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Abstract

It is well established that concrete durability strongly depends on the capillary porosity of the mate-

rial. Hence, structural health monitoring of concrete structure could take advantage of concrete microp-

orosity monitoring. To this end, a new method for the in situ non-destructive testing of capillary porosity

in cementitious materials has been proposed. A sensing device that seems well suited to this application

is a capacitive ultrasonic transducer with a characteristic size of 1 µm. It is to be embedded in the ma-

terial. Its vibrating membrane is made of aligned carbon nanotubes forming a thin layer with a typical

thickness of 1 nm. It generates acoustic waves of micrometric wavelength into water-filled micropores,

aiming at measuring their properties.

The present paper focuses on the numerical simulation of the embedded sensor. In order to properly

account for viscous effects in fluids at the micrometric scale, we have developed a specific computational

method for the visco-acoustic modelling of a microplate vibrating between 10 MHz and 2 GHz in a

water-filled domain of micrometric size. Our approach is based on the condensation of the fluid part of

the fluid-structure problem on the structure by a finite element method, and on a spectral approximation

of the structural equations.

The numerical results indicate that the fluid domain is resonant despite the viscous terms, which

causes a frequency downshift of the resonances and a decrease of the quality factor. In the coupled sys-

tem, the plate does not perturb the fluid resonances, whereas the plate resonances are strongly upshifted

by the water load. The resonance frequencies of the system are shown to display a clear dependence on
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the pore width, which makes the device a good candidate as a porosity sensor.

Key words: fluid-structure interaction, elasto-acoustics, microfluidics, ultrasonic transducer, viscosity,

water
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1. Introduction

Within the framework of structural health monitoring for civil engineering [1, 2], a new method

[3, 4] for the non-destructive testing of capillary porosity of cementitious materials has been proposed.

It is based on dispersing in the studied material a large number of microsystems equipped with specific

sensing devices able to collect microscale information on the material microstructure.

One of the sensing devices envisioned for this application is a high frequency capacitive Microma-

chined Ultrasonic Ttransducer (cMUT) with a characteristic size of 1 µm. Its vibrating membrane is

made up of aligned carbon nanotubes [4, 5]; it has a high Young’s modulus (0,5 to 1 TPa) and a low

thickness (1 to 5 nm). The waves emitted by this prospective device are expected to propagate mostly in

the fluid component of the microstructure. Due to its micrometric size, it should be able to excite pores

individually, so that the collected information should be resolved at the microscale. From the measure-

ments provided by a large number of such transducers, one plans to derive statistically morphological

information on the microporosity [6].

The present paper describes a numerical visco-acoustic model suited for the design of such a de-

vice and its use in a confined fluid medium of micrometric size. More precisely, the method yields the

shape and the amplitude of membrane vibrations depending on the medium and the membrane charac-

teristics. The ultimate purpose of this method, which lies beyond the scope of this paper, is to optimize

technological parameters and to identify potentially observable characteristics of the porosity.

First, we identify the relevant equations from the literature. We then suggest a formulation for the

elasto-acoustic problem and a fast numerical method, whose convergence is studied numerically. Finally,

we present the results obtained by the method.

Main result is the resonant behaviour of the fluid system, which is only weakly perturbed by coupling

with the plate. The plate behaviour is strongly perturbed by the presence of the fluid, which induces a

significant added stiffness effect on the plate.
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The resonance frequencies of the system are shown to display a clear dependence on the pore width,

which makes the device a good candidate as a porosity sensor.

2. State of the art

2.1. Non viscous modelling of cMUT devices

A cMUT device consists of a metallic microplate suspended above an electrode and actuated by ca-

pacitive effect. When one considers the behaviour of a cMUT device interacting with a fluid environment,

the fluid medium is most often modelled in the framework of non-viscous wave acoustics: the dissipative

terms of Navier-Stokes equations are fully neglected, so that the fluid system is ruled by the d’Alembert

wave equation with Dirichlet boundary conditions for the normal velocity only.

2.2. Significant role of the dissipative terms in microfluidics

The scale of the fluid domains (100 nm to 10 µm) considered in the present study anchors us in the

field of microfluidics: the Reynolds number, proportional to the characteristic size of the fluid domain,

is much smaller than at the macroscopic scale. Hence one expects that dissipative terms, negligible in

larger systems, cannot be neglected in microfluidics.

This is confirmed experimentally: water flows in micro-channels with a size ranging between 2 µm

and 100 µm display a boundary layer with thickness comparable with the size of the channel[7, 8]. The

acoustic behaviour of fluids in the microchannels of ink-jet printers (with diameter typically ranging from

10 µm to 100 µm) is in good agreement with a narrow-channel model including fluid viscosity [9].

2.3. Visco-thermal elasto-acoustics

These elements point out the need to integrate viscous terms in the fluid equations: it is the purpose

of visco-thermal acoustics, which is based on the use of the fully-linearized Navier Stokes equations

[10, 11, 12, 13, 14, 15]. From the fully linearized equations, several simplified models can be derived

[12], such as the narrow-channel [9], the boundary layer impedance [16], the low-reduced-frequency [17]

or the low-Reynold’s number [13] models.

The solutions to the visco-thermal acoustic equations can be determined analytically for specific ge-

ometries [11] and for some of the simplified models. Several numerical methods based on finite elements

[14, 15] and boundary elements [18, 19] are also available.
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These methods have been extended to elasto-acoustics: for simple 2D or axisymmetrical 3D geome-

tries and for simplified visco-thermal acoustic models, analytical solutions to the elasto-acoustic problem

may be derived [20, 12, 13]. The fully-linearized elasto-acoustic problem is usually solved numerically

with boundary elements [21]. For some simplified problems, such as the boundary layer impedance [16]

and the narrow channel models [20], finite elements based methods have also been developed.

The specificity of our elasto-acoustic problem (higher frequencies, larger bandwidth and lower size,

water instead of air) excludes the use of any of the available simplified models. Moreover, there is no

proof that the rotational velocity can actually be neglected over the whole range of parameters, which

rules out the use of the existing boundary elements methods.

