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Abstract

This paper proposes a new solution to the problem of self-deploying a network of wireless mobile robots with
simultaneous consideration to several criteria, that are, the fault-tolerance (biconnectivity) of the resulting
network, its coverage, its diameter, and the quantity of movement required to complete the deployment.
These criteria have already been addressed individually in previous works, but we propose here an elegant
solution to address all of them at once. Our approach is based on combining two complementary sets of
virtual forces: spring forces, whose properties are well known to provide optimal coverage at reasonable
movement cost, and angular forces, a new type of force proposed here whose effect is to rotate two angularly
consecutive neighbors of a node toward one another when the corresponding angle is larger than 60◦ (even
if these two nodes are not themselves neighbors). Angular forces have the global effect of biconnecting the
network and reducing its diameter, while not affecting the benefits obtained by spring forces on coverage.
In this paper we give a detailed description of both types of forces, whose combination poses a number
of technical challenges. We also provide an implementation that relies only on position exchanges within
two hops. Extensive simulations are finally presented to evaluate the solution against all criteria (coverage,
biconnectivity, quantity of movements, and diameter), and show its advantages over prior solutions.

Keywords: Wireless mobile robots; Self-organization; Angular forces; Biconnectivity.

1. Introduction and related work

This paper addresses the problem of self-
deploying a swarm of wireless mobile robots in a
biconnected fashion. The motivations for deploying
robotic sensor networks in general include accessing
places where human cannot go (e.g. remote plan-
ets, underwater area, dangerous spots with chem-
ical or radioactive leaks), or automating fastidious
large scale deployment (e.g. spreading intrusion or
fire detectors over a large area). Once deployed,
the robots are intended to perform collective tasks
related to monitoring, collecting, or processing in-
formation sensed in the surrounding environment.

The efficiency and reliability of such a network
depend on several criteria. To be fault-tolerant
(tolerate the failure of any single robot), the re-
sulting network must be biconnected. A network is

IA preliminary version of this paper appeared in 72nd

IEEE Vehicular Technology Conference (VTC’10-Fall).

biconnected if it remains connected after any of the
nodes is removed. Besides fault-tolerance, it is im-
portant to maximize the collective coverage of the
network (that is, the overall area the robots can
sense or serve), while minimizing the network di-
ameter (longest shortest path between any pair of
nodes) to ensure efficient communications. Finally,
these criteria should not be satisfied at the expense
of a too high energy consumption, and must thus
be achieved using as few movements as possible.

The problem of maximizing the coverage of a net-
work of robots was addressed in numerous works,
using either virtual repulsion forces (or a combina-
tion of repulsion and attraction forces, called spring
forces) [9, 23, 8, 11, 22, 20] or geometrical ap-
proaches [2, 11, 12, 1] that equivalently regulate
the inter-nodal distance and thus locally arrange
the topology as a (equilateral) triangle tessellation,
whose optimal properties with respect to coverage
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are well-known.1 As a side effect, these approaches
can establish biconnectivity at places where the
density of robots is sufficiently high – but not in
the general case.

Biconnectivity has been explicitly addressed in
other works. In the most general context (target-
ting arbitrary, sparse, and even possibly discon-
nected topologies), solutions based on a common
point of interest (POI) toward which all robots
can converge and biconnect were proposed (e.g.
see [8, 18, 15, 14, 13]). Having a common reference
point known by all the robots simplifies the bicon-
nectivity problem substantially (at least, without
obstacles); this assumption is however not realistic
in several practical scenarios. Different approaches
were proposed in [4, 7] to biconnect networks that
are already connected based on movements of well
chosen robots called non-critical; these solutions do
not consider the coverage nor the diameter of the
resulting network. In addition, the solutions in [4]
are centralized, and the algorithm in [7] fails to bi-
connect in numerous situations (which is explicitly
conceded by the authors). A similar approach by
movement of so-called removable nodes was consid-
ered in [19] and [21] with the objective of minimiz-
ing movements by the nodes.

The solution we propose in this paper does not
use a common reference point, and therefore does
not handle arbitrarily disconnected topologies. It
addresses however any kind of initially connected
topology (regardless of whether released as a high
density conglomerate or as a randomly distributed
set of robots), and also deals with initially discon-
nected topologies in closed areas when the number
of robots is sufficient to allow repulsion forces to
make them inter-connect (this feature can be found
in any repulsion-based solution). Besides obtaining
a much higher success rate than [7] (in the order
of 95% against 50%), the main novelty of our so-
lution is to address all the criteria described above
at once. Its principle is based on combining spring
forces with a new kind of force called angular forces.
Whereas spring forces determine the distances be-
tween nodes and naturally form equilateral trian-
gles at dense places, angular forces strive to reduce
the angles formed by pairs of angularly consecutive
neighbors of a same node (see Figure 1). This is
done regardless of whether these neighbors are al-

1The idea of using virtual forces to move individual robots
seems to have first appeared in [3], then first used for a co-
ordination problem in [17].

ready in range of each other, so equilateral triangles
are also formed at sparse places.
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cb >60◦
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Figure 1: Angular force principle. Here the angle formed
by b and c relatively to a makes them rotate toward one
another (around a).

