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It is well established that concrete durability strongly depends on the capillary porosity of the material. Hence, structural health monitoring of concrete structure could take advantage of concrete microporosity monitoring. To this end, a new method for the in situ non-destructive testing of capillary porosity in cementitious materials has been proposed. A sensing device that seems well suited to this application is a capacitive ultrasonic transducer with a characteristic size of 1 µm. It is to be embedded in the material. Its vibrating membrane is made of aligned carbon nanotubes forming a thin layer with a typical thickness of 1 nm. It generates acoustic waves of micrometric wavelength into water-filled micropores, aiming at measuring their properties.

The present paper focuses on the numerical simulation of the embedded sensor. In order to properly account for viscous effects in fluids at the micrometric scale, we have developed a specific computational method for the visco-acoustic modelling of a microplate vibrating between 10 MHz and 2 GHz in a water-filled domain of micrometric size. Our approach is based on the condensation of the fluid part of the fluid-structure problem on the structure by a finite element method, and on a spectral approximation of the structural equations.

The numerical results indicate that the fluid domain is resonant despite the viscous terms, which causes a frequency downshift of the resonances and a decrease of the quality factor. In the coupled system, the plate does not perturb the fluid resonances, whereas the plate resonances are strongly upshifted by the water load. The resonance frequencies of the system are shown to display a clear dependence on

Introduction

Within the framework of structural health monitoring for civil engineering [START_REF] Chang | Health monitoring in civil infrastructure[END_REF][START_REF] Mccann | Review of ndt methods in the assessment of concrete and masonry structures[END_REF], a new method [START_REF] Lebental | Procédé et dispositif d'analyse acoustique de microporosites dans un matériau tel que le béton à l'aide d'une pluralité de transducteurs cmuts incorporés dans le matériau (process and device for acoustical analysis of microporosities in a material such as concrete using embedded cmut transducers)[END_REF][START_REF] Lebental | In-situ non destructive testing of cementitous materials via embedded ultrasonic transducers made up of carbon nanotubes[END_REF] for the non-destructive testing of capillary porosity of cementitious materials has been proposed.

It is based on dispersing in the studied material a large number of microsystems equipped with specific sensing devices able to collect microscale information on the material microstructure.

One of the sensing devices envisioned for this application is a high frequency capacitive Micromachined Ultrasonic Ttransducer (cMUT) with a characteristic size of 1 µm. Its vibrating membrane is made up of aligned carbon nanotubes [START_REF] Lebental | In-situ non destructive testing of cementitous materials via embedded ultrasonic transducers made up of carbon nanotubes[END_REF][START_REF] Lebental | Cellule cmut formée d'une membrane de nanotubes ou de nanofils ou de nanopoutres et dispositif d'imagerie acoustique ultra haute fréquence comprenant une pluralité de telles cellules (cmut cell formed by a nanotubes or nanowires or nanobeams membrane, and ultra high frequency acoustic imaging device incorporating several of these cells)[END_REF]; it has a high Young's modulus (0,5 to 1 TPa) and a low thickness (1 to 5 nm). The waves emitted by this prospective device are expected to propagate mostly in the fluid component of the microstructure. Due to its micrometric size, it should be able to excite pores individually, so that the collected information should be resolved at the microscale. From the measurements provided by a large number of such transducers, one plans to derive statistically morphological information on the microporosity [START_REF] Hilfer | Transport and relaxation phenomena in porous media[END_REF].

The present paper describes a numerical visco-acoustic model suited for the design of such a device and its use in a confined fluid medium of micrometric size. More precisely, the method yields the shape and the amplitude of membrane vibrations depending on the medium and the membrane characteristics. The ultimate purpose of this method, which lies beyond the scope of this paper, is to optimize technological parameters and to identify potentially observable characteristics of the porosity.

First, we identify the relevant equations from the literature. We then suggest a formulation for the elasto-acoustic problem and a fast numerical method, whose convergence is studied numerically. Finally, we present the results obtained by the method.

