
HAL Id: hal-00854249
https://hal.science/hal-00854249

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BSF-UED: A Novel Time-Efficient Bluetooth Scatternet
Formation algorithm based on Unnecessary Edges

Deletion
Ahmed Jedda, Arnaud Casteigts, Guy-Vincent Jourdan, Hussein Mouftah

To cite this version:
Ahmed Jedda, Arnaud Casteigts, Guy-Vincent Jourdan, Hussein Mouftah. BSF-UED: A Novel Time-
Efficient Bluetooth Scatternet Formation algorithm based on Unnecessary Edges Deletion. 18th
IEEE Symposium on Computers and Communications (ISCC), Jul 2013, Croatia. pp.886-891. �hal-
00854249�

https://hal.science/hal-00854249
https://hal.archives-ouvertes.fr

BSF-UED: A New Time-Efficient Bluetooth Scatternet
Formation Algorithm Based on Unnecessary-Edges Deletion

Ahmed Jedda∗, Arnaud Casteigts†, Guy-Vincent Jourdan∗, and Hussein T. Mouftah∗

∗ SEECS, University of Ottawa, Canada
{ajedd077, gvj, mouftah}@eecs.uottawa.ca

† LaBRI, University of Bordeaux, France
acasteig@labri.fr

Abstract—We introduce a new time-efficient Bluetooth Scatter-
net Formation (BSF) algorithm, called BSF-UED (Unnecessary-
Edges Deletion). BSF-UED forms connected scatternets determin-
istically. Heuristics are added to make these scatternets outdegree
limited (that is, with no more than 7 slaves per piconet). The
performance of the algorithm is evaluated through a range of
simulation experiments. BSF-UED is compared against some
of the most common BSF algorithms which are BlueStars,
BlueMIS I, BlueMIS II, and BlueMesh. We show that BSF-
UED provides a good balance between the usual scatternets
performance metrics, while being time efficient (nearly 1/3 of
the execution time of BlueMesh). BlueStars remains a faster
algorithm, but with the major flaw of generating scatternets
whose piconets have a large number of slaves.

I. INTRODUCTION

We study in this paper the problem of forming efficient
multi-hop ad-hoc topologies of Bluetooth devices (that is,
the Bluetooth Scatternet Formation (BSF) problem). Our in-
terest in the Bluetooth technology as an enabler for ad-
hoc networking comes from the many advantages that it
offers, such as a relatively low cost of devices, low energy
consumption and low interference with neighboring wireless
devices. Moreover, the wide availability of Bluetooth devices
in mobile phones, smart watches, security sensors, car key fobs
and others is leading toward enabling personal area networks
using Bluetooth as an underlying communication technology.
Moreover, the Bluetooth Special Interest Group (SIG), which
is the group responsible for overseeing its specifications, is
continuously introducing modifications to the specifications
of Bluetooth and promoting the technology as an enabler of
ad-hoc networking (see Bluetooth Smart and Bluetooth Smart
Ready1) or as a cable replacement technology.

The BSF problem comes from the design of the Bluetooth
technology. According to the Bluetooth specifications [1], two
nodes can communicate with each other if they either belong to
the same piconet or to the same scatternet. A piconet is a star
topology of Bluetooth nodes, where one of the piconet nodes
is assigned the role of master while the other nodes are slaves.
A scatternet is an interconnection of piconets. Two piconets
are interconnected through bridges. A bridge connecting two
piconets is a node that belongs to both piconets. The bridge
can be a master in one piconet and a slave in the other

1Bluetooth Smart Ready: http://www.bluetooth.com/pages/Bluetooth-
Smart-Devices.aspx. Last visited on Apr. 19, 2013

(called Master/Slave (M/S) bridge), or it can be a slave in
both piconets (called Slave/Slave bridge). A node may serve
as a bridge to more than one pair of piconets. Similarly,
two piconets may be interconnected through more than one
bridge. Note also that it is not possible to have Master/Master
bridges, since a node can be master to only one piconet.
This means that the number of masters is the same as the
number of piconets. Thus, the terms master and piconet are
used interchangeably in the rest of the paper.