At a global scale, angular forces have the effects
of biconnecting the network and reducing its diame-
ter at the same time. The intuition of this behavior
can be obtained by looking at Figure 2.
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Figure 2: Intuitive example of the effect of angular forces.

The paper is organized as follows. The assump-
tions, notations, and network model are given in
Section 2. Section 3 presents our solution and de-
scribe the technical challenges that had to be faced
to successfully mix angular forces with spring forces
(without negative interference between them). A
possible implementation is then proposed in Sec-
tion 4. Note that the principle of rotation can be
implemented using at least two possible approaches,
depending on which robot does what action (e.g.
does a robot ask its neighbors to rotate, or do these
neighbors take such decision alone). In the pro-
posed implementation all robots acquire (a subset
of) the two-hop neighbors positions and then de-
termine their movements alone. We thus briefly
discuss some of the simulation results we obtained
in Section 5, and eventually conclude with some re-
marks.

2. Network model, notations, and assump-
tions

We consider a network of autonomous mobile
robots enabled with wireless communication and
movement capabilities. We assume that each robot
is able to acquire frequently its absolute position
(although we believe the proposed solution could be
transposed in a framework with relative positions
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only). Each robot has communication and sensing
ranges that are both distinct, but uniform among
the swarm. The communication range, CR, deter-
mines the distance up to which two robots can di-
rectly communicate. The sensing range, SR, deter-
mines the circular area around a robot from which
it can acquire information about the monitored en-
vironment. This is referred to as its coverage.

In the proposed implementation, robots are as-
sumed to discover their neighborhood by means of
periodic beacon exchanges that comprise position
information. We assume that beacons support pig-
gybacking (insertion of extra data within the bea-
con) and use this capability to share two-hops coor-
dinate information among neighbors (up to 6 nodes
positions in a given beacon). No additional commu-
nication is required. Finally, as the robots apply the
algorithm, they regulate their inter-distance around
a threshold dth, which may be chosen by policy de-
pending on the type of coverage desired (e.g. focuse
or non-focused, see 3(a)). The only constraint is
that dth ≤∼0.851CR (for physical reasons that are
precisely explained in Section 3.5), with the conse-
quence that a slightly higher communication range
will be required compared to solutions based on
a common reference point (e.g., for focused cover-
age, this leads CR ≥ 2.035SR instead of the usual
CR ≥

√
3SR ('1.732SR)).

(a) Focused coverage (b) Non-focused coverage

Figure 3: Focused and non-focused coverages. Circles rep-
resent individual sensing coverages, lines represent commu-
nication links.

3. The proposed virtual force scheme

3.1. Representing individual forces

Individual forces are usually represented as
two-dimensional polar coordinate vectors ~F =
(direction,magnitude), with the strength of the
force being directly encoded in the magnitude (e.g.
as a linear, quadratic, or exponential expression of
the quantity to correct). The downside of this ap-
proach is that such force vector, if mapped into a
discrete movement of the considered node, may lead

this node to move further than the equilibrium lo-
cation, thereby generating oscillations. In general
terms, these vectors loose track of the exact target
location.

For this reason – and also because it simplifies
the combination of different types of forces, we rep-
resent individual forces as three-dimensional vector
~F containing a direction, a magnitude, and a sep-
arate weight, respectively noted θ~F , |~F |, and ω~F .
This solution allows us to disassociate the magni-
tude of a force from its real strength, and keep track
of the equilibrium point through direction and mag-
nitude. As for the effective strength of a force, it is
determined by the product of magnitude by weight.

3.2. Directions and Magnitudes

We describe now the computation of directions
and magnitudes of individual force vectors, for both
spring and angular forces. The way these forces are
weighted and combined with each other is discussed
later. Each spring forces involves a pair of node
(whose distance is to be regulated), whereas an an-
gular force involves three nodes: a center node and
two of its angularly consecutive neighbors (whose
angle is to be regulated). The cases in which each
type of force apply, or not, is also discussed later.

3.2.1. Spring Forces

Given two nodes i and j, and their inter-nodal
distance dij , we call spring correction (and abbre-
viate cor) the difference between dij and the desired

threshold dth. So cor =
|dij−dth|/2

dth
. (This quantity

is expressed as a ratio over dth for independence to
the unit.) The definition of spring forces is then

~Fji =

{
(θ~ij , dth×cor, weightS(cor)), if dij > dth

(θ~ji, dth×cor, weightS(cor)), otherwise

where θ~ij is the orientation of the segment linking

i to j, weightS() is a function that will be defined

later, and ~Fji can be read as the spring force that j
exerts on i. Note that the same weight function is
considered for both attraction and repulsion.

