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Abstract. The past decade has seen intensive research efforts on highly dy-
namic wireless and mobile networks (variously called delay-tolerant, disruptive-
tolerant, challenged, opportunistic, etc) whose essential feature is a possible ab-
sence of end-to-end communication routes at any instant. As part of these efforts,
a number of important concepts have been identified, based on new meanings
of distance and connectivity. The main contribution of this paper is to review
and integrate the collection of these concepts, formalisms, and related results
found in the literature into a unified coherent framework, called TVG (for time-
varying graphs). Besides this definitional work, we connect the various assump-
tions through a hierarchy of classes of TVGs defined with respect to properties
with algorithmic significance in distributed computing. One of these classes co-
incides with the family of dynamic graphs over which population protocols are
defined. We examine the (strict) inclusion hierarchy among the classes. The paper
also provides a quick review of recent stochastic models for dynamic networks
that aim to enable analytical investigation of the dynamics.

Key words: Highly dynamic networks, delay-tolerant networks, challenged networks,
time-varying graphs, evolving graphs, dynamic graphs.

1 Introduction

In the past few years, intensive research efforts have been devoted to the study of highly
dynamic networks, whose topologies change as a function of time, and the rate of
changes is too high to be reasonably modeled in terms of network faults or failures;
in these systems changes are not anomalies but rather integral part of the nature of the
system.

They include, but are not limited to, dynamic mobile ad hoc networks where the
network’s topology changes dramatically over time due to the movement of the net-
work’s nodes; sensor networks where links only exist when two neighbouring sensors
are awake and have power; vehicular networks where the topology changes continu-
ously as vehicles move. These highly dynamic infrastructure-less networks, variously
called delay-tolerant, disruptive-tolerant, challenged, opportunistic, etc. (e.g., see [7,
10, 11, 19, 27, 29, 30]), have in common that the assumption of connectivity does not
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necessarily hold, at least with the usual meaning of contemporaneous end-to-end multi-
hop paths between any pair of nodes. The network may actually be disconnected at
every time instant. Still, communication routes may be available over time and space,
and make broadcast and routing and other computations feasible.

An extensive amount of research has been devoted, mostly by the engineering com-
munity but also by computer scientists, to the problems of operating and computing in
such highly dynamical environments. As part of these efforts, a number of important
concepts have been identified, often named, sometimes formally defined. In particular,
most of the basic graph concepts were extended to a new temporal version, e.g, path
and reachability [4, 20], distance [6], diameter [11], or connected components [5]. In
several cases, differently named concepts identified by different researchers are actu-
ally one and the same concept. For example, the concept of temporal distance, formal-
ized in [6], is the same as reachability time [18], information latency [21], and tem-
poral proximity [22]; similarly, the concept of journey [6] has been coined schedule-
conforming path [4], time-respecting path [18, 20], and temporal path [11, 28]. Hence,
the concepts discovered in these investigations can be viewed as parts of the same con-
ceptual universe; and the formalisms proposed so far to express them as fragments of a
larger formal description of this universe.

As the notion of graph is the natural means for representing a standard network, the
notion of time-varying graph is the natural means to represents these highly dynamic
infrastructure-less networks. All the concepts and definitions advanced so far are based
on or imply such a notion, as expressed even by the choices of names; e.g., Kempe et
al. [20] talk of a temporal network (G,λ) where λ is a time-labeling of the edges, that
associates to every edge a date corresponding to a punctual interaction; Leskovec et al.
[24] talk of graphs over time; Ferreira [14] views the dynamic of the system in terms
of a sequence of static graphs, called an evolving graph; Flocchini et al. [16] and Tang
et al. [28] independently employ the term time-varying graphs; Kostakos uses the term
temporal graph [22]; etc.4