The Bluetooth specifications do not specify algorithms for
Bluetooth scatternets formation. The solutions of the problem
are left open to researchers. The quality of a scatternet can
be measured by many performance metrics. For instance, it is
preferred to minimize the number of masters in a scatternet.
This is because a master controls the flow of packets between
the slaves of its piconet and whence consumes higher energy.
Similarly, it is preferred that piconets have few slaves on aver-
age. Also, the number of bridges, especially M/S bridges, shall
be minimized since a bridge node schedules its tasks between
the piconets it belongs to, and thus, a bridge may consume
more energy. More specifically, an M/S bridge may cause a
degradation in the throughput of its piconet, as all activities in
its piconets are postponed when that bridge serves as a slave.
A related performance metric is the average numbers of roles
per node, measured by the number of piconets a node belongs
to. There are other performance metrics. Some of these metrics
are conflicting. That is improving one performance metric may
degrade another metric.

The large number of such metrics led to the appearance of
a large number of BSF algorithms, each of which concentrates
on improving a small set of metrics. However, many of
these proposed algorithms do not consider the BSF algorithm
execution time as an important factor. For example, the BSF
algorithms that are introduced as time-efficient are often tested
under simple Bluetooth networks simulators such simjava,
bluehoc or in-house simulators. Nevertheless, the complex
specifications of Bluetooth, especially those of the Baseband
and Link layers, have major impact on the execution time of
Bluetooth networks algorithms, and therefore, these complex
specifications must be taken into consideration when designing
any time-efficient BSF algorithm (see [2] for more details).

We introduce in this paper algorithm BSF-UED (BSF
based on Unnecessary-Edges Deletion). The main objective

of BSF-UED is to form scatternets in a short execution time.
Algorithm BSF-UED builds over a well-known time-efficient
BSF algorithm, called BlueStars [3]. However, BSF-UED aims
at fixing a major issue in BlueStars, which is the formation
of piconets with very large size (that is, number of slaves).
A master with large number of slaves is said to have a
large outdegree, since a master-slave relationship between two
nodes u and v is often represented as a directed edge (u, v).
Limiting the outdegree of a scatternet is a performance metric
of significant importance. This is because, according to the
Bluetooth specifications, a piconet can have at most 7 active
slaves. Every other slave must be inactive in the piconet (i.e.
parked). A parked slave of a given master cannot send or
receive messages to or from its master. It is possible to have
a piconet with more than 7 slaves, but such piconets may
have low throughput and may also degrade the throughput
of the scatternet. Note that limiting the outdegree of a given
scatternet may cause the disconnectivity of the scatternet.
BSF-UED guarantees the connectivity of the formed scat-
ternets. In general, BSF-UED focuses on three conflicting
performance metrics: 1) the execution time, 2) the scatternet
connectivity, and 3) the outdegree limitation. At the same time,
BSF-UED forms scatternets that are efficient with respect to
many performance metrics.

Algorithm BSF-UED performance is studied using detailed
simulation experiments. We use the UCBT (University of
Cincinnati BlueTooth) simulator, which is a simulation library
built over NS-2, to implement our experiments. BSF-UED is
compared against algorithms BlueStars, BlueMesh, BlueMIS I
and BlueMIS II. A brief idea about these algorithms is given
in the following. A detailed literature survey is omitted due
to lack of space. We refer the readers to [4] for a com-
prehensive literature survey. BlueStars [3] forms, in a time-
efficient manner, connected scatternets that have a low number
of piconets and M/S bridges, but potentially a large number
of slaves per piconet (more than 7). BlueMesh [5] offers
similar qualities together with connectivity, but at the cost of
a long execution time. BlueMesh is considered as one of the
best algorithms in the literature (see [4]). To our knowledge,
BlueMIS I is the first local distributed BSF algorithms (that
is, it has a time complexity of O(1)). BlueMIS I [6] generates
in a time-efficient manner scatternets that are connected and
outdegree-limited but with very high number of piconets. In
order to overcome this issue, a set of simple rules were
introduced in [6]. These rules, which were called BlueMIS II,
are executed over BlueMIS I. The algorithms we study in this
paper, including algorithm BSF-UED, have unique features.
For instance, these algorithms do not assume any knowledge
of the nodes positions; which is a strong assumption that
significantly simplifies the procedure of scatternet formation
(see [7] for a BSF algorithm that uses this assumption). These
algorithms can work in multi-hop networks and not only in
single-hop networks, and these algorithms form mesh-like
scatternets which increases the reliability of the scatternet in
comparison to tree-like scatternets such as [8].