3.2.2. Angular Forces

For a given angle γ = âbc, where a and c are two
consecutive neighbors of b in the clockwise direction
(see Figure 4 for an illustration), the magnitude of

the force applying on a, noted |~Fbac| (~Fbac can be
read as the angular force that b exerts on a with
respect to c.), is 0 if γ ≤ 60◦, and dth × tan(β)
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otherwise, where β, called the correction angle, is
half the difference between the current angle and
60◦ (π/3 in radians). As for the direction, it sim-
ply corresponds to a physical torque applied to the
two nodes, i.e., ±90◦ relative to the angle of the
segment from the node to the center, depending on
their relative position (θab + 90◦ for a and θcb− 90◦

for c, in the example of Figure 4).

b

c

c′

a

a′

60◦

γ ββ

~Fbca
~Fbac

Figure 4: Rotation with respect to b.

Remark: we described here angular forces irrespec-
tive of their implementation. At least two ap-
proaches could be considered in practice: either
node b computes the forces it exerts on a and c and
sends them the corresponding vectors, or a and c
compute these vectors themselves thanks to a 2-
hop position knowledge they have on their neigh-
borhood (this latter solution is the one we propose
in Section 4).

3.3. Cases where forces apply

Both spring and angular forces do not systemat-
ically apply among all neighbors. We consider to
types of restrictions: neighbor selection (for both
spring and angular forces), which causes a node
to interact only with a well-chosen subset of direct
neighbors, ignoring completely those neighbors that
are said to be shielded by others; and angle selection
(for angular forces only), whose effect is to ignore
angular forces generated by the largest local angle
when less than 6 neighbors are selected.

3.3.1. Neighbors selection (both types of forces)

In order for the robots to stabilize as equilat-
eral triangles, the number of neighbors a robot
can interact with should be limited to 6 (since
60◦ × 6 = 360◦). The strategy proposed in [8] is
to have some neighbors shielding others (i.e., mak-
ing them locally ignored). For a given node i, a
neighbor k shields another neighbor k′ if k is closer

to i and the angle k̂ik′ is smaller than a threshold
of 60◦. This scheme is illustrated on Figure 5.

We adopt the same principle but consider a
threshold of 54◦ instead of 60◦. This precise value

c

s1

s2

s3s4

e1

e2 e3

e4

e5

Figure 5: Example of neighbor selection. (Here nodes
s1, s2, s3, and s4 shield nodes e1, e2, e3, e4, and e5)

stems from the combination of two observations and
corresponds to the best tradeoff in their respects.
Let us first observe that a threshold of 60◦ does
not allow to select more than 5 neighbors in prac-
tice (unless the corresponding 6 angles are exactly
60◦). The right value to consider for a shielding
angle – as far as triangle tessellation is targeted –
should instead be of 360/7 + ε (i.e., ' 51.43◦), that
is, the value that maximizes the chance to select 6
neighbors, while still preventing the selection of 7.

However, such a small value poses a different
problem for the application of spring forces: it
causes attraction to maintain pentagonal configu-
rations as if they were stable structures, which is
not desirable. In a pentagonal configuration (see
e.g. Figure 6), each sub-triangle has inner angle
360/5 and outer angles (180 − (360/5))/2 = 54◦.
Raising the shielding angle to at least 54◦ has the
convenient effect that at least one sub-triangle of a
pentagon will be broken as a by-product of shield-
ing (here, for exemple, b shieds c at a and a at c,
which allows the edge ac to be discarded).

a c

b

54◦ a c

b

Figure 6: Minimal shielding angle to prevent the mainte-
nance of pentagonal formations.

Therefore, in order to maximize the selection of
6 neighbors, while preventing the stabilization of
pentagonal configurations, we consider a shielding
angle of 54◦ precisely. This is a crucial aspect of
the solution.

3.3.2. Angle selection (for angular forces only)

Given a node and x angles formed by its x se-
lected neighbors, angular forces do not apply rela-
tively to the largest angle if x < 6. This restriction
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on angular forces is consistent with that of neigh-
bor selection seen previously. Considering again the
example on Figure 6, this will cause angular forces

not to oppose the opening of angle âbc to the sat-

isfactory extent. Another example is angle b̂ad in
Figure 2.

3.4. Averaging the sums and moving

In every iteration, a given node can be subject
to a number of spring forces and angular forces
competing with each other. Determining how these
vectors are combined to generate an effective move-
ment is thus a crucial step in the solution.

Virtual force schemes usually combine several
vectors by summing them. Keeping in mind that
usual vectors are only two-dimensional (direction,
magnitude), the problem with this approach is that
if several vectors pull or push the node in a same
direction, the magnitude of the resulting vector is
accordingly increased, with the consequence that
the node is asked to move beyond the equilibrium
position (then reverse its direction at the next it-
eration, and so forth), which generates unwanted
oscillation movements. This motivates the choice
of averaging the vectors instead of summing them.