The main contribution of this paper is to integrate the existing models, concepts,
and results found in the literature into a unified framework that we call TVG (for time-
varying graphs). This formalism, presented in Section 2, essentially consists of a set
of compact and elegant notations and the possibility to switch between graph-centric
and edge-centric perspectives on the dynamics. It is extended in Section 3, where we
present the most central concepts identified by the research (e.g. journeys, temporal dis-
tance, connectivity over time and further concepts built on top of them). We identify in
Section 4 several classes of dynamic networks defined with respects to basic properties
on TVGs. Some of these classes have been extensively studied in the literature; e.g.,
one of them coincides with the family of dynamic graphs over which population pro-
tocols [1] are defined. We examine the (strict) inclusion hierarchy among the classes.
As a given class typically corresponds to necessary or sufficient conditions for basic
computations, the inclusion relationship implies the transferability of feasibility results
(e.g., protocols) to an included class, and impossibility results (e.g., lower bounds) to
an including class. Finally, Section 5 reviews recent efforts to study dynamic networks

4 The more natural term dynamic graph is not often employed because it is commonly and
extensively used in the context of faulty networks.



from a stochastic perspective, including modeling aspects (e.g. with edge-markovian
evolving graphs), then we conclude with some remarks and open questions.

2 Time-Varying Graphs

Consider a set of entities V (or nodes), a set of relations E between these entities
(edges), and an alphabet L accounting for any property such a relation could have (la-
bel); that is, E ⊆ V × V ×L. The definition of L is domain-specific, and therefore left
open – a label could represent for instance the intensity of relation in a social network,
a type of carrier in a transportation network, or a particular medium in a communica-
tion network. For generality, we assume L to possibly contain multi-valued elements
(e.g. <satellite link; bandwidth of 4 MHz; encryption available;...> ). The set E en-
ables multiple relations between a given pair of entities, as long as these relations have
different properties, that is, for any e1 = (x1, y1, λ1) ∈ E, e2 = (x2, y2, λ2) ∈ E,
(x1 = x2 ∧ y1 = y2 ∧ λ1 = λ2) =⇒ e1 = e2.

Because we address dynamical systems, the relations between entities are assumed
to take place over a time span T ⊆ T called the lifetime of the system. The temporal
domain T is generally assumed to be N for discrete-time systems or R+ for continuous-
time systems. The dynamics of the system can be subsequently described by a time-
varying graph, or TVG, G = (V,E, T , ρ, ζ), where

– ρ : E × T → {0, 1}, called presence function, indicates whether a given edge is
available at a given time.

– ζ : E × T → T, called latency function, indicates the time it takes to cross a given
edge if starting at a given date (the latency of an edge could vary in time).

One may consider variants where the presence of nodes is also conditional upon
time, by adding a node presence function ψ : V × T → {0, 1}. We do not do it in
the general case in this paper, for conciseness of the notations, and mention instead
when this could be relevant. The TVG formalism can arguably describe a multitude of
different scenarios, from transportation networks to communication networks, complex
systems, or social networks. Two intuitive examples are shown on Figure 1.

Ottawa

Montreal

Lisbon

λ1
λ2 λ3

λ4

(a) Transportation network

a

b

c dλ1

λ1

λ1

λ2

(b) Communication network

Fig. 1. Two examples of time-varying graphs, employed in very different contexts.

The meaning of what is an edge in these two examples varies drastically. In Fig-
ure 1(a), an edge from a node u to another node v represents the possibility for some



agent to move from u to v. The edges in this example are assumed directed, and pos-
sibly multiple. The meaning of the labels λ1 to λ4 could be for instance “bus”, “car”,
“plane”, “boat”, respectively. Except for the travel in car from Ottawa to Montreal –
which could assumably be started anytime –, typical edges in this scenario are available
on a punctual basis, i.e., the presence function ρ for these edges returns 1 only at par-
ticular date(s) when the trip can be started. The latency function ζ may also vary from
one edge to another, as well as for different availability dates of a same given edge (e.g.
variable traffic on the road, depending on the departure time).

The second example on Figure 1(b) represents a history of connectivity between a
set of moving nodes, where the possibilities of communication appear e.g. as a function
of their respective distance. The two labels λ1 and λ2 may account here for different
types of communication media, such as WiFi and Satellite, having various properties in
terms of range, bandwidth, latency, or energy consumption. In this scenario, the edges
are assumed to be undirected and there is no more than one edge between any two
nodes. The meaning of an edge is also different here: an edge between two nodes means
that any one (or both) of them can (attempt to) send a message to the other. A typical
presence function for this type of edge returns 1 for some intervals of time, because the
nodes are generally in range for a non-punctual period of time. Note that the effective
delivery of a message sent at time t on an edge e could be subjected to further constraints
regarding the latency function, such as the condition that ρ(e) returns 1 for the whole
interval [t, t+ ζ(e, t)).