These remarks justify the introduction of a different approach for visco-thermal elasto-acoustic nu-

merical modelling, which will be discussed in the rest of this paper. The main originality of our ap-

proach is to solve the fully-linearized visco-thermal elasto-acoustic problem using a mixed finite element-

spectral approach, which do not require the assumption of null rotational velocity and is significantly

more flexible than boundary elements.

2.4. Breakdown of continuity in water microfluidics

In order for the Navier Stokes equations to describe properly a fluid, the fluid must behave as continu-

ous medium. The Knudsen number Kn =
mean free path

characteristic size indicates whether a continuous model is adapted

(Kn < 0.01) or if a semi-discrete [22, 23] or discrete [24, 25, 26] model is needed to account for nanoscale

phenomena such as adsorption on walls, electrostatic forces or steric exclusion [27, 28, 29].

In the case of liquid water at ambient pressure and temperature, the mean free path is around 2 Å, so

that the continuity hypothesis theoretically stands down to 200 nm of characteristic size. A metaanalysis

of published experimental data has validated this hypothesis [30]. As a consequence, as we consider

only a system with characteristic size larger than 100 nm, we do not take into account in our problem the

possibility of continuity breakdown.

3. Formulation of the elasto-acoustic problem

Notations: if f is a given function on the domain Ω, let < f >=
1

Vol(Ω)

∫
Ω

f (M) denote its average

on Ω, δ f = f−< f > the variations around the average, f̃ a non-dimensional function associated to δ f
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and F the Fourier transform of f̃ . If f is a complex number, let f be its conjugated complex and | f | its

modulus. Vectors, gradient, tensors and matrices are written in bold letters. Let us write i =
√
−1.

3.1. Geometry

We consider a clamped plate with one free side. Its other side is in contact with distilled water filling

a closed domain with straight boundaries. The closed domain stands for a smooth-walled, unconnected

pore of the studied material surrounded by an infinitely rigid matrix.

The plate is rectangular with size lx and ly. The fluid domain (pore) Ω is a rectangular parallelepiped

with size lx, ly and lz (Figure 1 left). The plate forms the left side of the parallelepiped, denoted Γs. Let

us denote ∂Ω the boundary of Ω, Γ f = ∂Ω−Γs and ∂Γs the boundary of Γs. In the rest, we call lx the

domain height, ly its depth and lz its width.

For the sake of computational efficiency, we resort to twodimensional computations for the paramet-

ric studies. In 2D, the chosen model geometry is a section of the 3D domain (Figure 1 right), that is a

rectangle with height lx and width lz.

Figure 1: Model geometries: (a) 3D setting; (b) 2D setting.

3.2. Fluid equations

3.2.1. Notations

Let us first establish the equation that govern the fluid evolution. We assume that the water in the

pore behaves like a compressible Newtonian fluid. There is no mean flow nor volume forces nor heat

generation. Acoustic flows are laminar.
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The state variables of the fluid are p the pressure, ρ f the volume mass, θ the temperature, u f the

velocity. Let us denote δp, δρ f , δθ and δu f the small amplitude variations of the state variables around

their average values p0, ρ
f
0 , θ0 and u f

0 = 0. Depending on the context, let us call grad the 2D or 3D

gradient and Id the 3× 3 or 2× 2 identity tensor. According to these definitions, the tensors e(δu f ) =

1
2(grad δu f + gradt

δu f ) and δσ = (−δp+ λdiv δu f )Id+ 2µe(δu f ) denote respectively the small

amplitude variations of the linearized strain and stress tensors.

The system is studied at ambient pressure p0 = 1 atm and ambient temperature θ0 = 20◦C. The

following parameters are assumed to be constant over Ω: density ρ
f
0 = 1000 (kg.m−3), speed of sound

c = 1500 m.s−1, dynamic viscosity µ = 1.0× 10−3 kg.m−1.s−1, second viscosity λ = −2
3 µ = −6.7×

10−4 kg.m−1.s−1, thermal conductivity K = 0.62 W.m−1.K−1, isothermal compressibility κT = 4.6×

10−10Pa−1, isobaric specific heat Cp = 4.2× 103 J.kg−1.K−1, isobaric thermal expansion coefficient

α = 2.1×10−4 K−1.

3.2.2. Linearized equations

According to widespread literature on visco-thermal acoustics (for example [11, 12]), the fluid be-

haviour can be described by the following equations:

∂tδρ
f +ρ

f
0div δu f = 0 (1)

ρ
f
0∂tδu

f =−grad δp+λgrad(div δu f )+2µdiv e(δu f ) (2)

Cpρ
f
0∂tδθ−θ0α∂tδp−K∆θ = 0 (3)

δp =
δρ f

ρ
f
0κT

+
αδθ

κT
(4)

Equation (3) follows from the combination of the linearized energy conservation equation (for exam-

ple [10]) with the linearized form δh =Cpδθ+ 1−θ0α

ρ
f
0

δp of the enthalpy equation h = h(p,θ). Equation

(4) is the linearized form of the fluid state equation p = p(ρ f ,θ).

Let δg(t) denote the small amplitude variations of the normal force density on the boundary Γs. Let

n (resp. t) denote the unit outer normal (resp. tangential) vector to Γs. The tangential component of the

fluid velocity on Γs vanishes. The fluid verifies the no-slip condition on Γ f . The temperature is set at θ0
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along the boundary, so that δθ = 0. The linearized boundary conditions read:


δθ = 0 on ∂Ω

δu f .t= 0 and n.δσ.n=−δg(t) on Γs

δu f = 0 on Γ f

(5)

3.2.3. Non-dimensional transformation

Let us write p̃ = δp
p0

, ρ̃ f = δρ f

ρ
f
0

, θ̃ = δθ

θ0
, t̃ = tc

lx
, ũ f = δu f

c , σ̃ = δσ

ρ
f
0 c2

, x̃ = x
lx

, ỹ = y
lx

, z̃ = z
lz

,l̃x = lx
lx
= 1,

l̃y =
ly
lx

, l̃z =
lz
lx

, ˜grad = lxgrad, ˜div = Id : ˜grad, ∆̃ = ˜div ˜grad and ẽ= 1
2(

˜grad + ˜gradt
).