Main result is the resonant behaviour of the fluid system, which is only weakly perturbed by coupling with the plate. The plate behaviour is strongly perturbed by the presence of the fluid, which induces a significant added stiffness effect on the plate.

The resonance frequencies of the system are shown to display a clear dependence on the pore width, which makes the device a good candidate as a porosity sensor.

State of the art

Non viscous modelling of cMUT devices

A cMUT device consists of a metallic microplate suspended above an electrode and actuated by capacitive effect. When one considers the behaviour of a cMUT device interacting with a fluid environment, the fluid medium is most often modelled in the framework of non-viscous wave acoustics: the dissipative terms of Navier-Stokes equations are fully neglected, so that the fluid system is ruled by the d'Alembert wave equation with Dirichlet boundary conditions for the normal velocity only.

Significant role of the dissipative terms in microfluidics

The scale of the fluid domains (100 nm to 10 µm) considered in the present study anchors us in the field of microfluidics: the Reynolds number, proportional to the characteristic size of the fluid domain, is much smaller than at the macroscopic scale. Hence one expects that dissipative terms, negligible in larger systems, cannot be neglected in microfluidics. This is confirmed experimentally: water flows in micro-channels with a size ranging between 2 µm and 100 µm display a boundary layer with thickness comparable with the size of the channel [START_REF] Xu | Experimental investigation on flow characteristics of deionized water in microtubes[END_REF][START_REF] Papautsky | A review of laminar single-phase flow in microchannels[END_REF]. The acoustic behaviour of fluids in the microchannels of ink-jet printers (with diameter typically ranging from 10 µm to 100 µm) is in good agreement with a narrow-channel model including fluid viscosity [START_REF] Wijshoff | Structure-and fluid-dynamics in piezo inkjet printheads[END_REF].

Visco-thermal elasto-acoustics

These elements point out the need to integrate viscous terms in the fluid equations: it is the purpose of visco-thermal acoustics, which is based on the use of the fully-linearized Navier Stokes equations [START_REF] Landau | Fluid Mechanics[END_REF][START_REF] Bruneau | General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries[END_REF][START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part i: theory[END_REF][START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part ii: application[END_REF][START_REF] Malinen | A finite element method for the modeling of thermo-viscous effects in acoustics[END_REF][START_REF] Kampinga | Performance of several viscothermal acoustic finite elements[END_REF]. From the fully linearized equations, several simplified models can be derived [START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part i: theory[END_REF], such as the narrow-channel [START_REF] Wijshoff | Structure-and fluid-dynamics in piezo inkjet printheads[END_REF], the boundary layer impedance [START_REF] Kampinga | Viscothermal acoustics using finite elements. analysis tools for engineers[END_REF], the low-reduced-frequency [START_REF] Nijhof | An acoustic finite element including viscothermal effects[END_REF] or the low-Reynold's number [START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part ii: application[END_REF] models.

The solutions to the visco-thermal acoustic equations can be determined analytically for specific geometries [START_REF] Bruneau | General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries[END_REF] and for some of the simplified models. Several numerical methods based on finite elements [START_REF] Malinen | A finite element method for the modeling of thermo-viscous effects in acoustics[END_REF][START_REF] Kampinga | Performance of several viscothermal acoustic finite elements[END_REF] and boundary elements [START_REF] Karra | An integral equation formulation for boundary element analysis of propagation in viscothermal fluids[END_REF][START_REF] Christensen | Practical modeling of acoustic losses in air due to heat conduction and viscosity[END_REF] are also available.

These methods have been extended to elasto-acoustics: for simple 2D or axisymmetrical 3D geometries and for simplified visco-thermal acoustic models, analytical solutions to the elasto-acoustic problem may be derived [START_REF] Beltman | Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems[END_REF][START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part i: theory[END_REF][START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part ii: application[END_REF]. The fully-linearized elasto-acoustic problem is usually solved numerically with boundary elements [START_REF] Karra | Boundary element analysis of vibro-acoustic interaction between vibrating membrane and thin fluid layer[END_REF]. For some simplified problems, such as the boundary layer impedance [START_REF] Kampinga | Viscothermal acoustics using finite elements. analysis tools for engineers[END_REF] and the narrow channel models [START_REF] Beltman | Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems[END_REF], finite elements based methods have also been developed.