Simulation results show that the execution time of BSF-

UED is approximately 1/3 the execution time of BlueMesh,
while BSF-UED is shown to form scatternets with similar
properties to those of BlueMesh. Most of the scatternets
obtained during the simulation experiments were outdegree
limited to 7. Only one scatternet out of 5000 formed scatternet
is not outdegree limited and has a maximum outdegree of
8. We show that BSF-UED forms scatternets with a low
average number of roles per node. The details of simulation
experiments are given in Section IV.

The paper is organized as follows; Section II gives a
formal definition of the BSF problem. Sections III describes
the algorithm. Section IV presents and discusses simulation
results, and section V concludes the paper.

II. NOTATIONS AND ASSUMPTIONS

We model the input network as an undirected graph G =
(V,E), where V is the set of Bluetooth nodes, and an edge
(u, v) ∈ E if nodes u and v are neighbors. Two nodes are
neighbors if they are in the radio range of each other, and both
discovered each other. A scatternet is modeled as a directed
subgraph S = (V,E′), such that if (u, v) ∈ E′ then (u, v) ∈ E
and (v, u) /∈ E′. A directed edge (u, v) ∈ S indicates that u is
a master of v. A scatternet is connected if the directed graph
S is weakly connected. This is because the communication
between a master and its slave can be in both directions.

Each node is assumed to have a unique identifier. We say u
is larger than v, denoted u � v, if the identifier of node u is
larger than v’s. All the nodes have the same radio range. It is
assumed that each node knows nodes within its radio range.
That is, the graph G = (V,E) is a unit disk graph.

III. ALGORITHM DESCRIPTION

BSF-UED runs in two phases. The first phase forms isolated
outdegree limited scatternets, which are then interconnected
during the second phase. Using local rules, each pair of nodes
sharing an edge e gives a distinct color to e. This coloring is
used then to categorize the edges into three categories C1, C2
and C3. The edges of C1 may be necessary for connectivity,
but they do not cause the outdegree of the scatternet to
exceed 7. The edges of C3 do not affect the connectivity
of the scatternet, but may affect its outdegree limitation. The
edges of C2 may be necessary for connectivity and may also
impact the outdegree limitation of the scatternet. Given this
categorization, we give priority to the edges of category C1.
We avoid the use of edges of category C2, and we use the
edges of C3 only when needed to avoid the disconnectivity
of the scatternet. We explain in the following the procedures
of phase 1 and phase 2.

A. Phase 1: piconet construction

The first phase generates a forest of disjoint outdegree-
limited piconets such that every node is either a master or
a slave in exactly one piconet. Since each node has a unique
identifier, there must be at least one local maxima (that is, a
node that has an identifier larger than all its neighbors’). This
property is used to initiate a wave-like communication process
where any node u initially waits to be contacted by all its

larger neighbors. Once u is contacted by its larger neighbors,
it starts contacting its smaller neighbors. Each node u has a
set of neighbors called preys (preys(u)) which u attempts to
capture as slaves if u is not already slaved by another master.
Node u cannot slave a prey v if v is already slave to another
master. This forms disjoint piconets.