After substitution of the dimensional parameters in the equations and elimination of ρ̃ f using the

equation 4, the initial-boundary value problem reads:



∂t̃ p̃−B∂t̃ θ̃+A ˜div ũ f = 0 on Ω̃

∂t̃ũ
f + 1

M2
˜grad p̃− 1

Re2
˜grad( ˜div ũ f )− 2

Re
˜div ẽ(ũ f ) = 0 on Ω̃

∂t̃ θ̃− 1
C ∂t̃ p̃− 1

Pe ∆̃θ̃ = 0 on Ω̃

θ̃ = 0 on ˜∂Ω

ũ f .t= 0 and n.σ̃.n=−g̃x(t) =− δgx(t)
ρ

f
0 c2

on Γ̃s

ũ f = 0 on Γ̃ f

+ initial conditions

(6)

The definitions and values of the non-dimensional coefficients follow: Re =
clxρ

f
0

µ = 1500, Re2 =

clxρ
f
0

λ
= −2200, M = c

√
(

ρ
f
0

p0
) = 150, Pe =

lxcCpρ
f
0

K = 1.0× 104, A = 1
p0κT

= 2.2× 104, B = A ∗αT0 =

1.3×103 and C =
Cpρ

f
0

αp0
= 2.0×105.

Note that Re is not the usual Reynolds number, because it does not depend on the actual fluid velocity.

Let Reu denote the usual Reynolds number. A relevant definition of Reu for the considered system

could be Reu =
ReYmaxω

c , where Ymax stands for the maximal amplitude of displacement of the vibrating

microplate and ω for the angular frequency. For vibrations of amplitude Ymax = 1 nm in water between

10 MHz and 2 GHz, Reu verifies 0.06 < Reu < 12.

7



3.2.4. Neglecting the temperature variations

In water, the parameter C verifies C >> 1. Considering the respective orders of magnitude of the

time derivatives appearing in the system 6, the term 1
C ∂t̃ p̃ can be neglected: the energy equation depends

only on θ̃ and can be solved regardless of the other parameters. So let us now assume that the temperature

variation θ̃ verifies θ̃ = 0 on the boundary ˜∂Ω and θ̃(t̃ = 0) = 0 on Ω̃. Solving the energy equation with

C−1 = 0 leads to θ̃ = 0 on Ω̃ for all time t̃ > 0. Note that in dry air, this conclusion would not apply

because C = 3.5×10−6 << 1.

In the rest of the paper, we assume that θ̃ = 0 on Ω̃ for all time t̃ > 0. The initial-boundary value

problem to be solved writes:



∂t̃ p̃+A ˜div ũ f = 0 on Ω̃

∂t̃ũ
f + 1

M2
˜grad p̃− 1

Re2
˜grad( ˜div ũ f )− 2

Re
˜div ẽ(ũ f ) = 0 on Ω̃

ũ f .t= 0 and n.σ̃(p̃, ũ f ).n=−g̃x(t) on Γ̃s

ũ f = 0 on Γ̃ f

+ initial conditions

(7)

3.3. Structural equations

3.3.1. Boundary value problem

Assuming that the plate is isotropic, sufficiently thin and clamped along ∂Γs [31], its equation of

motion reads


ρsh∂ttds +∆(D∆ds) = g on Γs

ds = 0 and grad ds.n= 0 on ∂Γs

+ initial conditions

(8)

where ds is the transverse displacement field of the plate in the x direction, ∆ = ∂yy +∂zz the Laplace

operator, D = Eh3

12(1−ν2)
the scalar bending stiffness of the plate, E its Young’s modulus, h its thickness,

ρs its density, ν its Poisson’s ratio, g the surface force density applied to the plate. Its temperature is

homogeneous and is equal to θ0.

For the targeted application, the plate is a dense assembly of one, or very few layers, of aligned

single walled carbon nanotubes [5]. We use parameter values typical of those of single walled carbon
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nanotubes: E = 1 TPa [32], h = 1 nm, ρs = 2000 kg.m−3. In the absence of experimental data, we

set ν = 0.3. Of course the following numerical methodology remains valid for a large range of plate

parameters.

The actuation of the plate results from the capacitive force exerted on the metallic plate by the actu-

ation electrode under time-varying voltage. The actuation force density g is theoretically proportional to

V (t)2 ∂C
∂ds [33], where V (t) is the time-varying voltage applied to the electrode and C (ds,R) ∝

1
R+ds is the

capacitance between the plate and the electrode, which depends on the plate displacement ds and on the

plate-electrode distance R.

As a first step toward taking into account the exact actuation force, we assume the force density

applied by the electrode on the plate to take the form g = g0(t)+g1ds(t) = G0cos(ωt)+g1ds(t), with ω

the angular frequency and |ds| << R. The sign of g1 is opposite to the sign of G0, due to the first order

Taylor expansion of the term ∂C
∂ds for |ds|<< R. We set G0 =−8000 Pa and g1 = 0.16 TPa.m−1, which

is the order of magnitude of the force density applied by an electrode under 2.5 V located at 100 nm of

the plate.

3.3.2. Non-dimensional transformation

Reference parameters for the non-dimensional transformation of this plate boundary value problem

are c, ρ
f
0 and lx. Assuming the plate is homogeneous, problem 8 transforms into


ap∂t̃ t̃ d̃s + rp∆̃∆̃d̃s = g̃ on Γ̃s

d̃s = 0 and ˜grad d̃s.n= 0 on ∂Γ̃s

+ initial conditions

(9)

where d̃s = ds

lx
, x̃ = x

lx
, ỹ = y

lx
, t̃ = tc

lx
, ∆̃ = ∆

lx
, g̃ = g

ρ
f
0 c2

, g̃0 = g0

ρ
f
0 c2

, g̃1 = g1lx
ρ

f
0 c2

, ap = hρs

lxρ
f
0

and rp =

D
l3
x
= E

ρ
f
0 c2

h3

12l3
x (1−ν2)

. To be short, foremost validity conditions are h << lx et d̃s << 1. Typical values

for these non-dimensional parameters are rp = 4.1× 10−8, ap = 2.0× 10−3, g̃1 = 7.3× 10−5 and g̃0 =

(3.6×10−6)cos(ωt).
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3.4. Fluid structure interaction

3.4.1. Coupling equations

In the rest of this paper, unless specifically mentioned, we consider only non-dimensional quantities.