The specificity of our elasto-acoustic problem (higher frequencies, larger bandwidth and lower size, water instead of air) excludes the use of any of the available simplified models. Moreover, there is no proof that the rotational velocity can actually be neglected over the whole range of parameters, which rules out the use of the existing boundary elements methods.

These remarks justify the introduction of a different approach for visco-thermal elasto-acoustic numerical modelling, which will be discussed in the rest of this paper. The main originality of our approach is to solve the fully-linearized visco-thermal elasto-acoustic problem using a mixed finite elementspectral approach, which do not require the assumption of null rotational velocity and is significantly more flexible than boundary elements.

Breakdown of continuity in water microfluidics

In order for the Navier Stokes equations to describe properly a fluid, the fluid must behave as continuous medium. The Knudsen number K n = mean free path characteristic size indicates whether a continuous model is adapted (K n < 0.01) or if a semi-discrete [START_REF] Barber | The influence of knudsen number on the hydrodynamic development length within parallel plate micro-channels[END_REF][START_REF] Qu | Pressure-driven water flows in trapezoidal silicon microchannels[END_REF] or discrete [START_REF] Mi | Molecular dynamics simulations of nanochannel flows at low reynolds numbers[END_REF][START_REF] Nie | A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow[END_REF][START_REF] Daiguji | Ion transport in nanofluidic channels[END_REF] model is needed to account for nanoscale phenomena such as adsorption on walls, electrostatic forces or steric exclusion [START_REF] Gaudioso | Characterizing electroosmotic flow in microfluidic devices[END_REF][START_REF] Kirby | Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations[END_REF][START_REF] Sparreboom | Principles and applications of nanofluidic transport[END_REF].

In the case of liquid water at ambient pressure and temperature, the mean free path is around 2 Å, so that the continuity hypothesis theoretically stands down to 200 nm of characteristic size. A metaanalysis of published experimental data has validated this hypothesis [START_REF] Koo | Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects[END_REF]. As a consequence, as we consider only a system with characteristic size larger than 100 nm, we do not take into account in our problem the possibility of continuity breakdown.

Formulation of the elasto-acoustic problem

Notations: if f is a given function on the domain Ω, let < f >= 1 Vol(Ω) Ω f (M) denote its average on Ω, δ f = f -< f > the variations around the average, f a non-dimensional function associated to δ f and F the Fourier transform of f . If f is a complex number, let f be its conjugated complex and | f | its modulus. Vectors, gradient, tensors and matrices are written in bold letters. Let us write i = √ -1.

Geometry

We consider a clamped plate with one free side. Its other side is in contact with distilled water filling a closed domain with straight boundaries. The closed domain stands for a smooth-walled, unconnected pore of the studied material surrounded by an infinitely rigid matrix.

The plate is rectangular with size l x and l y . The fluid domain (pore) Ω is a rectangular parallelepiped with size l x , l y and l z (Figure 1 left). The plate forms the left side of the parallelepiped, denoted Γ s . Let us denote ∂Ω the boundary of Ω, Γ f = ∂Ω -Γ s and ∂Γ s the boundary of Γ s . In the rest, we call l x the domain height, l y its depth and l z its width.

For the sake of computational efficiency, we resort to twodimensional computations for the parametric studies. In 2D, the chosen model geometry is a section of the 3D domain (Figure 1 right), that is a rectangle with height l x and width l z . gradient and Id the 3 × 3 or 2 × 2 identity tensor. According to these definitions, the tensors e(δu f ) = 1 2 (grad δu f + grad t δu f ) and δσ = (-δp + λdiv δu f )Id + 2µe(δu f ) denote respectively the small amplitude variations of the linearized strain and stress tensors.