These two examples are taken different on purpose; they illustrate the spectrum of
models over which the TVG formalism can stretch. As observed, some contexts are
intrisically simpler than others and call for restrictions (e.g. between any two nodes
in the second example, there is at most one undirected edge). Further restrictions may
be considered. For example the latency function could be decided constant over time
(ζ : E → T); over the edges (ζ : T → T); over both (ζ ∈ T), or simply ignored. In the
latter case, a TVG could have its relations fully described by a graphical representation
like that of Figure 2.
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Fig. 2. A simple TVG. The interval(s) on each edge e represents the periods of time when it is
available, that is, ∪(t ∈ T : ρ(e, t) = 1).

Note that a number of work on dynamic networks simply ignore ζ, or assume a
discrete-time scenario where every time step implicitely corresponds to a constant ζ.

3 Definitions of TVG concepts

This section transposes and generalizes a number of dynamic network concepts into
the framework of time-varying graphs. A majority of them emerged independently in



various areas of scientific literature; some appeared more specifically; some others are
original propositions.

3.1 The underlying graph G

Given a TVG G = (V,E, T , ρ, ζ), the graph G = (V,E) is called underlying graph of
G. This static graph should be seen as a sort of footprint of G, which flattens the time
dimension and indicates only the pairs of nodes that have relations at some time in T .
It is a central concept that is used recurrently in the following.

In most studies and applications, G is assumed to be connected; in general, this is
not necessarily the case. Let us stress that the connectivity of G = (V,E) does not
imply that G is connected at a given time instant; in fact, G could be disconnected at all
times. The lack of relationship, with regards to connectivity, between G and its footprint
G is even stronger: the fact that G = (V,E) is connected does not even imply that G is
“connected over time”, as discussed in more details later.

3.2 Point of views

Depending on the problem under consideration, it may be convenient to look at the
evolution of the system from the point of view of a given relation (edge) or from that
of the global system (entire graph). We respectively qualify these views as edge-centric
and graph-centric.

Edge-centric evolution From an edge standpoint, the notion of evolution comes down
to a variation of availability and latency over time. We define the available dates of
an edge e, noted I(e), as the union of all dates at which the edge is available, that
is, I(e) = {t ∈ T : ρ(e, t) = 1}. When I(e) is expressed as a multi-interval of
availability I(e) = [t1, t2)∪ [t3, t4)..., where ti < ti+1, the sequence of dates t1, t3, ...
is called appearance dates of e, noted App(e), and the sequence of dates t2, t4, ... is
called disappearance dates of e, noted Dis(e). Finally, the sequence t1, t2, t3, ... is
called characteristic dates of e, noted ST (e). In the following, we use the notation
ρ[t,t′)(e) = 1 to indicate that ∀t′′ ∈ [t, t′), ρ(e, t′′) = 1.

Graph-centric evolution The sequence ST (G) = sort(∪{ST (e) : e ∈ E}), called
characteristic dates of G, corresponds to the sequence of dates when topological events
(appearance/disappearance of an edge) occur in the system. Each topological event can
be viewed as the transformation from one static graph to another. Hence, the evolution
of the system can be described as a sequence of static graphs. More precisely, from
a global viewpoint, the evolution of G is described as the sequence of graphs SG =
G1, G2.. where Gi corresponds to the static snapshot of G at time ti ∈ ST (G); i.e.,
e ∈ EGi

⇐⇒ ρ[ti,ti+1)(e) = 1. Note that, by definition, Gi 6= Gi+1.
In the case where the time is discrete, another possible global representation of

evolution of G is by the sequence SG = G1, G2, . . ., where Gi corresponds to the static
snapshot of G at time t = i. Note that, in this case, it is possible that Gi = Gi+1.

Observe that in both continuous and discrete cases, the underlying graphG (defined
in Section 3.1) corresponds to the union of all Gi in SG .