Hence, for the sake of simplicity, from now on, we drop the ˜ symbol in all equations.

According to the perfect kinematic continuity assumption and associated stress continuity condition

on Γs, the fluid-structure problem is governed by the following boundary value problem:



∂t p+Adiv u f = 0 on Ω

∂tu
f =− 1

M2 grad p+ 1
Re2

grad div u f + 2
Re div e(u f ) on Ω

u f = 0 on Γ f

u f
y = 0 and u f

x = ∂tds on Γs

g0 +n.((− 1
M2 p+ 1

Re2
div u f )Id+ 2

Ree(u
f )).n=−g1ds +ap∂ttds + rp∆∆ds on Γs

ds = 0 and grad ds.n= 0 on ∂Γs

+ initial conditions

(10)

In view of writing the variational formulation of the coupled problem, it is convenient to reformulate

the dynamics of the structure as a first-order system using displacement, pressure and velocity as un-

knowns. To this end, let us stand for the non-dimensional transverse velocity field in the solid. As usual,

the dynamics rewrites

 ∂tds−us = 0 on Γs

−g1ds +ap∂tus + rp∆∆ds−σ(p,u f ).n= g0 on Γs
(11)

Note that following [31] the last equation rewrites

ap∂tus + rp∆∆

(∫ t

0
us
)
−g1

∫ t

0
us−σ(p,u f ).n= g0 on Γ

s (12)

and, assuming the structural velocity is known, the displacement can be obtained as ds =
∫ t

0 us

10



3.4.2. Variational formulation

Let u =
{

u f , p,us
}

denote the triplet formed by the non-dimensional velocity and pressure fields in

the fluid, and by the non-dimensional velocity field in the solid respectively. Following [31], the natural

solution space writes

V=
{

v =
{

v f ,r,vs} ∈ (H1(Ω f ))
3×L2(Ω f )×H2

0 (Γs);v f .n= vs and v f .t= 0 on Γ
s;v f = 0 on Γ

f}
(13)

where H2
0 (Γ

s) = {v ∈ H2(Γs)|ds = 0 and grad ds.n= 0 on ∂Γs}

This is well-defined since the trace of the velocity field along Γs is a square-summable function.

Moreover, the space associated with inertia writes H = L2(Ω f )3×L2(Γs).

Let us introduce the bilinear form that corresponds to the virtual work of internal stresses

a(u,v) =
∫

Ω f

M2

Re2
(div u f )(div v f )+

2M2

Re
e(u f ) : e(v f )+

∫
Ω f
(div u f )r− pdiv v f

+
rp

ap

∫
Γs

∆

(∫ t

0
us
)

∆vs− g1

ap

∫
Γs

(∫ t

0
us
)

vs ∀(u =
{

u f , p,us} ,v = {v f ,r,vs}) ∈ V2 (14)

The bilinear form associated with the acceleration reads

b(u,v) =
∫

Ω f
(M2u f v f +

1
A

pr)+
∫

Γs
usvs ∀(u =

{
u f , p,us} ,v = {v f ,r,vs}) ∈ V2 (15)

The plate will be subjected to an external distributed force g0 and there is no other external force on

the system. Let us call L(v) =
∫

Γs g0vs ∀v =
{

v f ,r,vs
}
∈ V.

It is a purely computational and standard matter to show that the fluid-structure coupled problem

writes

 seek u ∈ L2(0,T ;V ) such that

b(∂tu,v)+a(u,v) = L(v) ∀v ∈ V
(16)

The well-posedness of this problem relies on a variant of general arguments of the energy method

such as those explained in [31] (vol 5, chapter 18, pages 670-675). More precisely, the following exis-

tence and uniqueness result can be established:
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Existence and uniqueness of solutions : Assume the spring stiffness g1 to be smaller than the first

eigenvalue of the clamped micro-plate. Then there exists a unique solution u =
{

u f , p,us
}
∈ L∞(0,T ;H)

of equation (16) such that
{

u f , p,
∫ t

0
us
}
∈V. In particular, u f ∈ L2(0,T ;H1(Ω f )), p∈ L2(0,T ;L2(Ω f ))

and
∫ t

0
us ∈ L∞(0,T ;H2

0 (Γ
s)). As a result, the structural displacement ds =

∫ t

0
us ∈ L∞(0,T ;H2

0 (Γ
s)) is

bounded in time and space and the no-jump condition of the velocity field along the fluid-structure

interface Γs takes place almost everywhere.

3.4.3. Forced response under harmonic load

The external force is harmonic: g0 = G0cos(ωt) where ω is the reduced (e.g. non-dimensional)

angular frequency such as the actual angular frequency (expressed in rad.s−1) is equal to ω
c
lx

. If f is

a given non-dimensional scalar or vector field, let F denote its Fourier transform. Writing q = iω and

U =
{

U f ,P,U s
}

, one has to solve the following set of equations:



qP+Adiv U f = 0 on Ω

qU f + 1
M2 grad P− 1

Re2
grad div U f − 2

Re div e(U f ) = 0 on Ω

U f = 0 on Γ f

U f
y = 0 and U f

x = qDs on Γs

G0 +n.((− 1
M2 P+ 1

Re2
divU f )Id+ 2

Ree(U
f )).n=

−g1+apq2

q U s +
rp
q ∆∆Ds on Γs

Ds = 0 and grad Ds.n= 0 on ∂Γs

(17)

A variational formulation of previous set of equations now reads


seek U ∈ V such that

qb(U,V )+a(U,V ) =
∫

Γs
G0U s ∀V ∈ V

(18)

Where the time integrals are to be replaced with the multiplicative factor 1
iω . It is easy to prove that

no q = iω is an eigenvalue of above problem, that is to say, any solution of this problem should vanish

when the applied force vanishes. Such a solution U would satisfy above equation with V =U , thus

12



b(U,U)−
rp

ap

∫
Γs

∆ U s
∆ U s = 0

∫
Ω f

M2

Re2
(divU f )(divU f

)+
2M2

Re
e(U f ) : e(U f

) = 0 (19)

Korn’s inequality together with homogeneous Dirichlet boundary conditions on Γ f thus lead to U f =

0 over Ω. Because of the kinematic transmission condition between the fluid and the structure, we get

U s = 0 over Γs. The first part of above equation then leads to P = 0 over Ω. The same coerciveness

argument enables one to establish the well-posedness of problem (18).