Hence, given the set F of all forces acting on
a given node, each having the form (direction θ~F ,

magnitude |~F |, and weight ω~F )), we combine them
by means of a weighted average. This weighted aver-
age reduces the set of all force vectors into a single
two-dimensional distance vector (in Cartesian co-
ordinates of unit dth), hereafter called the resulting
vector, as follows

~Vres =

(
∑

~F∈F (cos(θ~F )×|~F |×ω~F )∑
~F∈F ω~F

,
∑

~F∈F (sin(θ~F )×|~F |×ω~F )∑
~F∈F ω~F

).

The contribution of a given force vector to the re-
sulting vector is now directly proportional to the
product of its magnitude by its weight. Therefore,
in order to set the weights function properly, we
have to consider their impact through this particu-
lar product, hereafter referred to as strength.

3.5. Weights

At places with sufficient densities, spring forces
alone suffice to build equilateral triangles. Angular
forces should preferably not interfere with this. In
fact, it would be convenient to consider any equi-
lateral triangle maintained by spring forces as an
unbreakable compound, and limit the role of angu-
lar forces to form new such structures or to rotate

existing structures toward one another in order to
form larger compounds (as in the case of Figure 2).

This strategy dictates a set of constraints. First,
spring forces must have priority over angular forces,
that is, angular forces must be neglected as long
as spring forces are not close to their equilib-
rium, and then take over progressively (in physi-
cal terms, we could call it an asymptotic freedom of
angular forces with respect to spring forces). We
achieve this by weighting spring forces exponen-
tially (weightS(cor) = exp(cor)), while maintain-
ing angular forces below a given threshold (this pri-
ority relation is illustrated on Figure 7).

0 dth CR

Inter-nodal distance

F
or
ce

st
re
n
gt
h

Spring strength

(upper bound on) Angular strength

Figure 7: Priority between forces. Angular forces must pre-
vail only when spring forces are nearly satisfied. An ad-
ditional constraint is to ensure that the angular strength
is always significantly lower than the spring strength at
dth/0.851 (minimal CR), so that angular forces cannot dis-
connect the network in case of conflicting configuration.

Before discussing more precisely the upper limit
of angular forces, let us first focus on their indepen-
dent behavior with respect to the correction angle.
A specific requirement is that angular forces get
stronger as the correction angle decreases. The rea-
son for this counter-intuitive design choice is that
local configurations with several competing out-
comes must not stabilize in an even state. An exam-
ple of such even configuration is given in Figure 8.
Hence, the strength of the angular forces (that is,
the product magnitude×weight) must increase as
the correction decreases, still being equal to 0 when
the correction is 0 (angle of 60◦), and finally be con-
tinuous over all its definition domain, from 0 to π/3
(the correction at 180◦ is π/3), which generates an
apparent contradiction.

In fact, the angular strength does not need to be
increased until the correction angle is 0, since the
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a

b

c

d

wrong right

Figure 8: Example of competition between two configura-
tions. If the angular strength was designed to increase with
the correction angle, this example configuration would be-
come a square and stabilize as such, which is not a desired
outcome. Now, if the strength decreases with the correction
angle, the candidate outcome that has the biggest advantage
will increase its advantage over time (here, b and c will join
and form two new equilateral triangles).

two rotating nodes will select each other for spring
attraction before this happens. Looking at Fig-
ure 9, this mutual selection will occur as soon as a
stops shielding both nodes from one another, which

corresponds to angles âcb and b̂ac being < 54◦ (the
shielding angle). The angular strength exerted by a
on b and c (and more generally by the center node
to its two considered neighbors) can thus start de-
crease once the local angle passes below 72◦ (see
Figure 9), which corresponds to a correction of 6◦

(π/30 radians). Note that guaranteeing that b and
c will be within range of each other when this hap-
pens is the reason why we require dth < 0.851CR.

b

a

c

72◦

54◦54◦

Figure 9: Configuration of maximal strength

As a conclusion, the strength of angular forces
must increase as the correction decreases from π/3
to π/30, then decrease to 0 as the correction de-
creases from π/30 to 0, and still be continuous
(these constraints can be visualized by glancing at
the plot of the strength in Figure 10). One pos-
sible way to obtain this behavior is to define the
angular weight as a negative exponential with the
correction β as variable and specific slope param-

eters. We pose weight(β) = e−aβ
b

. The strength
(magnitude×weight) is thus equal to the product

strength(β) = dth × tan(β)× e−aβ
b

(1)

An infinity of pairs (a, b) satisfy the required con-
straints, each one leading to a different decrease
rate between π/30 and π/3. For example using
b = 1, the decreasing rate is such that the ratio
between strength(π/30) and strength(π/3) is more
than 8500. Knowing that angular forces are already
bounded by design with respect to spring forces,
such a slope will prevent the robots from rotating
efficiently at large angles. We arbitrarily set b to 0.5
(that is, a square root), which offers a much slower
decrease rate, and then set a so as to shift the max-
imum of the strength at π/30. This computation
(of a knowing b) can be done using the derivative
of the strength, then finding what value of a leads
to a zero in the derivative at π/30. The derivative
of the strength is

strength′(β) = (tan′(β)× e−aβ
b

) + (tan(β)× e′−aβ
b

)

= e−a
√
β(tan2(β)− a× tan(β)

2
√
β

+ 1).