The idea of representing a dynamic graph as a sequence of static graphs, men-
tioned in conclusion of [17], was brought to life in [14] as a combinatorial model called
evolving graphs. An evolving graph usually refers to either one of the two structures
(G,SG ,ST ) or (G,SG ,N), the latter used only when discrete-time is considered. Their
initial version also included a latency function, which makes them a valid – graph-
centric – representation of TVGs.

3.3 Subgraphs of a time-varying graph

Subgraphs of a TVG G can be defined in a classical manner, by restricting the set of
vertices or edges of G. More interesting is the possibility to define a temporal subgraph
by restricting the lifetime T of G, leading to the graph G′ = (V,E′, T ′, ρ′, ζ ′) such that

– T ′ ⊆ T
– E′ = {e ∈ E : ∃t ∈ T ′ : ρ(e, t) = 1 ∧ t+ ζ(e, t) ∈ T ′}
– ρ′ : E′ × T ′ → {0, 1} where ρ′(e, t) = ρ(e, t)
– ζ ′ : E′ × T ′ → T where ζ ′(e, t) = ζ(e, t)

In practice, we allow the notation G′ = G[ta,tb) to denote the temporal subgraph of
G restricted to T ′ = T ∩ [ta, tb), which includes the possible notations G[ta,+∞) or
G(−∞,tb) regardless of whether T is open, semi-closed, or closed.

3.4 Journeys

A sequence of couples J = (e1, t1), (e2, t2) . . . , (ek, tk), such that e1, e2, ..., ek is a
walk in G is a journey in G if and only if ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti) for all
i < k. Additional constraints may be required in specific domains of application, such
as the condition ρ[ti,ti+ζ(ei,ti))(ei) = 1 in communication networks (the edge remains
available until the message is delivered).

We denote by departure(J ), and arrival(J ), the starting date t1 and the last date
tk + ζ(ek, tk) of a journey J , respectively. Journeys can be thought of as paths over
time from a source to a destination and therefore have both a topological length and a
temporal length. The topological length of J is the number |J | = k of couples in J
(i.e., the number of hops); its temporal length is its end-to-end duration: arrival(J )−
departure(J ).

Let us denote by J ∗G the set of all possible journeys in a time-varying graph G, and
by J ∗(u,v) ⊆ J

∗
G those journeys starting at node u and ending at node v. If a journey

exists from a node u to a node v, that is, if J ∗(u,v) 6= ∅, then we say that u can reach
v, and allow the simplified notation u  v. Clearly, the existence of journey is not
symmetrical: u v < v  u; this holds regardless of whether the edges are directed
or not, because the time dimension creates its own level of direction. Given a node u,
the set {v ∈ V : u v} is called the horizon of u.

3.5 Distance

As observed, the length of a journey can be measured both in terms of hops or time.
This gives rise to two distinct definitions of distance in a time-varying graph G:



– The topological distance from a node u to a node v at time t, noted du,t(v), is
defined as Min{|J | : J ∈ J ∗(u,v) ∧ departure(J ) ≥ t}. For a given date t,
a journey whose departure is t′ ≥ t and topological length is equal to du,t(v) is
qualified as shortest ;

– The temporal distance from u to v at time t, noted d̂u,t(v) is defined as
Min{arrival(J ) : J ∈ J ∗(u,v) ∧ departure(J ) ≥ t} − t. Given a date t, a

journey whose departure is t′ ≥ t and arrival is t+ d̂u,t(v) is qualified as foremost.
Finally, for any given date t, a journey whose departure is ≥ t and temporal length
is Min{d̂u,t′(v) : t′ ∈ T ∩ [t,+∞)} is qualified as fastest.

The problem of computing shortest, fastest, and foremost journeys in delay-tolerant
networks was introduced in [6], and an algorithm for each of the three metrics was
provided for the centralized version of the problem (with complete knowledge of G).

A concept closely related to that of temporal distance is that of temporal view, in-
troduced in [21] in the context of social network analysis. The temporal view (simply
called view in [21]; we add the “temporal” adjective to avoid confusion with the con-
cept of view in distributed computing) that a node v has of another node u at time t,
denoted φv,t(u), is defined as the latest (i.e., largest) t′ ≤ t at which a message received
by time t at v could have been emitted at u; that is, in our formalism,

φv,t(u) = Max{departure(J ) : J ∈ J ∗
(u,v) ∧ arrival(J ) ≤ t}.