3.4.4. Condensation of the fluid problem on the structure

Let N denote the Neumann extension operator from L2(Γs) to L2(Ω)×H1(Ω)3 defined as

N : L2(Γs)−→ L2(Ω)×H1(Ω)3

G −→ (P,U f
x ,U

f
y )

such that q
A P+div U f = 0 on Ω

qU f + 1
M2 grad P− 1

Re2
grad div U f − 2

Re div e(U f ) = 0 on Ω

U f = 0 on Γ f

U f
y = 0 on Γs

n.((− 1
M2 P+ 1

Re2
div U f )Id+ 2

Ree(U
f )).n=−G on Γs

(20)

Let T r denote the trace on Γs of U f
x . Let us then define S by S = T r◦N . Let P denote the following

unbounded operator (for q 6= 0):

P : H2
0 (Γ

s) −→ L2(Γs)

U s −→ apq2−g1
q U s +

rp
q ∆∆U s

(21)

Let G0 ∈ L2(Γs) denote the Fourier transform of the non-dimensional load g0 applied on the plate

by the fluid. Combining the definition of S with equations (17), (20) and (21), the coupled system thus

reads:

P (U s)+(S−1)(U s) = G0 (22)

13



Writing T = S−1, the variational formulation of problem (22) reads, :

 seek U s ∈ H2
0 (Γ

s) such that∫
Γs(P (U s)Z +T (U s)Z) =

∫
Γs G0Z ∀ Z ∈ H2

0 (Γ
s)

(23)

where above integrals should be understood as the duality product H−2 <>H2
0
.

A motivation for condensing the fluid problem lies in the wish to investigate the behaviour of the

actuator itself. The method is expected to be especially useful in the field of micro- and nanoelec-

tromechanical systems modeling, because, at this scale, structure equations are more complex due to

downscaling.

The proposed formulation also lays the foundations for the use of independent, special purpose

solvers for the fluid and the structure. In particular, it may be computationally efficient to do so in

the three-dimensional case, especially when the microplate behaves in its non linear regime. However, it

is presently unclear how this choice will impact further studies on the observability of the characteristics

of the fluid domain.

3.5. Approximate problem

3.5.1. Choice of the approximation spaces

Let WN denote the span of a basis of (L2(Γs))2, for instance the Fourier basis FN =

( f i
n,m)(i,n,m)∈J1,4K×J0,NK×J0,NK with M3D = 4N2+4N+1 elements (only keeping non identically vanishing

functions) defined as follows:

f 1
n,m(x,y) = cos(2πn

x
lx
)cos(2πm

y
ly
), f 2

n,m(x,y) = cos(2πn
x
lx
)sin(2πm

y
ly
),

f 3
m,n(x,y) = sin(2πn

x
lx
)cos(2πm

y
ly
) and f 4

n,m(x,y) = sin(2πn
x
lx
)sin(2πm

y
ly
) (24)

Let us define τ0(x,y) = x2(lx − x)2y2(ly − y)2 and VN the span of the set GN =

(τ0 f i
n,m)(i,n,m)∈J1,4K×J0,NK×J0,NK. The projection from L2 to VN is denoted ΠN .

The set of functions {(xiy jτ0(x,y))0≤i, j≤+∞} generates H0
2 (Γ

s) because τ0 divides any polyno-

mial v verifying v = 0 and grad v.n = 0 on ∂Γs. As F∞ generates L2(Γ
s), it also generates

Span{(xiy j)0≤i≤+∞;0≤ j≤+∞}. Hence, G∞ generates H0
2 (Γ

s), so that we choose VN as approximation space

14



for H2
0 (Γ

s).

The interest of using VN as approximation space for H0
2 (Γ

s) instead of Span{(xiy jτ0(y))0≤i, j≤+∞}

lies in computational issues. The interest of using the set of functions VN instead of a finite elements

space lies in the fact that spectral methods are known to converge exponentially fast. They are usually

limited to polyhedral volumes where they are easier to implement. Since we consider here a rectangular

plate, this method will prove efficient. If we were to consider a plate of arbitrary shape, we would use

finite elements.

As a complement, let us briefly define an appropriate set of functions HN for the 2D setting: writing

ψ0(x) = x2(lx− x)2, HN is defined as the set of M2D = 2N +1 functions:

∀ n ∈ J0,NK ψ
1
n(x) = ψ0(x)cos(2πn

x
lx
) and ∀ n ∈ J1,NK ψ

2
n(x) = ψ0(x)sin(2πn

x
lx
) (25)

3.5.2. Approximation of operators and approximate resolution

The approximation of coupled problem (23) on VN reads:

 seek U s ∈ VN such that∫
Γs(P (U s)Z +T (U s)Z) =

∫
Γs G0Z ∀Z ∈ VN

(26)

This corresponds to the following approximations PN , TN , G0,N of the operators P and T and of the

external distributed force G0:

PN = ΠNP ΠN , TN = ΠNT ΠN , G0,N = ΠNG0 (27)

In terms of these approximate operators, the approximate problem reads

seek U s ∈ VN such that PN(U s)+TN(U s) = G0,N (28)

Let us write, with M = M3D in the 3D case and M = M2D in the 2D case,

U s =
M

∑
i=1

us
i τi, U s

e = (us
i )1≤i≤M , Ge = (< τi,G0 >)1≤i≤M , Pe = (< τi,P (τ j)>)1≤i, j≤M ,

Ne = (< fi, f j >)1≤i, j≤M , Se = (< fi,S( f j)>)1≤i, j≤M and Te = (< fi,T ( f j)>)1≤i, j≤M

15



Let us recall that

< τ j,P (τi)>= ( f1−aω
2)< τi,τ j >+d < ∆τi∆τ j > and Te = NeS−1

e Ne

The matrix form of problem (28) reads:

(Pe +NeS−1
e Ne)U s

e = Ge (29)

According to paragraph 3.4.3, the matrix Pe +NeS−1
e Ne is inversible. The matrix equation (29) has a

unique solution U s
e , defining the unique solution U s ∈ VN of the approximate problem (28).