The set preys(u) contains initially all the smaller neighbors
of u. Thus, the size of preys(u) may exceed 7, and the
procedure described above may forms piconets with more
than 7 slaves. We introduce therefore the concept of nodes
delegation that restricts u from capturing more than 7 slaves
in phase 1. Each node u stores a variable called its piconet
capacity, denoted ϕ(u), which is initially set to 7. A node
u uses ϕ(u) to limit the number of slaves in its piconet, if
it becomes a master. Let’s assume that the size of preys(u)
is larger than 7. If node u is already contacted by all its
larger neighbors, or if it has no larger neighbors then u
starts the following procedure. First, u selects the node with
maximum identifier in preys(u), called v. Node v is deleted
from preys(u). Node u finds a subset of common neighbors,
denoted CN(u, v), that are neighbors to both u and v and have
identifiers smaller than both u and v. Two cases may occur.
If CN(u, v) = ∅, then u attempts to capture v as a slave.
Otherwise, u delegates v to capture the common neighbors
in CN(u, v) to v and does not attempt to capture v or any
neighbor in CN(u, v). In such case, u deletes the delegated
neighbors from its preys set preys(u). The above process
repeats until u has enough capacity to capture the remaining
neighbors (that is, |preys(u)| ≤ ϕ(u)). Once this condition is
true, node u attempts to slave all its neighbors in preys(u).

For ease of analysis, we give a distinct color to each edge
(u, v) ∈ E, such that u � v. The edge (u, v) is colored black
if u is the master of v. The edge (u, v) is colored silver
if u attempted to slave v but v is already slave to another
node w. Whenever u delegates to v some common neighbors
CN(u, v), the edge (u, v) is colored blue. Meanwhile, the
edges {(u,w)|w ∈ CN(u, v)} are all colored red. A node u,
that is slaved by a larger neighbor, colors every edge (u, v)
with a green color, where v is a smaller neighbor to u. An
example illustrating the procedures of of phase 1 is given in
Figure 1.

1) The piconet capacity: Note that whenever a node u
attempts to slave a node v, the piconet capacity of u (i.e.
ϕ(u)) is decreased by one. This happens whether the attempt
is successful (i.e. (u, v) is black) or if it is not successful
(i.e. (u, v) is silver). It should be noted also that whenever
an edge (u, v) is colored red, node v decreases its piconet
capacity ϕ(u) by one. The intuition behind this is that there
is a chance that u will be a master of v in phase 2. Note that
if (u, v) is colored red, then there must be a node w that is
neighbor to both u and v, such that u � w � v, and (u,w)
is colored blue. That is, v is delegated to w. Note also that
w may slave v in phase 1, and one way to interconnect the
piconet w and u would be through v being a master of u.

2) How to find CN(u, v) ?: We describe in the following
the procedure of selecting a set of common smaller neighbors
CN(u, v) to be delegated to v. Let’s define T = {preys(u)∩

Ns(v)}. This set contains the nodes that can be potentially
part of CN(u, v). We let CN(u, v) contains the largest subset
T ′ ⊆ T , where the size of T ′ is at most 7, and the size of
the set T\T ′ is at least ϕ(u). Therefore, CN(u, v) contains
min(|preys(u)|−ϕ(u), 7, |T |) of the set T . We assume that the
nodes of CN(u, v) are those that have the largest identifiers
in T .

Correctness of Phase 1

Given the input graph G = (V,E), the procedures of
phase 1 always terminate correctly. We present the following
results without formal proofs due to lack of space. First, let
Ecolor the subset of those edges that are colored color (e.g.,
Eblack = {(u, v) ∈ E : c(u, v) = black, u � v}).

1) Let Gp = (V,Eblack) be a spanner subgraph of the input
graph G = (V,E), then Gp is a forest of disjoint piconets.

2) The set of black and silver edges, if added to the
scatternet, do not affect the outdegree limitation of the
scatternet given ϕ(u) is initially set to 7. Formally, let’s
Gbs = (V, {Eblack ∪ Esilver}) be the spanner subgraph
of the input graph G = (V,E) with the set of edges
{Eblack∪Esilver}. Then, after phase 1, Gbs is outdegree-
limited to 7, given that ϕ(u) is initially set to 7.

3) The set of blue edges are not necessary for the connec-
tivity of the input graph G = (V,E). This applies to
every blue edge (u, v) and the corresponding edge (v, u).
Formally, let

−→
E = {(u, v) : (u, v) ∈ E, u � v}, let−→

E blue = {(u, v) : c(u, v) = blue, (u, v) ∈
−→
E }, then the

graph G1 = (V, {
−→
E −EDblue}) be the spanner subgraph

of the input graph G = (V,
−→
E). Then, after the phase 1,

G1 is connected.