The question of knowing whether all the nodes of a network could know their tem-
poral views in real time was recently answered (affirmatively) in [10].

3.6 Other temporal concepts

The number of definitions built on top of temporal concepts could grow endlessly, and
our aim is certainly not to enumerate all of them. Yet, here is a short list of additional
concepts that we believe are general enough to be worthwhile mentioning.

The concept of eccentricity can be separated into a topological eccentricity and a
temporal eccentricity, following the same mechanism as for the concept of distance.
The temporal eccentricity of a node u at time t, ε̂t(u), is defined as max{d̂u,t(v) : v ∈
V }, that is, the duration of the “longest” foremost journey from u to any other node.
The concept of diameter can similarly be separated into those of topological diameter
and temporal diameter, the latter being defined at time t as max{ε̂t(u) : u ∈ V }.
These temporal versions of eccentricity and diameter were proposed in [6]The temporal
diameter was further studied from a stochastic point of view by Chaintreau et al. in [11].

Clementi et al. introduced in [13] a concept of dynamic expansion – the dynamic
counterpart of the concept of node expansion in static graphs – which accounts for the
maximal speed of information propagation. Given a subset of nodes V ′ ⊆ V , and two
dates t1, t2 ∈ T , the dynamic expansion of V ′ from time t1 to time t2 is the size of
the set {v ∈ V r V ′ : ∃J(u,v) ∈ J ∗G[t1,t2) : u ∈ V ′}, that is roughly speaking, the
“collective” horizon of V ′ in G[t1,t2).

The concept of journey was dissociated in [10] into direct and indirect journeys.
A journey J = {(e1, t1), (e2, t2) . . . , (ek, tk)} is said direct iff ∀i, 1 ≤ i < k,
ρ(ei+1, ti + ζ(ei, ti)) = 1, that is, every next edge in J is directly available; it is



said indirect otherwise. The knowledge of whether a journey is direct or indirect was di-
rectly exploited by the distributed algorithm in [10] to compute temporal views between
nodes. Such parameter can also play a role in the context of delay-tolerant routing, in-
dicating whether a store-carry-forward mechanism is required (for indirect journeys).

4 TVG Classes

This section discusses the impact of temporal properties on the feasibility and complex-
ity of distributed problems, unifying existing works from the literature. In particular, we
identify a hierarchy of classes of TVGs based on properties that are formulated using
the concepts presented in the previous section. These class-defining properties, orga-
nized in an ascending order of assumptions, are important in that they imply necessary
conditions and impossibility results for distributed computations. Let us start with the
simplest class.

Class 1 ∃u ∈ V : ∀v ∈ V : u v.

That is, at least one node can reach all the others. This condition is necessary, for ex-
ample, for broadcast to be feasible from at least one node.

Class 2 ∃u ∈ V : ∀v ∈ V : v  u.

That is, at least one node can be reached by all the others. This condition is necessary to
be able to compute a function whose input is spread over all the nodes, with at least one
node capable of generating the output. Any algorithm for which a terminal state must
be causally related to all the nodes initial states also falls in this category, such as the
election of a leader in an anonymous network or the counting of the number of nodes
by at least one node.

Class 3 (Connectivity over time) ∀u, v ∈ V, u v.

That is, every node can reach all the others; in other words, the TVG is connected over
time. By the same discussions as for Class 1 and Class 2, this condition is necessary to
be able to broadcast from any node, to compute a function whose output is known by
all the nodes, or to ensure that every node has a chance to be elected. These three basic
classes were used e.g. in [8] to investigate how relations between TVGs properties and
feasibility of algorithms could be canonically proven.

Class 4 (Round connectivity)
∀u, v ∈ V,∃J1 ∈ J ∗(u,v),∃J2 ∈ J

∗
(v,u) : arrival(J1) ≤ departure(J2).

That is, every node can reach all the others and be reached back afterwards. Such a
condition may be required e.g. for adding explicit termination to broadcast, election, or
counting algorithms.