4. Numerical study of the convergence of the approximate problem

4.1. Implementation of the computational method

The operators N and S the trace of N on Γs are evaluated by a standard finite element method with

the software FreeFem++ (version 2.19) [34].

In 2D, we use a regular mesh made of triangles generated by FreeFem++, in 3D, a tetrahedral mesh

generated by TetGen [35]. The mesh density is controlled by the number n of nodes along the edge

{y = 0, z = 0, 0 < x < 1}, which we call here the ’mesh resolution’. The number of nodes by unit length

is the same for all edges, so that the total number of nodes in the domain Ω is proportional to n2 in 2D,

n3 in 3D.

The finite elements used for the pressure field P are P1-Lagrange (continuous piecewise linear finite

elements) and the ones for the velocity fieldU f P1b (P1+bubble) as defined in [36]. We use FreeFem++’s

version of the UMFPACK solver [37].

Using this finite element method, we evaluate the operator SN . In practice, we compute each fi-

nite element function S( fi) for i ∈ J1,M K. By a straightforward step of numerical integration under

FreeFem++, we then computes the M 2 coefficients of the matrix S f = (< fi,S( f j)>)1≤i, j≤M . We also

compute the coefficients of the other required matrices and vectors, namely Pe, Ge and Ne. We use

FreeFem++ version of the lapack module [38] to solve the matrix equation 29.
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4.2. Convergence of the fluid computation

In this section, we study the precision of the finite element method implemented to evaluate the

operators N et S . For this convergence study, we use the parameters ω = 0.90, A = 22000, M = 150,

Re = 1500, Re2 =−2200, lx = 1, ly = 1 and lz = 1.3. Let us choose a reference velocity field U f
0 :

U f
0,x =U f

0,y = x(lx− x)y(ly− y)z(lz− z), U f
0,z = (l2

z − z2)x(lx− x)y(ly− y) (30)

We derive analytically the functions P0 = −A
q div U f

0 , f0 and G0 such that (P0,U
f

0 ) verifies

Nf0(G0) = (P0,U
f

0 ), where Nf0 is the affine Neumann extension operator defined as

Nf0 : L2(Γs)−→ L2(Ω)×H1(Ω)3

G −→ (P,U f
x ,U

f
y ,U

f
z )

such that q
A P+div U f = 0 on Ω

qU f + 1
M2 grad P− 1

Re2
grad(div U f )− 2

Re div e(U f ) = f0 on Ω

U f = 0 on Γ f

U f
x = 0 and U f

y = 0 on Γs

n.((−P+ 1
Re2

div U f )Id+ 2
Ree(U

f )).n=−G on Γs

(31)

Let Nf0,n denote the approximation by finite elements of the operator Nf0 with a mesh resolution n.

Let ‖X‖ = (
∫

Ω
|X |2)1/2 denote the usual L2(Ω) norm and let us write (Pn,U

f
x,n,U

f
y,n,U

f
z,n) = Nf0,n(G0),

εx =
‖U f

n,x−U f
0,x‖

‖U f
0,x‖

, εy =
‖U f

n,y−U f
0,y‖

‖U f
0,y‖

and εz =
‖U f

n,z−U f
0,z‖

‖U f
0,z‖

. By construction, we expect (Pn,U
f

x,n,U
f

y,n,U
f

z,n) to

converge toward (P0,U
f

0 ) when n increases. Indeed, Figure 2 shows the decrease of relative errors εx

and εz toward 0 when n increases (by symmetry, in this setting εx = εy). The decay rate indicates second

order convergence.
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Figure 2: Convergence of the computed solution toward a known polynomial solution: relative errors εx

and εz with respect to the mesh resolution n

4.3. Convergence of the elasto-acoustic computation

4.3.1. Principle of the method

In this section, we study the precision of the method used for the evaluation of U s ∈VN , as defined in

equation (28), with respect to N (the dimension of the space VN being equal to 4N2 +4N +1 in 3D and

2N+1 in 2D) and n (the mesh resolution). The parameters used for the fluid equations are the same as in

the previous paragraph. The parameters used for the plate equation are rp = 4.1×10−8, ap = 2.0×10−3,

G0 = 3.6×10−6 and g1 = 7.3×10−5.

Like in the previous paragraph, we choose a reference velocity field U f
0 from which we derive ana-

lytically the functions P0 =−A
q div U f

0 , f0, G0 and Gext,0 such that U s
0 ≡U f

0,z(x = 0,y = 0,z) verifies

P (U s
0)+(Sf0)

−1(U s
0) = Gext,0 (32)

with Nf0 defined as in equation (31) and with Sf0 defined as Sf0 = T r ◦Nf0 .

Let us call U s
n,N the solution in the finite space VN of the exact problem (32). Let us define the

convergence parameter εn,N =
‖U s

n,N−U s
0‖

‖U s
0‖

. By construction, we expect U s
n,N to converge toward U s

0 when n

or N increases.

18



4.3.2. 3D settings

In the 3D setting, we consider the polynomial velocity field:

U f
0,x =U f

0,y = x(lx− x)y(ly− y)z(lz− z), U f
0,z = (lz− z)4x2(lx− x)2y2(ly− y)2 (33)

For the parameters n and N as low as n = 13 and N = 2 (M = 25 basis functions), we obtain an

error as low as 1.9 % (ε13,2 = 0.019), which is very satisfying considering the low density of nodes in the

volume.

