: Broadcasting under unstructured mobility[END_REF].

Shortest broadcast becomes however possible if the recurrence of edges is bounded in time, and the bound known to the nodes, a property characterizing the next class: Class 7 (Time-bounded recurrence of edges) ∀e ∈ E, ∀t ∈ T , ∃t ∈ [t, t+∆), ρ(e, t ) = 1, for some ∆ ∈ T and G is connected. Some implications of this class include a temporal diameter that is bounded by ∆Diam(G), as well as the possibility for the nodes to wait a period of ∆ to discover all their neighbors (if ∆ is known). The feasibility of shortest broadcast follows naturally by using a ∆-rounded breadth-first strategy that minimizes the topological length of journeys.

A particular important type of bounded recurrency is the periodic case:

Class 8 (Periodicity of edges) ∀e ∈ E, ∀t ∈ T , ∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for some p ∈ T and G is connected.

The periodicity assumption holds in practice in many cases, including networks whose entities are mobile with periodic movements (satellites, guards tour, subways, or buses).

The periodic assumption within a delay-tolerant network has been considered, among others, in the contexts of network exploration [START_REF] Flocchini | Mapping an unfriendly subway system[END_REF][START_REF] Flocchini | Exploration of periodically varying graphs[END_REF] and routing [START_REF] Liu | Scalable routing in cyclic mobile networks[END_REF]. Periodicity enables also the construction of foremost broadcast trees that can be re-used (modulo p in time) for subsequent broadcasts [START_REF] Casteigts | Measuring temporal lags in delaytolerant networks[END_REF] (whereas the more general classes of recurrence requires the use of a different tree for every foremost broadcast).

More generally, the point in exploiting TVG properties is to rely on invariants that are generated by the dynamics (e.g. recurrent existence of journeys, periodic optimality of a broadcast tree, etc.). In some works, particular assumptions on the network dynamics are made to obtain invariants of a more classic nature. Below are some examples of classes, formulated using the graph-centric point of view of (discrete-time) evolving graphs, i.e., where G = (G, S G , N).

Class 9 (Constant connectivity) ∀G i ∈ S G , G i is connected.
Here, the dynamics of the network is not constrained as long as it remains connected in every time step. Such a class was used for example in [START_REF] Dell | Information dissemination in highly dynamic graphs[END_REF] to enable progression hypotheses on the broadcast problem. Indeed, if the network is always connected, then at every time step there must exist an edge between an informed node and a non-informed node, which allows to upper-bound the broadcast time by n = |V | time steps (worst case scenario).

Class 10 (T-interval connectivity

) ∀i ∈ N, T ∈ N, ∃G ⊆ G : V G = V G , G is connected, and ∀j ∈ [i, i + T -1), G ⊆ G j .
This class is a particular case of constant connectivity in which a same spanning connected subgraph of the underlying graph G is available for any period of T consecutive time steps. It was introduced in [START_REF] Kuhn | Distributed computation in dynamic networks[END_REF] to study problems such as counting, token dissemination, and computation of functions whose input is spread over all the nodes (considering an adversary-based edge schedule). The authors shown that the computation of these problems could be sped up of a factor T compared to the 1-interval connected graphs, that is, graphs of Class 9.

Other classes of TVGs can be found in [START_REF] Ramanathan | Towards a formalism for routing in challenged networks[END_REF], based on intermediate properties between constant connectivity and connectivity over time. They include Class 11 and Class 12 below.

Class 11 (Eventual connectivity) ∀i ∈ N, ∃j ∈ N : j ≥ i, G j is connected.

In other words, there is always a future time step in which the network is instantly connected.

Class 12 (Eventual routability) ∀u, v ∈ V, ∀i ∈ N, ∃j ∈ N : j ≥ i and a path from u to v exists in G j .

That is, for any two nodes, there is always a future time step in which a instant path exists between them. The difference with Class 11 is that the paths can appear at different time for different pairs of nodes. Classes 11 and 12 were used in [START_REF] Ramanathan | Towards a formalism for routing in challenged networks[END_REF] to represent networks where routing protocols for (connected) mobile ad hoc networks eventually work if they tolerate transient topological faults.

For all the classes discussed so far, the referenced investigations studied the impact that various TVG properties have on problems or algorithms. A reverse approach was considered by Angluin et al. in the field of population protocols [START_REF] Angluin | The computational power of population protocols[END_REF]. Instead of studying the impact of various assumptions on given problems, they assumed a given assumption -that any pair of node interacts infinitely often -, and characterized all problems that can be solved in that context. This class is generally referred to as that of complete graphs of interaction.

Class 13 (Complete graph of interaction) The underlying graph G=(V, E) is complete, and ∀e ∈ E, ∀t ∈ T , ∃t > t : ρ(e, t )=1.

From a time-varying graph perspective, this class is the specific subset of Class 6, in which the underlying graph G is complete. Various types of schedulers have been considered in the area of population protocols that add further fairness constraints on Class 13 (e.g. weak fairness, strong fairness, bounded, or k-bounded schedulers). Each of these could further be seen as a distinct subclass of Class 13.

An interesting aspect of unifying these properties within the same formalism is the possibility to see how they relate to one another, and to compare the associated solutions or algorithms. An insight for example can be gained by looking at the short classification shown in Figure 3, where basic relations of inclusion between the above classes are reported. These inclusion are strict: for each relation, the parent class contains some time-varying graphs that are not in the child class. Clearly, one should try to solve a problem in the most general context possible. The right-most classes are so general that they offer little properties to be exploited by an algorithm, but some intermediate classes, such as Class 5, appear quite central in the hierarchy. This class indeed contains all the classes where significant work was done. A problem solved in this class would therefore apply to virtually all the contexts considered heretofor in the literature.