(2)

Replacing β with π/30, this derivative comes to
zero when

a =

√
30π × (tan2( π30 ) + 1)

15× tan( π30 )
' 6.222 (3)

which gives a (preliminary) weight of e−6.222
√
β .

The shape of this weight is illustrated on Figure 10.
Note that the ratio between strength(π/30) and
strength(π/3) is now ∼4.73.

0

0.2

0.4

0.6

0.8

0 π/30 π/3

Correction angle

Magnitude

Weight

Strength (product)

Figure 10: Strength of angular forces (the plot of the strength
is increased 20 times for visibility purpose).
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After the shape of angular forces is determined,
the last step consists in raising it by a multiplica-
tive factor, up to the highest possible value at which
they do not interfere negatively with spring forces.
In the same way as the shielding angle of neighbors
selection was limited in order to avoid stable pen-
tagonal configurations (see Section 3.3.1), we limit
here the multiplicative factor so as to prevent hep-
tagonal (or higher order polygonal) configurations
(as explained in Figure 11).

c

d

b

a

~Fdbc

~Fabc

~Fab

~Fdb

Figure 11: Breaking heptagonal configurations. Due to the
neighbors selection scheme, at least one node, b on the figure,
will be discarded by c, and will therefore not interact with
it. The desirable behavior here would be that the spring
repulsion from a and d (~Fab and ~Fdb) push b away in the
direction θ~cb. However, a and d also exert an angular force

on b that tends to maintain it in place (~Fabc and ~Fdbc).
Whether b will be successfully ejected thus depends on the
relative strength between spring forces and angular forces.

The analytical characterization of the multiplica-
tive factor is left open for future work. We deter-
mined it experimentally by forming such an hep-
tagon and multiplying angular forces by a high fac-
tor, then lowering the factor progressively until the
heptagon breaks by itself, which happened at a fac-
tor ∼1.15. The final formula for the weight of an-
gular forces is thus

weightA(β) = 1.15× e−6.222
√
β (4)

where β is the angular correction in radians. Fi-
nally, we can notice that the resulting strength
satisfies the constraint mentioned in Figure 7 (an-
gular forces cannot prevail over spring attraction
to disconnect the network). In fact, we precisely
have strengthS(correction(dth/0.851)) ' 5.92 ×
strengthA(π/30).

3.6. Friction force

We consider a threshold on |~Vres| below which the
robots do not move. This threshold, noted epsilon,
can be as small as desired and essentially allows to
regulate the priority between the quantity of move-
ments and the other metrics (biconnectivity, diam-
eter, coverage), as discussed in Section 5.6.

4. Implementation

We propose an implementation based on the peri-
odical exchange of beacon messages conveying two-
hops position information. More precisely, each
beacon contains the (future) position of its emit-
ter, along with the (expected) position of its emit-
ter’s selected neighbors. Upon reception by a robot,
the beacons are stored in its local mailbox, which is
then read offline at regular intervals (rounds). We
assume a common round duration trnd for all robots
(which can be for example inferred from the robots
maximal speed, or specified before deployment).

Informally, the algorithm is as follows. In each
round, robots starts by reading all the messages
that arrived during the previous round in their
mailbox, deduce their new list of neighbors and
update (or create) local variables to store the cor-
responding positions (the positions of these neigh-
bors and the positions of these neighbors’ selected
neighbors). Based on this information, robots first
determine their own selection, then compute their
next position based on forces virtually exerted by
the neighborhood (over 1-hop for spring forces, 2-
hops for angular forces). They then send the next
beacon including their next position and the (ex-
pected) positions of their selected neighbors, and
finally start to move toward the next position. The
detailed process is given in Algorithm 1.

Algorithm 1 Baseline algorithm (runs every t
units of time)

1: neighbors[ ]← ∅
2: messages[ ]← mailbox.getMessages()
3: for all msg ∈ messages[ ] do
4: neighbors[ ]← neighbors[ ] ∪msg.sender
5: neighbors[msg.sender].position← msg.pos
6: neighbors[msg.sender].selection[ ] ←

msg.selection[ ]
7: end for
8: me.selection[ ]← select(me, neighbors[ ])
9: nextP ← computeNextPosition(me)

10: send(sender=me, pos=nextP, selection=me.selection[ ])
11: if nextP 6= currentPos then
12: moveTo(nextP )
13: end if

The function computeNextPosition
is given by Algorithm 2, where
getSpringForce(ng,me) returns the force ~Fngme,
and getAngularForce(ng,me) returns an 2-

elements array containing ~Fngme p and ~Fngme s
(where p and s are the predecessor and successor
of me in ng.selection, respectively).
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Algorithm 2 computeNextPosition(me)