4.3.3. 2D setting

To limit computational costs, we have only carried out the full convergence study in 2D. We consider

the following reference velocity field:

U f
0,x = (lz− z)z(lx− x)(

lx
2
− x)x U f

0,z = (lz− z)2x2(lx− x)2(
lx
2
− x)2 (34)

We verify (Figure 3) that U s
n,N →U s

0 when (n,N) → (+∞,+∞). Of course, since U s
n,N results from

a double approximation process, the accuracy is limited by either one of the approximation errors, which

explains the asymptotic behaviour. The error also seems to increase when the number of modes is larger

than a maximum value that depends on the mesh size. It is a lock-in phenomenon, which is standard in

numerical analysis.
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Figure 3: Convergence of the computed 2D solution toward a known polynomial solution: relative error
εn,N with respect to the number of modes M2D = 2N + 1 for different mesh resolutions n (a) and vice
versa (b)

5. Results

5.1. Behaviour of the fluid under harmonic homogeneous load

In this section, we set G0 = 1 (homogeneous harmonic load on the boundary Γs) and we compute the

pressure and velocity fields (P,U f ) = N (G0). Let us define the non-dimensional acoustic admittance

Y (z) as the L2-norm of the fluid velocity on a section of the domain parallel to Γs (plane ΓZ = {x,y,z= Z})

divided by the L2-norm of the load, that is Y (z) =

√∫
ΓZ
|U f

z (x,y,z)|2√∫
ΓZ
|G|2

=
√∫

ΓZ
|U f

z (x,y,z)|2

5.1.1. From a 3D to a 2D setting

The Figure 4 compares the acoustic admittance Y (0) (e.g. the average velocity on Γs) of the 3D and

2D domain presented Figure 1. The 2D and 3D frequency response functions (FRF) display very similar

features in terms of amplitudes, resonance frequencies and quality factor of resonances.
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Figure 4: Non-dimensional admittance Y (0) with respect to frequency for a 3D domain of size lx=1 µm
x ly=1 µm x lz=1.3 µm and two 2D domains of size lx=1 µm x lz=1.3 µm and lx=1 µm x lz=10 µm.

Quantitatively, the Figure 5 shows that, as expected, the 3D resonance frequencies and quality fac-

tors shift toward the 2D limit values when the depth ly increases (system translation-invariant along

the y-axis). The 3D velocity profiles U f ,3D
z (x, ly

2 ,z) appear to converge toward the 2D velocity pro-

file U f ,2D
z (x,z) when ly increases. For instance, at 210 MHz, the (norm 2) relative error between

U f ,3D
z (x, ly

2 ,0) and U f ,2D
z (x,0) decreases by a factor 2 between ly = 1 µm and ly = 5 µm , going from

16% down to 8%.

Considering the qualitative agreement between 2D and 3D frequency responses, we will work only

in a 2D setting in the rest of this study.

Figure 5: Frequency (a) and quality factor (b) of the first resonance for 3D domains of same height
lx = 1 µm, same width lz = 1.3 µm and different depth ly (solid lines). As expected, when ly increases,
the 3D values shift toward the 2D limit values (dashed line)

21



5.1.2. Visco-acoustic resonances

The Figure 6 shows the velocity profiles |U f
x | and |U f

z | of the first three modes identified on the FRF

of the lz = 1.3 µm domain displayed on the Figure 4. The velocity profiles |U f
x | and |U f

z | of the i-th mode

have respectively i and i-1 nodes, just like in non-viscous acoustics.

In non-viscous acoustics, the water-filled domain of width lz would resonate at the frequencies

fk =
c

λk
, with λk =

4lz
1+2k , k ∈ N. A quantitative analysis of the FRF presented Figure 4 indicates that

the frequencies of the visco-acoustic resonances are close to the frequencies fk of the non-viscous reso-

nances. For instance, for lz = 1.3 µm, the first resonance is down-shifted by only 3.1%± 0.5% (Figure

7). The quality factor of the first resonance is 17.2±14.3%.

Table 1 sums up the resonance shifts and the resonance quality factors computed for different fluid

parameters. It shows that the frequency downshift increases and the quality factor decreases with de-

creasing parameter Re, i.e when the role of the viscous terms in Navier-Stokes equations increases. Note

that the errors given in Table 1 result from the various non-dimensional frequency steps δω used for the

computation of Y0 with respect to ω.

L
L0

ρ f

ρ
f
0

p
p0

κT
κT,0

µ
µ0

Re
Re0

Frequency downshift (%) Quality factor

5 1 1 1 1 5 1.6±0.2 150±18%

1 10 1 1 1
√
(10) 2.7±0.5 29±18%

1 1 1 1 1 1 3.1±0.5 17±14%

1 1 10 1 1 1 3.1±0.5 17±14%

1 1 1 10 1 1√
10

4.4±0.5 8.4±7%

1 1 1 1 10 1
10 6.4±1.0 4.4±8%

Table 1: Frequency downshift and quality factor of first resonance with respect to various parameters.
Here, the value of the parameter X0 is the reference value of the parameter X as given in paragraph 3.2.3.

5.1.3. Boundary layer

We identify (Figure 8) two types of velocity profiles along the x-axis depending on the excitation

frequency. At frequencies f much lower than the first resonance ( f << c
4lz

), viscous effects dominate

over inertial effects. The velocity profile |U f
z (x,z = k)| along the x-direction is parabolic. Beyond a
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Figure 6: Isovalue lines of the non-dimensional velocity fields |U f
z | (a-c) and |U f

x | (d-f) at the first three
resonances, for a domain of width 1 µm and length 1.3 µm.
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Figure 7: Non-dimensional admittance Y (0) at frequencies close to first resonance for various parameters.
The domain length is 1.3 µm.

limit frequency flim, inertial effects dominate over viscous effects. The velocity |U f
z (x,z = k)| is constant

outside the boundary layer, that is delimited by one velocity peak on each side of the domain. For a

1 µm × 1.3 µm rectangular domain, the frequency transition occurs between 15 et 20 MHz, at about 5%

of the frequency of the first resonance f1 =
c

4lz
.