Such a classification may also be used to categorize problems themselves. As mentioned above, shortest broadcast is not generally achievable in Class 6, whereas foremost broadcast is. Similarly, it was shown in [START_REF] Casteigts | Deterministic computations in timevarying graphs: Broadcasting under unstructured mobility[END_REF] that fastest broadcast is not feasible in Class 7, whereas shortest broadcast can be achieved with some knowledge. Since Class 7 ⊂ Class 6, we have

f oremostBcast ≺ shortestBcast ≺ f astestBcast
where ≺ is the partial order on these problems' topological requirements.

Non-Deterministic TVGs

Non-determinism in time-varying graphs can be introduced at several different levels. The most direct one is clearly that provided by probabilistic time-varying graphs, where the presence function ρ : E × T → [0, 1] indicates the probability that a given edge is available at a given time. In a context of mobility, the probability distribution of ρ is intrinsically related to the random mobility pattern defining the network. Popular example of random mobility models are the Random Waypoint and Random Direction models, where waypoints of consecutive movements are chosen uniformly at random. Definitions of random TVG differ depending on whether the time is discrete or continuous. A (discrete-time) random TVG is one whose lifetime is an interval of N and whose sequence of characteristic graphs S G = G 1 , G 2 , .. is such that every G i is a Erdös and Rényi random graph; that is, ∀e ∈ V 2 , P[e ∈ E Gi ] = p for some p; this definition is introduced by Chaintreau et al. [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF].

One particularity of discrete-time random TVGs is that the G i s are independent with respect to each other. While this definition allows purely random graphs, it does not capture some properties of real world networks, such as the fact that an edge may be more likely to be present in G i+1 if it is already present in G i . This question is addressed by Clementi et al. [START_REF] Clementi | Flooding time in edgemarkovian dynamic graphs[END_REF] by introducing Edge-Markovian Evolving Graphs. These are discrete-time evolving graphs in which the presence of every edge follows an individual Markovian process. More precisely, the sequence of characteristic graph

S G = G 1 , G 2 , .. is such that P[e ∈ E Gi+1 |e / ∈ E Gi ] = p P[e / ∈ E Gi+1 |e ∈ E Gi ] = q
for some p and q called birth rate and death rate, respectively. The probability that a given edge remains absent or present from G i to G i+1 is obtained by complement of p and q. The very idea of considering a Markovian Evolving Graph seems to have appeared in [START_REF] Avin | How to explore a fast-changing world[END_REF], in which the authors consider a particular case that is substantially equivalent to the discrete-time random TVG from [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF]. Edge-Markovian EGs were used in [START_REF] Clementi | Flooding time in edgemarkovian dynamic graphs[END_REF], along with the concept of dynamic expansion (see Section 3.6) to address analytically some fundamental questions such as does dynamics necessarily slow down a broadcast? Or can random node mobility be exploited to speed-up information spreading? Baumann et al. extended this work in [START_REF] Baumann | Parsimonious flooding in dynamic graphs[END_REF] by establishing tight bounds on the propagation time for any birth and death rates.

A continuous-time random TVG is one in which the appearance of every edge obeys a Poisson process, that is, ∀e ∈ V 2 , ∀t i ∈ App(e), P[t i+1 -t i < d] = λe λd for some λ; this definition is introduced by Chaintreau et al. in [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF]. 5 Random time-varying graphs, both discrete-and continuous-time, were used in [START_REF] Chaintreau | The diameter of opportunistic mobile networks[END_REF] to characterize phase transitions between no-connectivity and connectivity over time as a function of the number of nodes, a given time-window duration, and constraints on both the topological and temporal lengths of journeys. by TVG. Additionally, several, more specific research areas can be identified including the ones described below.

Distributed TVG algorithms design and analysis. The design and analysis of distributed algorithms and protocols for time-varying graphs is an open research area. In fact very few problems have been attacked so far: routing and broadcasting in delaytolerant networks; broadcasting and exploration in opportunistic-mobility networks; new self-stabilization techniques; detection of emergence and resilience of communities, and viral marketing in social networks.

Design and optimization of TVG. If the interactions in a network can be planneddecided by a designer -, then a number of new interesting optimization problems arise with the design of time-varying graph. They may concern for example the minimization of the temporal diameter or the balancing of nodes eccentricities. Is a given setting optimal? How to prove it? What if the underlying graph can also be modified? etc. A whole field is opening that promises exciting research avenues.

Complexity Analysis. Analyzing the complexity of a distributed algorithm in a TVG -e.g. in number of messages -is not trivial, partly because contrarily to the static cases, the complexity of an algorithm in a dynamic network has a strong dependency, not only on the usual network parameters (number of nodes, edges, etc.), but also on the number of topological events taking place during its execution. In many of the algorithms we have encountered, the majority of messages is in fact directly triggered by topological events, e.g., in reaction to the local appearance or disappearance of an edge. The number of topological events therefore represents a new complexity parameter, whose impact on various problems remains to study.
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 1 Fig. 1. Two examples of time-varying graphs, employed in very different contexts.
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 3 Fig. 3. Relations of inclusion between classes (from specific to general).

The more natural term dynamic graph is not often employed because it is commonly and extensively used in the context of faulty networks.

Research Problems and DirectionsThe first most obvious research task is that of exploring the universe of dynamic networks using the formal tools provided by the TVG formalism. The long-term goal is that of providing a comprehensive map of this universe, identifying both the commonality and the natural differences between the various types of dynamical systems modeled[START_REF] Bhadra | Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks[END_REF] It is interesting to note that the authors rely on a graph-centric point of view in discrete time and on an edge-centric point of view in continuous time. This trend seems to be general.