The procedures of phase 1 are implemented in a wave-
like communication rounds. That is, a node cannot start
executing the algorithm except if it receives a message from
all its larger neighbors. This wave-like communication and the
simple delegation rules of phase 1 are major reasons, but not
the only ones, behind the time efficiency of our algorithm.

B. Phase 2: Piconets Interconnection

Abstractly, phase 2 creates a meta-graph G = (V, E) in
which every piconet formed in phase 1 is a vertex in V .
Two general steps are performed in phase 2. We first define
a set of edges E that make G connected, such that each
of these edges corresponds to a path in the original input
graph G = (V,E). We then apply a technique inspired from
BlueMIS I [6] in order to eliminate some edges of E while
keeping G connected. Essentially, each node u in V constructs
a maximal independent set of its larger neighbors, denoted
MISl(u). (A set of nodes is said independent if it does
not contain any pair of neighbor nodes; it is maximal if the
addition of any node makes it no more independent.) Then, u
interconnects only to the nodes in MISl(u). This technique
helps in heuristically minimizing the average and maximum
outdegree of the scatternet and the number of bridges. We
show in the following how the set E is constructed.

40 14

13
4

35

24

5
8

9
3

12

30

A

40 14

13
4

35

24

5
8

9
3

12

30

B

40 14

13
4

35

24

5
8

9
3

12

30

C

B

R

G

40 14

13
4

35

24

5
8

9
3

12

30

D

B

R

G

G G

GG
G

G

G

G

S

S
S

40 14

13
4

35

24

5
8

9
3

12

30

E

Fig. 1. Example illustrating the procedures of phase 1 executed over the graph shown in (A). Initially, nodes 40 and 30 starts the execution of the algorithm
since they are the largest in their neighborhoods. Node 40 and node 30 slave node 35 and 14 respectively, since they are the largest preys (B). Both 40 and
30 decrease the piconets capacities (i.e. ϕ(40) and ϕ(30)). Node 40 captures node 30 because preys(40) is greater than ϕ(40) and the set of common
neighbors CN(u, v) is an empty set. The next target prey of node 40 is 24 (C). The size of the set preys(40) is greater than ϕ(40) which is equal to 6. Thus,
the edge (40,24) is colored red, and the common neighbors between 40 and 24 are 5 and 8. The CN(40, 24) however contains 8 only (see Section III-A2).
Node 8 therefore is delegated to 24. Note that a slaved node inform all its smaller neighbors of its status once it is contacted by all its larger neighbors. This
is done by coloring the shared edges with green. Node 40 attempts to capture 14 and 4 which are already captured by node 30. It also attempts to capture 5
which is already captured by 24 (D), and hence the edges (40, 14), (40, 4) and (40, 5) are colored silver.

Two neighbor piconets u and v share an edge (u, v) ∈ E
if their masters u and v can be interconnected through one
of the path types shown in Table I. Two piconets can be
interconnected via 3-hop, 2-hop or 1-hop paths. The 3-hop
paths contains two black edges and one green edge. The
2-hop paths must include at least one black edge, whereas
1-hop paths include only one edge colored red connecting
two masters. Each path type has a priority such that if more
than one path exists between two neighbor piconets, then we
consider only the path with the highest priority. The 1-hop
paths are given the lowest priority. We avoid such paths since
using them for the interconnection process may increase the
piconet size of one of the two masters to more than 7 slaves.
We give 3-hop paths the highest priority.

The interconnection rules between neighbor piconets is
shown in Table I. The rules are shown in priority. That
is, interconnection rule I-rule 1 has a higher priority than
I-rule 2a, etc We show also in Table I the operation of
the interconnection rule (that is, what master/slave relationship
should be added in order to interconnect the two neighbor
piconets). Note that in each of the interconnection rules,
it is sufficient to add only one master/slave relationship to
interconnect the two neighbor piconets.

To implement phase 2, each master u collects from each
slave su. The slave su sends information about each neighbor
wi to u. This information is 1) the master of wi, 2) the piconet
capacity value of wi and 3) the color of the edge (su, wi).
Upon the termination of this process, a master u discovers all
its neighbor piconets. A master u knows also all the possible
interconnection paths connecting it to its neighbor piconets.
This procedure, therefore, constructs the meta-graph G.