The system is studied at ambient pressure p 0 = 1 atm and ambient temperature θ 0 = 20 • C. The following parameters are assumed to be constant over Ω: density ρ

f 0 = 1000 (kg.m -3 ), speed of sound c = 1500 m.s -1 , dynamic viscosity µ = 1.0 × 10 -3 kg.m -1 .s -1 , second viscosity λ = -2 3 µ = -6.7 × 10 -4 kg.m -1 .s -1 , thermal conductivity K = 0.62 W.m -1 .K -1 , isothermal compressibility κ T = 4.6 × 10 -10 Pa -1 , isobaric specific heat C p = 4.2 × 10 3 J.kg -1 .K -1 , isobaric thermal expansion coefficient α = 2.1 × 10 -4 K -1 .

Linearized equations

According to widespread literature on visco-thermal acoustics (for example [START_REF] Bruneau | General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries[END_REF][START_REF] Beltman | Viscothermal wave propagation including acousto-elastic interaction, part i: theory[END_REF]), the fluid behaviour can be described by the following equations: Let δg(t) denote the small amplitude variations of the normal force density on the boundary Γ s . Let n (resp. t) denote the unit outer normal (resp. tangential) vector to Γ s . The tangential component of the fluid velocity on Γ s vanishes. The fluid verifies the no-slip condition on Γ f . The temperature is set at θ 0 along the boundary, so that δθ = 0. The linearized boundary conditions read:

∂ t δρ f + ρ f 0 div δu f = 0 (1) ρ f 0 ∂ t δu f = -grad δp + λgrad(div δu f ) + 2µdiv e(δu f ) (2) 
C p ρ f 0 ∂ t δθ -θ 0 α∂ t δp -K∆θ = 0 (3) δp = δρ f ρ f 0 κ T + αδθ κ T (4) 
           δθ = 0 on ∂Ω δu f .t = 0 and n.δσ.n = -δg(t) on Γ s δu f = 0 on Γ f (5) 

Non-dimensional transformation

Let us write p

= δp p 0 , ρ f = δρ f ρ f 0 , θ = δθ θ 0 , t = tc l x , ũ f = δu f c , σ = δσ ρ f 0 c 2 , x = x l x , ỹ = y l x , z = z l z , lx = l x l x = 1, ly = l y l x , lz = l z l x , grad = l x grad, d iv = Id : grad, ∆ = d iv grad and ẽ = 1 2 ( grad + grad t ).
After substitution of the dimensional parameters in the equations and elimination of ρ f using the equation 4, the initial-boundary value problem reads:

                                     ∂ t p -B∂ t θ + A d iv ũ f = 0 on Ω ∂ t ũ f + 1 M 2 grad p -1 Re 2 grad( d iv ũ f ) -2 Re d iv ẽ( ũ f ) = 0 on Ω ∂ t θ -1 C ∂ t p -1 Pe ∆θ = 0 on Ω θ = 0 on ∂ Ω ũ f .t = 0 and n. σ.n = -gx (t) = -δg x (t) ρ f 0 c 2 on Γs ũ f = 0 on Γ f + initial conditions (6) 
The definitions and values of the non-dimensional coefficients follow:

Re = cl x ρ f 0 µ = 1500, Re 2 = cl x ρ f 0 λ = -2200, M = c ( ρ f 0 p 0 ) = 150, Pe = l x cC p ρ f 0 K = 1.0 × 10 4 , A = 1 p 0 κ T = 2.2 × 10 4 , B = A * αT 0 = 1.3 × 10 3 and C = C p ρ f 0 αp 0 = 2.0 × 10 5 .
Note that Re is not the usual Reynolds number, because it does not depend on the actual fluid velocity.

Let Re u denote the usual Reynolds number. A relevant definition of Re u for the considered system

could be Re u = ReY max ω c
, where Y max stands for the maximal amplitude of displacement of the vibrating microplate and ω for the angular frequency. For vibrations of amplitude Y max = 1 nm in water between 10 MHz and 2 GHz, Re u verifies 0.06 < Re u < 12.