The classes defined so far are in general relevant to the case when the lifetime is
finite and a limited number of topological events is considered. When the lifetime is
infinite, connectivity over time is generally assumed on a regular basis, and more elab-
orated assumptions can be considered.



Class 5 (Recurrent connectivity) ∀u, v ∈V,∀t∈T ,∃J ∈J ∗(u,v) : departure(J )>t.

That is, at any point t in time, the temporal subgraph G[t,+∞) remains connected over
time. This class is implicitely considered in most works on delay-tolerant networks. It
indeed represents those DTNs where routing can always be achieved over time. It has
been explicitly referred to as eventually transportable dynamic networks in [27].

As discussed in Section 3.1, the fact that the underlying graph G = (V,E) is con-
nected does not imply that G is connected over time – the ordering of topological events
matters. Such a condition is however necessary to allow connectivity over time and
thus to perform any type of global computation. Therefore, the following three classes
assume that the underlying graph G is connected.

Class 6 (Recurrence of edges) ∀e ∈ E,∀t ∈ T ,∃t′ > t : ρ(e, t′) = 1 and G is
connected.

That is, if an edge appears once, it appears infinitely often. Since the underlying graph
G is connected, we have Class 6 ⊆ Class 5. Indeed, if all the edges of a connected
graph appear infinitely often, then there must exist, by transitivity, a journey between
any pairs of nodes infinitely often.

In a context where connectivity is recurrently achieved, it becomes interesting to
look at problems where more specific properties of the journeys are involved, e.g. the
possibility to broadcast a piece of information in a shortest, foremost, or fastest manner
(see Section 3.5 for definitions). Interestingly, these three declinations of the same prob-
lem have different requirements in terms of TVG properties. It is for example possible
to broadcast in a foremost fashion in Class 6, whereas shortest and fastest broadcasts
are not possible [9].

Shortest broadcast becomes however possible if the recurrence of edges is bounded
in time, and the bound known to the nodes, a property characterizing the next class:

Class 7 (Time-bounded recurrence of edges) ∀e ∈ E,∀t ∈ T ,∃t′ ∈ [t, t+∆), ρ(e, t′) =
1, for some ∆ ∈ T and G is connected.

Some implications of this class include a temporal diameter that is bounded by∆Diam(G),
as well as the possibility for the nodes to wait a period of ∆ to discover all their neigh-
bors (if ∆ is known). The feasibility of shortest broadcast follows naturally by using a
∆-rounded breadth-first strategy that minimizes the topological length of journeys.

A particular important type of bounded recurrency is the periodic case:

Class 8 (Periodicity of edges) ∀e ∈ E,∀t ∈ T ,∀k ∈ N, ρ(e, t) = ρ(e, t + kp), for
some p ∈ T and G is connected.

The periodicity assumption holds in practice in many cases, including networks whose
entities are mobile with periodic movements (satellites, guards tour, subways, or buses).
The periodic assumption within a delay-tolerant network has been considered, among
others, in the contexts of network exploration [15, 16] and routing [25]. Periodicity
enables also the construction of foremost broadcast trees that can be re-used (modulo p
in time) for subsequent broadcasts [10] (whereas the more general classes of recurrence
requires the use of a different tree for every foremost broadcast).



More generally, the point in exploiting TVG properties is to rely on invariants that
are generated by the dynamics (e.g. recurrent existence of journeys, periodic optimality
of a broadcast tree, etc.). In some works, particular assumptions on the network dynam-
ics are made to obtain invariants of a more classic nature. Below are some examples
of classes, formulated using the graph-centric point of view of (discrete-time) evolving
graphs, i.e., where G = (G,SG ,N).

Class 9 (Constant connectivity) ∀Gi ∈ SG , Gi is connected.

Here, the dynamics of the network is not constrained as long as it remains connected
in every time step. Such a class was used for example in [26] to enable progression hy-
potheses on the broadcast problem. Indeed, if the network is always connected, then at
every time step there must exist an edge between an informed node and a non-informed
node, which allows to upper-bound the broadcast time by n = |V | time steps (worst
case scenario).