The next step is to let each node u ∈ G (that is, each
piconet’s master) construct a maximal independent set of its
larger neighbor piconets (denoted MISl(u)). The construction
is done in a wave-like communication process, as it is the

case of phase 1. Each master u waits to be contacted by all its
smaller neighbor piconets’ masters. A master u is contacted by
a master of a neighbor piconet via one of the paths described in
Table I. Once master u is contacted by all its smaller neighbor
piconets, it selects the neighbor piconet v with minimum larger
identifier - that is not contacted yet - (where the identifier of
a piconet is the identifier of its master). Master u then selects
the highest priority interconnection rule to interconnect piconet
u and v. The interconnection is done via a gateway node (as
shown in Table I). Let denote such a gateway as su. A gateway
su of piconet u may be a slave to of u or it could be u itself.
Master u sends to su a message containing the identifier of
the node sv that must be interconnected with, where sv and su
are neighbors and sv is the gateway of the neighbor piconet v.
Master u also informs su about the interconnection operation
(that is, su is master of sv or the opposite).

Let assume that su is the gateway of u that is interconnected
to piconet v. Upon the completion of the interconnection
procedure, su requests from v all its neighbor piconets Np(v).
The gateway su informs u about any piconet w ∈ Np(u) that is
also a larger neighbor piconet of v. For each piconet w with
such property, piconet u assumes that w is interconnected.
Formally, piconet v would be included in MISl(u), but every
piconet w is not in MISl(u). For every neighbor piconet w
with such property, master u sends a message to w to inform
it that there is no necessary interconnection between both
piconets. This message is sent via one of the gateways of
u and w.

We give in the following a remark about selecting the best
interconnection rule. If a master u finds that there are multiple
paths to interconnect with a neighbor piconet v, such that all
these paths have the same priority, then u selects the path that
include the gateway su that has the smallest piconet capacity
ϕ(su). Moreover, whenever a gateway su becomes a master
to another gateway, the piconet capacity of su (ϕ(su)) is

TABLE I
THE SET OF INTERCONNECTION RULES IN PHASE 2 (ASSUME THAT u � v)

Interconnection rule Illustration Operation

I-rule 1 u su sv v u su sv v
G

su captures sv .

I-rule 2a u su v u su v
G

su captures v

I-rule 2b u su v u su v
S

v captures sx or u captures sx

I-rule 2c u sv v u sv v
R

sv captures u

I-rule 3 u v u v
R

v captures u

decreased by one.

C. Correctness of Phase II

We present in the following some results that show the
correctness of phase 2 and whence algorithm BSF-UED. We
omit the proofs for lack of space.

1) Let G = (V, E) be such that (u, v) ∈ E if and only if u
and v are two piconets that can be interconnected with
any of the interconnection rules shown in Table I. Then,
G is connected.

2) If a graph G = (V,E) is connected, then the graph G′ =
(V, {(u, v) ∈ E|v ∈ MISl(u)}), where MISl(u) is the
maximal independent set of larger neighbors of u, is also
connected.

3) The graph G remains connected as long as each vertex
u ∈ V keeps an edge (u, v) for each v ∈ MISl(u),
where MISl(u) is the maximal independent set of larger
neighbors of u. Note that this is a consequence of the
previous result.

4) The graph S that includes all the master/slave relation-
ships built in phase 1 and phase 2 is a connected scatternet
that include all the nodes in V .

One property of the previous interconnection procedure
is that if no red edges used for interconnection, then the
algorithm forms outdegree limited scatternets. Note that black
and silver edges do not cause excess in the outdegree of the
scatternet, while blue edges are not used in the scatternet
construction and do not cause disconnectivity of the scatternet
(see Section III-A). Therefore, it remains to show that green
edges do not cause excess in the outdegree limitation of the
scatternet. Consider a scenario in which a node u is master
to node v. In the interconnection piconet, node v shall use
more than 7 green edges to connect with neighboring piconets.
Assume that node v must be the master of all the nodes on
the other end of its green edges (call them green nodes of
v). Let’s assume that interconnection rules not involving red
edges are not used. Then, there is a maximal independent set
of the green nodes of v that is of size at most five. This is
because edges between these green nodes are either silver or
green. This result, however, assume that red edges are not used
in the interconnection process.