Neglecting the temperature variations

In water, the parameter C verifies C >> 1. Considering the respective orders of magnitude of the time derivatives appearing in the system 6, the term 1 C ∂ t p can be neglected: the energy equation depends only on θ and can be solved regardless of the other parameters. So let us now assume that the temperature variation θ verifies θ = 0 on the boundary ∂ Ω and θ( t = 0) = 0 on Ω. Solving the energy equation with C -1 = 0 leads to θ = 0 on Ω for all time t > 0. Note that in dry air, this conclusion would not apply because C = 3.5 × 10 -6 << 1.

In the rest of the paper, we assume that θ = 0 on Ω for all time t > 0. The initial-boundary value problem to be solved writes:

                       ∂ t p + A d iv ũ f = 0 on Ω ∂ t ũ f + 1 M 2 grad p -1 Re 2 grad( d iv ũ f ) -2 Re d iv ẽ( ũ f ) = 0 on Ω ũ f .t = 0 and n. σ( p, ũ f ).n = -gx (t) on Γs ũ f = 0 on Γ f + initial conditions (7) 

Structural equations

Boundary value problem

Assuming that the plate is isotropic, sufficiently thin and clamped along ∂Γ s [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], its equation of motion reads

           ρ s h∂ tt d s + ∆(D∆d s ) = g on Γ s d s = 0 and grad d s .n = 0 on ∂Γ s + initial conditions (8)
where d s is the transverse displacement field of the plate in the x direction, ∆ = ∂ yy + ∂ zz the Laplace operator, D = Eh 3 12(1-ν 2 ) the scalar bending stiffness of the plate, E its Young's modulus, h its thickness, ρ s its density, ν its Poisson's ratio, g the surface force density applied to the plate. Its temperature is homogeneous and is equal to θ 0 .

For the targeted application, the plate is a dense assembly of one, or very few layers, of aligned single walled carbon nanotubes [START_REF] Lebental | Cellule cmut formée d'une membrane de nanotubes ou de nanofils ou de nanopoutres et dispositif d'imagerie acoustique ultra haute fréquence comprenant une pluralité de telles cellules (cmut cell formed by a nanotubes or nanowires or nanobeams membrane, and ultra high frequency acoustic imaging device incorporating several of these cells)[END_REF]. We use parameter values typical of those of single walled carbon nanotubes: E = 1 TPa [START_REF] Krishnan | Young's modulus of single-walled nanotubes[END_REF], h = 1 nm, ρ s = 2000 kg.m -3 . In the absence of experimental data, we set ν = 0.3. Of course the following numerical methodology remains valid for a large range of plate parameters.

The actuation of the plate results from the capacitive force exerted on the metallic plate by the actuation electrode under time-varying voltage. The actuation force density g is theoretically proportional to

V (t) 2 ∂C
∂d s [33], where V (t) is the time-varying voltage applied to the electrode and

C (d s , R) ∝ 1
R+d s is the capacitance between the plate and the electrode, which depends on the plate displacement d s and on the plate-electrode distance R.

As a first step toward taking into account the exact actuation force, we assume the force density applied by the electrode on the plate to take the form g = g 0 (t) + g 1 d s (t) = G 0 cos(ωt) + g 1 d s (t), with ω the angular frequency and |d s | << R. The sign of g 1 is opposite to the sign of G 0 , due to the first order Taylor expansion of the term ∂C ∂d s for |d s | << R. We set G 0 = -8000 Pa and g 1 = 0.16 TPa.m -1 , which is the order of magnitude of the force density applied by an electrode under 2.5 V located at 100 nm of the plate.