1: List[ ]← ∅
2: for all ng ∈ me.selection[ ] do
3: if me ∈ ng.selection[ ] then
4: List[ ]← List[ ] ∪ getSpringForce(ng,me)
5: List[ ]← List[ ] ∪ getAngularForce(ng,me)
6: end if
7: end for
8: ~Vres ← getWeightedAverage(List)

9: d = min(|~Vres| × dth, dmax)
10: if d ≤ epsilon then
11: d← 0
12: end if
13: ~Vres ← (θ~Vres

, d) // ~Vres is truncated to a magnitude

of d (polar notation)

14: return current position+ ~Vres

In the context of our simulations, we assumed
that robots can move at some speed vmax with
instantaneous acceleration, instantaneous direction
change, and negligible computation time, that is,
up to a distance of dmax = vmax × trnd per round.
Note that the distance unit of ~Vres is still dth. In
each round, the robots will thus move |~Vres| × dth
or dmax, whichever is the shortest. The value cho-
sen for dmax consequently have an impact on the
number of rounds used to deploy. However, sim-
ulations showed that it has virtually no impact on
the quantity of movements involved, nor on the out-
come of the algorithm, since robots do not substan-
tially change their direction from one iteration to
the next (which we believe is due to a better appre-
ciation of their target by using two-hop information
and averaging instead of summing).

5. Experimentations

5.1. Summary of the results

The algorithm proposed in this paper can possi-
bly target three different contexts. These contexts
are:

• All robots are released from a same place as a
single high-density conglomerate (Case A);

• The robots are arbitrarily distributed in a
closed area and do not necessarily form a con-
nected topology. However, they are released in
sufficient number to allow mutual repulsion to
eventually make them connected (Case B);

• The robots are arbitrarily distributed in an
open area, but their topology is already con-
nected (Case C, see Figure 12).

At first sight, the benefits of using angular forces
is not evident in the first two cases (A and B).
We thus compared our solution to the use of spring
forces alone in these contexts. As for case C, which
is the one that mainly motivated this work (and
for which spring forces alone are not adapted), we
compared our solution to the distributed algorithm
from [7], the only known distributed solution ad-
dressing such scenarios. Finally, we evaluated our
algorithm further in case C by studying the impact
of epsilon (the threshold below which robots do not
move at all) on the four metrics. The complete set
of simulations results is given in the next section.

In a nutshell, the combination of both kinds of
force (our solution) prove relevant in Case A (using
slightly less movements than spring forces alone,
and maintaining the biconnectivity of the whole
group whereas spring forces alone do not; however
the combination induced a cost of ∼25% more time
to stabilize). In Case B, our solution prove not rel-
evant, and even detrimental due to its requirement
of having dth ≤ 0.851CR (this requirement can be
released when using spring forces only). In Case C,
where the topologies were generated by drawing the
positions of nodes uniformly at random (with an ap-
propriate density [5]), then selecting only the con-
nected ones for simulations, our algorithm achieved
biconnectivity in more than 90%, against 50% for
the algorithm in [7]. It also led to 60% more cover-
age, and 8% less diameter (although this excellent
coverage is specific to our solution and can be ob-
served in any algorithm having a repulsion-based
mechanism). Finally, by studying the impact of
epsilon, we clearly highlighted how this parameter
can be used to leverage the priority among the met-
rics, in particular the tradeoff between movements
and biconnectivity. All simulations were performed
using the JBotSim platform [6].2

5.2. Details of the simulation results

In all simulations but one explicitly mentioned,
we considered a non-focused coverage with dth =
2SR. As for CR, we used the smallest value allowed
by the solution (that is, dth

0.851 ' 2.35SR).

5.3. Case A

In case A, nodes are released as a (random) high-
density conglomerate. The purpose here is to deter-
mine whether the combination of angular forces and

2An interactive demo. of the algorithm is available at:
http://jbotsim.sf.net/examples/bico.html
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(a) Initial topology (b) Resulting topology

Figure 12: Example of arbitrarily connected topology of 30
nodes (and corresponding outcome with our algorithm).

spring forces behave better than spring forces alone
in this context (where the initial topology is already
biconnected). Put differently, we answer the ques-
tion of whether the ’angular component’ of our al-
gorithm should be preferably enabled or disabled in
this context. The test involved 40 robots randomly
distributed within a very small area (of size CR

2).
For each so-generated topology, we ran the algo-
rithm with and without angular forces, and mea-
sured the biconnectivity, coverage, diameter, and
quantity of movements made at the end of the exe-
cution. The results, averaged over 200 simulations
(a different topology for each), are shown in Fig-
ure 13. Note that the diameter and the coverage
(Figure 13(b)) are expressed as a ratio over the op-
timum, that is, a coverage of 1 corresponds to non-
overlapping individual coverages, and a diameter of
1 corresponds to the smallest diameter supposedly
achievable (by setting up a concentrically layered
triangular tessellation of inter-nodal distance dth).