We adapt to these results by introducing the following rule
that improves the properties of the scatternet formed. This rule

eliminates virtually all outdegree unlimited piconets, while not
increasing the execution time of the algorithm. The rule is as
follows. Assume that piconet u assigned gateway su to become
master of gateway sv . Assume su is already a master to 7
slaves. Node su checks if sv is a master to less than 7 slaves.
If this is the case, then sv becomes the master of su instead.
If su had less than 7 slaves, this rule is not applied.

IV. SIMULATION EXPERIMENTS

We compare BSF-UED against BlueStars, BlueMesh,
BlueMIS I and BlueMIS II. We used an improved version
of BlueMIS I introduced in [9]. This improvement gives the
same scatternets of BlueMIS I but in a shorter execution time.
BlueMIS II execution time is also improved using the same
methods of [9]. The performance metrics we consider are:
1) execution time, 2) maximum piconet size (or maximum
outdegree), and 3) average number of roles per node. Other
performance metrics are included in a longer version of this
paper. Our simulation experiments are conducted using the
UCBT simulator [10]. The networks are modeled as unit disk
graphs. Each graph is constructed by placing points uniformly
at random in a 30×30m2 plane. An edge connects two points
if the euclidean distance between them is less than a threshold
t set to 10 m, which is generally taken as the radio range of
Bluetooth. A graph is considered for experiment only if it was
connected. We form five sets of graphs, each with a different
size (30, 50, 70, 90 and 110 nodes). Each set consists of 1000
graphs.

Figure 2 shows a comparison of the execution time of the
studied algorithms. The reason behind the outperformance
of BlueStars, BlueMIS I and BSF-UED is the use of sim-
ple rules to form the scatternet and the fewer number of
communication rounds in these algorithms, where a commu-
nication round is defined as a round in which each node
sends and receives a message to and from all its neighbor
nodes. We studied different implementations of such rounds
in [2]. Algorithms BlueStars, BlueMesh and BSF-UED use
a wave-like communication round implementation, whereas
BlueMIS I and BlueMIS II were modified to use such a wave-
like communication. This wave-like communication round
implementation, called OrderedExchange, was shown to be
a time-efficient implementation of communication rounds for
Bluetooth networks. Based on this analysis of execution time,
BlueStars outperforms all other algorithms with respect to

 0

 5

 10

 15

 20

 25

 30

 35

 40

 30 40 50 60 70 80 90 100 110

Ti
m

e
(s

ec
on

ds
)

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II
BSF-UED

Fig. 2. Comparison of the execution time

 0

 5

 10

 15

 20

 25

 30

n = 30

n = 50

n = 70

n = 90

n = 110

N
um

be
r o

f s
la

ve
s/

pi
co

ne
t (

pi
co

ne
t s

iz
e)

Number of nodes

BlueStars
BlueMesh
BlueMIS I
BlueMIS II

BSF-UED H1

Fig. 3. Comparison of the maximum piconet size

this performance metric, since it simple and it uses very few
communication rounds. BlueStars however forms scatternets
with very large sized piconets (see Figure 3). BlueMesh fixes
the issue of large sized piconets of BlueStars with the cost of
a higher execution time, which is about 3 times the execution
time of BSF-UED. BlueMIS I has a similar execution time of
BSF-UED. Note that this is execution time is obtained from
the improvements we introduced in [9]. Note that the original
execution time of BlueMIS I is significantly larger than that
shown in Figure 2 (see [9] for more details).

Figure 3 shows the average maximum outdegree of the
scatternets formed. BlueMIS II and BlueStars are the worst
algorithms with respect to this metric. In networks of 110
nodes, these algorithms may form scatternets with maximum
outdegree equals about 30 on average. BlueMIS I forms
scatternets with the smallest average maximum piconet size.
This is because the slaves of a master in BlueMIS I is a
maximal independent set of its neighbors, which is of size at
most 5 in unit disk graph and it is less on average. BlueMesh
on average forms scatternets of at most 7. For BSF-UED, we
find that most scatternets formed are outdegree limited. In
fact, in our experiments, we find that only one scatternet (out
of 5000 experiments) is outdegree unlimited (with maximal
degree 8!). BSF-UED is very close to the optimum, which
makes us believe that additional heuristics to the algorithms
could be further improved to achieve this deterministically.