Non-dimensional transformation

Reference parameters for the non-dimensional transformation of this plate boundary value problem are c, ρ f 0 and l x . Assuming the plate is homogeneous, problem 8 transforms into

           a p ∂ t t ds + r p ∆ ∆ ds = g
on Γs ds = 0 and grad ds .n = 0 on ∂ Γs + initial conditions [START_REF] Wijshoff | Structure-and fluid-dynamics in piezo inkjet printheads[END_REF] where ds

= d s l x , x = x l x , ỹ = y l x , t = tc l x , ∆ = ∆ l x , g = g ρ f 0 c 2 , g0 = g 0 ρ f 0 c 2 , g1 = g 1 l x ρ f 0 c 2 , a p = hρ s l x ρ f 0 and r p = D l 3 x = E ρ f 0 c 2 h 3 12l 3
x (1-ν 2 ) . To be short, foremost validity conditions are h << l x et ds << 1. Typical values for these non-dimensional parameters are r p = 4.1 × 10 -8 , a p = 2.0 × 10 -3 , g1 = 7.3 × 10 -5 and g0 = (3.6 × 10 -6 )cos(ωt). In the rest of this paper, unless specifically mentioned, we consider only non-dimensional quantities.

Hence, for the sake of simplicity, from now on, we drop the ˜symbol in all equations.

According to the perfect kinematic continuity assumption and associated stress continuity condition on Γ s , the fluid-structure problem is governed by the following boundary value problem:

                                     ∂ t p + Adiv u f = 0 on Ω ∂ t u f = -1 M 2 grad p + 1 Re 2 grad div u f + 2 Re div e(u f ) on Ω u f = 0 on Γ f u f y = 0 and u f x = ∂ t d s on Γ s g 0 + n.((-1 M 2 p + 1 Re 2 div u f )Id + 2 Re e(u f )).n = -g 1 d s + a p ∂ tt d s + r p ∆∆d s on Γ s d s = 0 and grad d s .n = 0 on ∂Γ s + initial conditions (10) 
In view of writing the variational formulation of the coupled problem, it is convenient to reformulate the dynamics of the structure as a first-order system using displacement, pressure and velocity as unknowns. To this end, let u s stand for the non-dimensional transverse velocity field in the solid. As usual, the dynamics rewrites

     ∂ t d s -u s = 0 on Γ s -g 1 d s + a p ∂ t u s + r p ∆∆d s -σ(p, u f ).n = g 0 on Γ s (11) 
Note that following [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] the last equation rewrites

a p ∂ t u s + r p ∆∆ t 0 u s -g 1 t 0 u s -σ(p, u f ).n = g 0 on Γ s (12) 
and, assuming the structural velocity is known, the displacement can be obtained as d s = t 0 u s

Variational formulation

Let u = u f , p, u s denote the triplet formed by the non-dimensional velocity and pressure fields in the fluid, and by the non-dimensional velocity field in the solid respectively. Following [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], the natural solution space writes

V = v = v f , r, v s ∈ (H 1 (Ω f )) 3 × L 2 (Ω f ) × H 2 0 (Γ s ); v f .n = v s and v f .t = 0 on Γ s ; v f = 0 on Γ f (13) 
where

H 2 0 (Γ s ) = {v ∈ H 2 (Γ s )|d s = 0 and grad d s .n = 0 on ∂Γ s }
This is well-defined since the trace of the velocity field along Γ s is a square-summable function.

Moreover, the space associated with inertia writes

H = L 2 (Ω f ) 3 × L 2 (Γ s ).
Let us introduce the bilinear form that corresponds to the virtual work of internal stresses

a(u, v) = Ω f M 2 Re 2 (div u f )(div v f ) + 2M 2 Re e(u f ) : e(v f ) + Ω f (div u f )r -pdiv v f + r p a p Γ s ∆ t 0 u s ∆v s - g 1 a p Γ s t 0 u s v s ∀(u = u f , p, u s , v = v f , r, v s ) ∈ V 2 (14) 
The bilinear form associated with the acceleration reads

b(u, v) = Ω f (M 2 u f v f + 1 A pr) + Γ s u s v s ∀(u = u f , p, u s , v = v f , r, v s ) ∈ V 2 (15) 
The plate will be subjected to an external distributed force g 0 and there is no other external force on the system. Let us call