Interpretation. A first observation is that the algo-
rithm terminates faster without angular forces (25%
less rounds needed in average), which makes sense
knowing that angular forces start to efficiently man-
ifest after spring forces have approached the equi-
librium. Still, the final amount of movements re-
mains lower when angular forces are used, possibly
due to a finer appreciation of the moving trajectory
by considering two-hops information. The main re-
sult here is that using angular forces led to a bicon-
nected topology in every case, whereas spring forces
alone did not. In fact, at some point (after ∼100
rounds), both algorithms lost biconnectivity (due
to the neighbor shielding mechanism which cancels
some attraction forces and allows border nodes to
be pushed further away). In the case of angular
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(a) Biconnectivity and movements.
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Figure 13: Combination of spring and angular forces vs.
spring forces alone.

forces, the biconnectivity is subsequently restored.
Regarding the coverage and diameter, both algo-
rithm perform rather comparably. Both eventually
reach an optimal coverage (although faster with-
out angular forces), and similar diameters (with a
small advantage for angular forces). The conclusion
is that angular forces are relevant in Case A, and
particularly if biconnectivity is a important crite-
rion.

5.4. Case B

In the case of a closed area, we mentioned that re-
pulsion alone could be used to inter-connect isolated
arbitrarily distributed robots. For a given square
area and a given communication range, we are thus
interested in studying how the density of nodes in-
fluences the way nodes connect to each other dur-
ing the algorithm execution. More precisely, we
tried to evaluate the impact of our assumption that
dth ≤ 0.851CR, by comparing it to spring forces
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for which we set dth = 0.98CR (the 2% margin is
to prevent nodes from pushing each other out of
range). The impact of walls was implemented as
follows: each node normally computes its resulting
vector according to its neighbors. Then, if the re-
sulting vector points to a location closer to the wall
than the desired value, it simply subtracts the dif-
ference as an orthogonal component from the wall
(as illustrated on Figure 14), then move as per the
so-obtained vector. Note that this implementation
requires that the node is able to detect a wall from
farther than the forbidden area.

~Vres

~Vfinal

Figure 14: Implementation of the walls. The dashed line
represents the minimal distance from the wall.

We generally recommend to implement obstacles
using similar approaches, rather than using, e.g.,
a virtual repulsion force of infinite weight – which
would dilute the impact of neighboring nodes.

The experiment involved a square area roughly
corresponding to a capacity of 60 robots non-
overlapping in coverage. The number of randomly
deployed robots in this area was varied from 10 to
55 and we measured, for both algorithms, the num-
ber of connected components obtained at the end
of the execution. The results, whose average over
100 topologies for each number of nodes is given
Figure 15, show that significantly more nodes are
required to connect when angular forces are used
(here, around 23% more). As a conclusion, we ad-
vise to dismiss the use of angular forces in Case
B.

5.5. Case C - Comparison with the algorithm
from [7]

The case C corresponds to initial topologies that
are arbitrarily distributed but connected. We know
since [5] that the probability of connectedness of a
set of nodes distributed at random (uniformly) ex-
hibits a sharp transition from 0 to 1 around a given
density threshold. Randomly connected topologies
can thus correspond to practical situations in which
robots are for example thrown over a given area in
a sufficient number. We compared here our algo-
rithm to the one from [7] (subsequently referred to
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Figure 15: Number of nodes required to connect in a closed
area (case B).

as DLNS ), which is the only known competitor in
case C.

We used the results from [5] to generate topolo-
gies that are connected, but still far from being bi-
connected. This was done by using the probability
equation of the minimum degree given in that pa-
per (transcripted on Eq. 5 below), which converges
asymptotically (as n grows) to the same probability
as the k-connectivity [16].

P (dmin ≥ k) = (1−
k−1∑
i=0

(ρπCR
2)i

i!
.e−ρπCR

2

)n (5)

In this equation, n is the number of nodes, and
ρ is the density. In order to generate connected
topologies that are far from being biconnected,
we set empirically the density ρ so as to observe
P (dmin≥1)
P (dmin≥2) ' 100, then among the topologies gen-

erated using this density, we kept only those being
indeed connected, and not biconnected.

An example of such topology is depicted on Fig-
ure 12. The behavior of both algorithms was com-
pared upon the four metrics. The averaged results
are given on Figures 16 (for connectivity and bi-
connectivity) and 17 (for coverage, diameter, and
movements).

Interpretation. First of all, let us stress that our al-
gorithm never disconnects the network. Biconnec-
tivity is successfully achieved in more than 90% of
the cases (more than 95% for less than 100 nodes).
DLNS, on the other hand, biconnects in approxi-
mately 50% of the cases, and sometimes disconnects
the network. The results concerning the connec-
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Figure 17: Average coverage, diameter, and movements in
function of the number of nodes (when biconnectivity is suc-
cessfully achieved).

tivity and biconnectivity are thus clear-cut in the
advantage of angular forces.