Class 10 (T-interval connectivity) ∀i ∈ N, T ∈ N,∃G′ ⊆ G : VG′ = VG, G
′ is

connected, and ∀j ∈ [i, i+ T − 1), G′ ⊆ Gj .

This class is a particular case of constant connectivity in which a same spanning con-
nected subgraph of the underlying graph G is available for any period of T consecutive
time steps. It was introduced in [23] to study problems such as counting, token dissem-
ination, and computation of functions whose input is spread over all the nodes (con-
sidering an adversary-based edge schedule). The authors shown that the computation
of these problems could be sped up of a factor T compared to the 1-interval connected
graphs, that is, graphs of Class 9.

Other classes of TVGs can be found in [27], based on intermediate properties be-
tween constant connectivity and connectivity over time. They include Class 11 and
Class 12 below.

Class 11 (Eventual connectivity) ∀i ∈ N,∃j ∈ N : j ≥ i, Gj is connected.

In other words, there is always a future time step in which the network is instantly
connected.

Class 12 (Eventual routability) ∀u, v ∈ V,∀i ∈ N,∃j ∈ N : j ≥ i and a path from u
to v exists in Gj .

That is, for any two nodes, there is always a future time step in which a instant path
exists between them. The difference with Class 11 is that the paths can appear at differ-
ent time for different pairs of nodes. Classes 11 and 12 were used in [27] to represent
networks where routing protocols for (connected) mobile ad hoc networks eventually
work if they tolerate transient topological faults.

For all the classes discussed so far, the referenced investigations studied the impact
that various TVG properties have on problems or algorithms. A reverse approach was
considered by Angluin et al. in the field of population protocols [1]. Instead of studying
the impact of various assumptions on given problems, they assumed a given assumption
– that any pair of node interacts infinitely often –, and characterized all problems that
can be solved in that context. This class is generally referred to as that of complete
graphs of interaction.



Class 13 (Complete graph of interaction) The underlying graph G=(V,E) is com-
plete, and ∀e ∈ E,∀t ∈ T ,∃t′ > t : ρ(e, t′)=1.

From a time-varying graph perspective, this class is the specific subset of Class 6,
in which the underlying graph G is complete. Various types of schedulers have been
considered in the area of population protocols that add further fairness constraints on
Class 13 (e.g. weak fairness, strong fairness, bounded, or k-bounded schedulers). Each
of these could further be seen as a distinct subclass of Class 13.

An interesting aspect of unifying these properties within the same formalism is the
possibility to see how they relate to one another, and to compare the associated solutions
or algorithms. An insight for example can be gained by looking at the short classifica-
tion shown in Figure 3, where basic relations of inclusion between the above classes
are reported. These inclusion are strict: for each relation, the parent class contains some
time-varying graphs that are not in the child class.

C4 C3
C2

C1
C5

C6

C13

C7C8

C12C11C9C10

Fig. 3. Relations of inclusion between classes (from specific to general).

Clearly, one should try to solve a problem in the most general context possible.
The right-most classes are so general that they offer little properties to be exploited
by an algorithm, but some intermediate classes, such as Class 5, appear quite central
in the hierarchy. This class indeed contains all the classes where significant work was
done. A problem solved in this class would therefore apply to virtually all the contexts
considered heretofor in the literature.

Such a classification may also be used to categorize problems themselves. As men-
tioned above, shortest broadcast is not generally achievable in Class 6, whereas fore-
most broadcast is. Similarly, it was shown in [9] that fastest broadcast is not feasible
in Class 7, whereas shortest broadcast can be achieved with some knowledge. Since
Class 7 ⊂ Class 6, we have

foremostBcast ≺ shortestBcast ≺ fastestBcast

where ≺ is the partial order on these problems’ topological requirements.

5 Non-Deterministic TVGs

Non-determinism in time-varying graphs can be introduced at several different levels.
The most direct one is clearly that provided by probabilistic time-varying graphs, where
the presence function ρ : E × T → [0, 1] indicates the probability that a given edge
is available at a given time. In a context of mobility, the probability distribution of ρ



is intrinsically related to the random mobility pattern defining the network. Popular
example of random mobility models are the Random Waypoint and Random Direction
models, where waypoints of consecutive movements are chosen uniformly at random.