L(v) = Γ s g 0 v s ∀v = v f , r, v s ∈ V.
It is a purely computational and standard matter to show that the fluid-structure coupled problem writes

     seek u ∈ L 2 (0, T ;V ) such that b(∂ t u, v) + a(u, v) = L(v) ∀v ∈ V (16) 
The well-posedness of this problem relies on a variant of general arguments of the energy method such as those explained in [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] (vol 5, chapter 18, pages 670-675). More precisely, the following existence and uniqueness result can be established:

Existence and uniqueness of solutions : Assume the spring stiffness g 1 to be smaller than the first eigenvalue of the clamped micro-plate. Then there exists a unique solution u = u f , p, u s ∈ L ∞ (0, T ; H) of equation ( 16) such that u f , p,

t 0 u s ∈ V. In particular, u f ∈ L 2 (0, T ; H 1 (Ω f )), p ∈ L 2 (0, T ; L 2 (Ω f )) and t 0 u s ∈ L ∞ (0, T ; H 2 0 (Γ s )). As a result, the structural displacement d s = t 0 u s ∈ L ∞ (0, T ; H 2 0 (Γ s )) is
bounded in time and space and the no-jump condition of the velocity field along the fluid-structure interface Γ s takes place almost everywhere.

Forced response under harmonic load

The external force is harmonic:

g 0 = G 0 cos(ωt)
where ω is the reduced (e.g. non-dimensional) angular frequency such as the actual angular frequency (expressed in rad.s -1 ) is equal to ω c l x . If f is a given non-dimensional scalar or vector field, let F denote its Fourier transform. Writing q = iω and U = U f , P,U s , one has to solve the following set of equations:

                               qP + Adiv U f = 0 on Ω qU f + 1 M 2 grad P -1 Re 2 grad div U f -2 Re div e(U f ) = 0 on Ω U f = 0 on Γ f U f y = 0 and U f x = qD s on Γ s G 0 + n.((-1 M 2 P + 1 Re 2 divU f )Id + 2 Re e(U f )).n = -g 1 +a p q 2 q U s + r p q ∆∆D s on Γ s D s = 0 and grad D s .n = 0 on ∂Γ s (17) 
A variational formulation of previous set of equations now reads

     seek U ∈ V such that qb(U,V ) + a(U,V ) = Γ s G 0 U s ∀V ∈ V (18) 
Where the time integrals are to be replaced with the multiplicative factor 1 iω . It is easy to prove that no q = iω is an eigenvalue of above problem, that is to say, any solution of this problem should vanish when the applied force vanishes. Such a solution U would satisfy above equation with

V = U, thus b(U,U) - r p a p Γ s ∆ U s ∆ U s = 0 Ω f M 2 Re 2 (divU f )(divU f ) + 2M 2 Re e(U f ) : e(U f ) = 0 (19) 
Korn's inequality together with homogeneous Dirichlet boundary conditions on Γ f thus lead to U f = 0 over Ω. Because of the kinematic transmission condition between the fluid and the structure, we get U s = 0 over Γ s . The first part of above equation then leads to P = 0 over Ω. The same coerciveness argument enables one to establish the well-posedness of problem (18).

Condensation of the fluid problem on the structure

Let N denote the Neumann extension operator from

L 2 (Γ s ) to L 2 (Ω) × H 1 (Ω) 3 defined as N : L 2 (Γ s ) -→ L 2 (Ω) × H 1 (Ω) 3 G -→ (P,U f x ,U f y ) such that q A P + div U f = 0 on Ω qU f + 1 M 2 grad P -1 Re 2 grad div U f -2 Re div e(U f ) = 0 on Ω U f = 0 on Γ f U f y = 0 on Γ s n.((-1 M 2 P + 1 Re 2 div U f )Id + 2 Re e(U f )).n = -G on Γ s (20) 
Let T r denote the trace on Γ s of U f x . Let us then define S by S = T r • N . Let P denote the following unbounded operator (for q = 0):