The existence of both types of profiles has been pointed out by Beltman in [12] using the low reduced-

frequency model. However in water at room temperature and ambient pressure this model is restricted to

frequencies much lower than 250 MHz. Our calculations up to 2 GHz using the full linearized Navier-

Stokes equations seem to indicate that the behaviour identified at lower frequencies is actually valid over

a much larger range of frequencies.
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Figure 8: Non-dimensional velocity profile at z = 0 for different frequencies for a domain of height lx=1
µm and width lz=1.3 µm

Let us define the (dimensional) boundary layer thickness hBL as

hBL =
1
2
(lx−

∫ lx

0
χ(x)) (35)

with χ(x) = 1 if x ∈ D and χ(x) = 0 if x /∈ D (36)

and D=

{
x ∈ [0, lx] such that 0.95|U f

z (
lx
2
,0)| ≤ |U f

z (x,0)| ≤ 1.05|U f
z (

lx
2
,0)|
}

(37)

The domain D defines the interval along the x-axis along which the velocity is constant with 5% accuracy,

and χ is the characteristic function for the 1D domain D. The quantity hBL is thus defined as the thickness

of the layer along the boundary where the velocity is not constant.

A large value for hBL is characteristic of strong viscous effects. The Figure 10 displays hBL with

respect to the frequency f . The plot presents definite peaks, approximately localized at the wavelengths

λκ ≈ 2lz
κ
, κ ∈ N, that is to say halfway between successive resonance frequencies. At these ’anti-

resonancies’, the viscosity effect is maximal and the admittance is minimal. Between successive ’anti-

resonancies’, hBL decreases with increasing frequency and becomes stationary around λk ≈ 4lz
2k+1 : close

to the resonance, the inertia terms play in the solution a dominant role over the viscosity terms.
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Figure 9: Normalized velocity profile at z = 0 at first resonance (281 MHz) and at first ”antiresonance”
(573 MHz) for a domain of height lx=1 µm and width lz=1.3 µm

Figure 10: Boundary layer thickness hBL with respect to frequency for a domain of height lx=1 µm and
width lz=1.3 µm

5.2. Behaviour of the elasto-acoustic system under harmonic homogeneous load

We consider in this section the fluid-plate system under an harmonic homogeneous load of am-

plitude G0 = −8000 Pa. We study the plate displacement Ds = 1
qU s ∈ H2

0 (Γ
s) solution of equa-

tion (22). The results are analyzed by computing the L2-norm of the plate displacement Ds, denoted

‖Ds‖= (
∫ 1

0 |Ds(y)|2) 1
2 .
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Figure 11: Norm of the dimensional plate displacements ‖Ds‖lx with respect to frequency for a domain
of width lx=1 µm and length lz=1.3 µm

5.2.1. Fluid resonances

All the resonances identified in the fluid-only system also appear in the fluid-plate system FRF,

which is, as a consequence, very sensitive to pore width. The frequency shift between the first three

fluid-structure and fluid-only resonances is lower than 2 %; the quality factors of the fluid-structure

resonances are lower than in the fluid-only system (Q = 12±33% for the first resonance). The frequency

and quality factor of these resonances are not sensitive to the plate characteristics (Young’s modulus,

Poisson’s ratio, density, thickness).

The shape of these fluide-plate modes (Figure 12) is similar to the shape of the fluid-only modes

(Figure 8). For instance, the Figure 12 displays the profile of the plate vibrations |Ds| at the first resonance

computed from 23 basis functions. The lateral velocity peaks are apparent, as well as an approximately

’flat’ portion between the peaks. The oscillations in this ’flat’ portion of the profile are due to the Fourier

approximation.

5.2.2. Plate resonances and added stiffness effect

These elements indicate that the fluid resonances are only weakly perturbed by the presence of the

plate. On the contrary, the plate resonances are strongly perturbed by the presence of the fluid. Indeed,

for a very thin plate (h < 5nm), no resonance can be observed in the FRF. When the plate thickness h

increases (h = 5 nm), one of the resonances of the FRF appears at a frequency significantly different

from the frequencies of the fluid resonances (Figure 11). The frequency and amplitude of this resonance

strongly depend on the parameters of the plate E, ρs, h and lx.
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Figure 12: Displacement profile |Ds| at 281 MHz (first resonance), computed for N=11 (23 modes) and
n=100.

According to the Figure 13 presenting |Ds(x)| with respect to x at 155 MHz for a plate of thickness

5 nm, Young’s modulus 1 TPa and density 2, the observed resonance could either be the first or the

third resonance of the plate (the second is excluded for symmetry reasons). In vacuum, the resonance

frequencies of a plate are given by the formula φ2
i = αi

Eh2

(1−ν2)ρsL4 +
g1
ap

with α1 = 1,027, α2 = 2,756 and

α3 = 5,404 [39]. It leads to φ1 = 121 MHz, φ2 = 331 MHz and φ3 = 648 MHz in our case.

If the observed resonance was the third plate resonance, its frequency downshift ratio would be 75%.

Assuming that a similar downshift ratio could be applied to the first resonance, we should observe this

first resonance around 30 MHz, which is not the case. This means that the structure mode we observe is

the first plate mode, strongly perturbed and upshifted by 13 %: the water load causes an added stiffness

effect.

Compared to the situation in air described in [20], it appears that the plate modes are much more

strongly perturbed in water than in air, which was to be expected. There is however a similar added

stiffness effect.
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Figure 13: Displacement profile |Ds| of a h = 5 nm thick plate at 155 MHz, frequency associated to a
plate resonance

6. Conclusions

We have developed a computational method for the modelling of a microplate vibrating between 10

MHz and 2 GHz in a water-filled domain of micrometric size. The method is based on the condensation

of the fluid part of the fluid-structure equations on the structure by a finite element method, and on a

spectral approximation of the structural equations. We have proved the well-posedness of the problem,

numerically studied its convergence and analyzed the results provided by the method.

Although viscous terms occasion a frequency downshift and a decrease of the quality factors, the

fluid domain is still resonant at frequencies close to the resonance frequencies observed in a non vis-

cous acoustic cavity. The resonances observed for the system coupled with a thin plate are at the same

frequency as the resonances of the fluid alone. When the plate thickness increases, the fluid domain

resonances do not shift. However, a low quality factor resonance appears. It seems to be the strongly

upshifted fundamental mode of the plate. Altogether, the frequency response function of the system is

strongly sensitive to the pore width, which makes the device a good candidate for porosity monitoring.

In a further study, geometries will have to be complexified to account for more realistic pore shape

in cementitious materials. Eventually, results will have to be interpreted in terms of observability of the

characteristics of the porosity for cementitious materials instrumentation.
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