Regarding the other metrics, DLNS has a neat
advantage for movements, and is more scalable in
this respect, since the average movements per robot
with our algorithm grows regularly with the number
of nodes whereas is becomes asymptotically con-
stant with DNLS. The same trend was observed for
the number of rounds before stabilization, which
was about twice higher for 200 nodes (in the order
of 2000 rounds) than for 20 nodes (∼ 1000 rounds)
in our case, whereas the number of rounds used
in average by DLNS remained independent from
the number of nodes (60 rounds in average). The
very high number of round of our solution is a com-
mon trait among virtual forces based algorithms, in
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Figure 18: Average biconnectivity, coverage, diameter, and
movements over their optima, in function of the threshold
epsilon (for 50 nodes).

which nodes perform small and incremental move-
ments. This may be seen or not as a problem, de-
pending on whether the energy consumed by bea-
cons is neglected in comparison to physical move-
ments – these aspects are beyond the scope of the
paper.

Finally, the coverage offered by our solution is
higher by 60% (as already discussed, the coverage
with virtual forces is in fact optimum); and the re-
sulting diameter is smaller by ∼8% for our solution.

5.6. Case C - Independent benchmark

In this last set of experimentation, we study our
virtual force algorithm further in the case C (ar-
bitrarily connected topologies). The purpose is to
study the impact of the threshold epsilon on the
algorithm outcome. For each execution, we mea-
sured the four metrics at the end of the execution.
The results are shown on Figure 18, using a loga-
rithmic scale for epsilon. Note that all the metrics
are here given as a ratio over their optima, includ-
ing for the movement metric: we compared here the
overall (that is, collective sum of) movements per-
formed to the smallest amount of movements that
could have generated the same topological outcome.
This is done as follows: for a given initial topology
Ti and a final topology Tf , we shift Tf so as to
align its barycenter with that of Ti, then compute
the minimum weighted bipartite matching between
both topologies, using the heuristic from [10] with
edge lengths as the weights. The so-obtained sum
of weights is considered as the optimal amount of
movements.
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Interpretation. The parameter epsilon has a
tremendous impact on the outcome. A small value
clearly benefits biconnectivity at the expense of
more movements, and reciprocally. Besides, cover-
age and diameters are both better for smaller val-
ues, although they do not degrade rapidly with the
growth of epsilon. The conclusion is that epsilon
can be used to leverage the trade-off between bi-
connectivity and movements. A more detailed ex-
pression of this trade-off, e.g. as a balance equa-
tion between the four metrics, is planned for future
work.

6. Concluding remarks

The use of virtual forces in general, and spring
forces in particular, to self-deploy swarms of au-
tonomous robots has been advocated the past few
years for their elegance and good properties. Be-
yond being purely localized, virtual forces allow to
maximize the coverage using repulsion, while main-
taining the connectivity using attraction. In this
paper we investigated the joint use of such forces
with a new kind of forces called angular forces,
which have the effect of contracting large angles
formed by two consecutive neighbors at a same
node. These forces have the global effect of bicon-
necting the network, at the same time as reducing
its diameter. The paper presented a step by step
thorough design of these forces, which was mostly
led by physical constraints that we identified and
carefully discussed. Besides these contributions, we
introduced more general design aspects, such as the
clear separation between the weight of a force and
its magnitude, as well as the technique of merg-
ing multiple forces by means of a weighted average,
rather than summing. These approaches eliminates
two systematic sources of oscillation in the nodes
movements.

The benefits of adding angular forces to spring
forces were tested in three different contexts,
namely i) robots released from the same place, ii)
robots distributed at random within a close area
(possibly disconnected), and iii) robots distributed
at random, but connected, in an open area. Simu-
lation results showed that the use of angular forces
was not pertinent in case ii), whereas it was bring-
ing substantial benefits in cases i). A related ques-
tion of interest is whether enabling or disabling
angular forces could be decided adaptively by the
robots themselves, or if this should be set a pri-
ori (by anticipating the context of use). Regard-

ing the case iii), which was the main motivation
of this work, we compared the solution to the only
known distributed (i.e., non centralized) competi-
tor. Where that algorithm was able to achieve
biconnectivity in approximately 50% of the cases,
ours did it in more than 90% of the cases up to 200
nodes (and 95% for less than 100 nodes).

Another aspect that simulations revealed about
the algorithm is the fact that one specific param-
eter – epsilon, the threshold below which a robot
do not move at all – could be highly instrumental
in balancing the trade-off between the quantity of
movements performed, and the ratio of biconnec-
tivity achieved (and at a lesser extent the coverage
and the diameter obtained). It would be interest-
ing to characterize this trade-off further in a future
work, possibly providing an equation that makes
it possible to balance the four metrics at once and
thus allowing the algorithm to adapt easily to sev-
eral contexts and requirements.
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