The number of roles of a node is the number of piconets
it belongs to. The average number of roles per node is the

TABLE II
COMPARISON OF THE AVERAGE ROLE PER NODE

BlueStars BlueMesh BlueMIS I BlueMIS II BSF-UED
30 1.37 1.61 2.37 1.94 1.46
50 1.30 2.06 2.73 2.24 1.67
70 1.25 2.56 2.98 2.45 1.94
90 1.21 2.96 3.11 2.57 2.21
110 1.18 3.27 3.21 2.67 2.48

sum of number of roles among all nodes divided by the
number of nodes. The results are shown in Figure II. BlueStars
outperforms all other algorithms in this metric. This is mainly
due to the large sized piconets of BlueStars scatternets. BSF-
UED, on the other hand, achieves an average of 2.4 roles per
node outperforming whence the other algorithms that do not
suffer from non-limited outdegree scatternets.

V. CONCLUSION

Algorithm BSF-UED is shown to be time-efficient in com-
parison with major similar BSF algorithms, while at the same
time achieve a good balance between the quality metrics of
scatternets. Despite not achieving outdegree limitation deter-
ministically, BSF-UED rarely generates outdegree unlimited
scatternets. A future work is to solve this issue of BSF-
UED. We see that the well studied BSF problem may still be
open for new improvements. An important problem in BSF is
the generation of outdegree limited scatternets. This problem,
mostly studied for complete and unit disk networks, is not
thoroughly studied for the case of arbitrary networks, which
are obviously more practical.

REFERENCES

[1] B. SIG, Bluetooth Specifications ver4.0, 2010.
[2] A. Jedda, G.-V. Jourdan, and N. Zaguia, “Towards better understanding

of the behaviour of Bluetooth networks distributed algorithms,” Interna-
tional Journal of Parallel, Emergent and Distributed Systems, vol. 27,
no. 6, pp. 563–586, 2012.

[3] C. Petrioli, S. Basagni, and M. Chlamtac, “Configuring BlueStars: Mul-
tihop scatternet formation for Bluetooth networks,” IEEE Transactions
on Computers, vol. 52, no. 6, pp. 779–790, 2003.

[4] I. Stojmenovic and N. Zaguia, Bluetooth scatternet formation in ad hoc
wireless networks. Auerbach Publications, 2006, ch. 9, pp. 147–171.

[5] C. Petrioli, S. Basagni, and I. Chlamtac, “BlueMesh: degree-constrained
multi-hop scatternet formation for Bluetooth networks,” Mobile Net-
works and Applications, vol. 9, no. 1, pp. 33–47, 2004.

[6] N. Zaguia, Y. Daadaa, and I. Stojmenovic, “Simplified bluetooth scatter-
net formation using maximal independent sets,” Integrated Computer-
Aided Engineering, vol. 15, no. 3, pp. 229–239, 2008.

[7] X. Y. Li, I. Stojmenovic, and Y. Wang, “Partial Delaunay triangulation
and degree limited localized Bluetooth scatternet formation,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 4, pp.
350–361, 2004.

[8] F. Cuomo, T. Melodia, and I. F. Akyildiz, “Distributed self-healing
and variable topology optimization algorithms for QoS provisioning
in scatternets,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 7, pp. 1220–1236, 2004.

[9] A. Jedda, G.-V. Jourdan, and H. T. Mouftah, “Time-efficient algorithms
for the outdegree limited bluetooth scatternet formation problem,” in
IEEE Symposium on Computers and Communications (ISCC), 2012.
IEEE, 2012, pp. 132–138.

[10] Q. Wang, “UCBT - Bluetooth extension for NS2 at the
University of Cincinnati,” Tech. Rep. [Online]. Available:
http://www.cs.uc.edu/ cdmc/ucbt