Definitions of random TVG differ depending on whether the time is discrete or
continuous. A (discrete-time) random TVG is one whose lifetime is an interval of N
and whose sequence of characteristic graphs SG = G1, G2, .. is such that every Gi is
a Erdös and Rényi random graph; that is, ∀e ∈ V 2,P[e ∈ EGi

] = p for some p; this
definition is introduced by Chaintreau et al. [11].

One particularity of discrete-time random TVGs is that the Gis are independent
with respect to each other. While this definition allows purely random graphs, it does
not capture some properties of real world networks, such as the fact that an edge may
be more likely to be present in Gi+1 if it is already present in Gi. This question is
addressed by Clementi et al. [12] by introducing Edge-Markovian Evolving Graphs.
These are discrete-time evolving graphs in which the presence of every edge follows
an individual Markovian process. More precisely, the sequence of characteristic graph
SG = G1, G2, .. is such that{

P[e ∈ EGi+1 |e /∈ EGi ] = p

P[e /∈ EGi+1 |e ∈ EGi ] = q

for some p and q called birth rate and death rate, respectively. The probability that
a given edge remains absent or present from Gi to Gi+1 is obtained by complement
of p and q. The very idea of considering a Markovian Evolving Graph seems to have
appeared in [2], in which the authors consider a particular case that is substantially
equivalent to the discrete-time random TVG from [11]. Edge-Markovian EGs were
used in [12], along with the concept of dynamic expansion (see Section 3.6) to ad-
dress analytically some fundamental questions such as does dynamics necessarily slow
down a broadcast? Or can random node mobility be exploited to speed-up information
spreading? Baumann et al. extended this work in [3] by establishing tight bounds on
the propagation time for any birth and death rates.

A continuous-time random TVG is one in which the appearance of every edge obeys
a Poisson process, that is, ∀e ∈ V 2,∀ti ∈ App(e),P[ti+1 − ti < d] = λeλd for some
λ; this definition is introduced by Chaintreau et al. in [11].5

Random time-varying graphs, both discrete- and continuous-time, were used in [11]
to characterize phase transitions between no-connectivity and connectivity over time as
a function of the number of nodes, a given time-window duration, and constraints on
both the topological and temporal lengths of journeys.

6 Research Problems and Directions

The first most obvious research task is that of exploring the universe of dynamic net-
works using the formal tools provided by the TVG formalism. The long-term goal is
that of providing a comprehensive map of this universe, identifying both the commonal-
ity and the natural differences between the various types of dynamical systems modeled

5 It is interesting to note that the authors rely on a graph-centric point of view in discrete time
and on an edge-centric point of view in continuous time. This trend seems to be general.



by TVG. Additionally, several, more specific research areas can be identified including
the ones described below.

Distributed TVG algorithms design and analysis. The design and analysis of dis-
tributed algorithms and protocols for time-varying graphs is an open research area. In
fact very few problems have been attacked so far: routing and broadcasting in delay-
tolerant networks; broadcasting and exploration in opportunistic-mobility networks;
new self-stabilization techniques; detection of emergence and resilience of communi-
ties, and viral marketing in social networks.

Design and optimization of TVG. If the interactions in a network can be planned –
decided by a designer –, then a number of new interesting optimization problems arise
with the design of time-varying graph. They may concern for example the minimization
of the temporal diameter or the balancing of nodes eccentricities. Is a given setting
optimal? How to prove it? What if the underlying graph can also be modified? etc. A
whole field is opening that promises exciting research avenues.

Complexity Analysis. Analyzing the complexity of a distributed algorithm in a TVG
– e.g. in number of messages – is not trivial, partly because contrarily to the static cases,
the complexity of an algorithm in a dynamic network has a strong dependency, not only
on the usual network parameters (number of nodes, edges, etc.), but also on the number
of topological events taking place during its execution. In many of the algorithms we
have encountered, the majority of messages is in fact directly triggered by topological
events, e.g., in reaction to the local appearance or disappearance of an edge. The number
of topological events therefore represents a new complexity parameter, whose impact
on various problems remains to study.
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