P : H 2 0 (Γ s ) -→ L 2 (Γ s ) U s -→ a p q 2 -g 1 q U s + r p q ∆∆U s (21) 
Let G 0 ∈ L 2 (Γ s ) denote the Fourier transform of the non-dimensional load g 0 applied on the plate by the fluid. Combining the definition of S with equations ( 17), ( 20) and ( 21), the coupled system thus reads:

P (U s ) + (S -1 )(U s ) = G 0 (22) 
Writing T = S -1 , the variational formulation of problem ( 22) reads, :

     seek U s ∈ H 2 0 (Γ s ) such that Γ s (P (U s )Z + T (U s )Z) = Γ s G 0 Z ∀ Z ∈ H 2 0 (Γ s ) (23) 
where above integrals should be understood as the duality product H -2 <> H 2 0 . A motivation for condensing the fluid problem lies in the wish to investigate the behaviour of the actuator itself. The method is expected to be especially useful in the field of micro-and nanoelectromechanical systems modeling, because, at this scale, structure equations are more complex due to downscaling.

The proposed formulation also lays the foundations for the use of independent, special purpose solvers for the fluid and the structure. In particular, it may be computationally efficient to do so in the three-dimensional case, especially when the microplate behaves in its non linear regime. However, it is presently unclear how this choice will impact further studies on the observability of the characteristics of the fluid domain.

Approximate problem

Choice of the approximation spaces

Let W N denote the span of a basis of (L2 (Γ s )) 2 , for instance the Fourier basis F N = ( f i n,m ) (i,n,m)∈ 1,4 × 0,N × 0,N with M 3D = 4N 2 + 4N + 1 elements (only keeping non identically vanishing functions) defined as follows:

f 1 n,m (x, y) = cos(2πn x l x )cos(2πm y l y ), f 2 n,m (x, y) = cos(2πn x l x )sin(2πm y l y ), f 3 m,n (x, y) = sin(2πn x l x )cos(2πm y l y ) and f 4 n,m (x, y) = sin(2πn x l x )sin(2πm y l y ) (24) 
Let us define τ 0 (x, y) = x 2 (l xx) 2 y 2 (l yy) 2 and V N the span of the set

G N = (τ 0 f i n,m ) (i,n,m)∈ 1,4 × 0,N × 0,N . The projection from L 2 to V N is denoted Π N .
The set of functions {(x i y j τ 0 (x, y)) 0≤i, j≤+∞ } generates H 0 2 (Γ s ) because τ 0 divides any polynomial v verifying v = 0 and grad v.n = 0 on ∂Γ s . As F ∞ generates L 2 (Γ s ), it also generates Span{(x i y j ) 0≤i≤+∞;0≤ j≤+∞ }. Hence, G ∞ generates H 0 for H 2 0 (Γ s ).

The interest of using V N as approximation space for H 0 2 (Γ s ) instead of Span{(x i y j τ 0 (y)) 0≤i, j≤+∞ } lies in computational issues. The interest of using the set of functions V N instead of a finite elements space lies in the fact that spectral methods are known to converge exponentially fast. They are usually limited to polyhedral volumes where they are easier to implement. Since we consider here a rectangular plate, this method will prove efficient. If we were to consider a plate of arbitrary shape, we would use finite elements.

As a complement, let us briefly define an appropriate set of functions H N for the 2D setting: writing

ψ 0 (x) = x 2 (l x -x) 2 ,
H N is defined as the set of M 2D = 2N + 1 functions:

∀ n ∈ 0, N ψ 1 n (x) = ψ 0 (x)cos(2πn x l x ) and ∀ n ∈ 1, N ψ 2 n (x) = ψ 0 (x)sin(2πn x l x ) (25) 

Approximation of operators and approximate resolution

The approximation of coupled problem ( 23) on V N reads:

     seek U s ∈ V N such that Γ s (P (U s )Z + T (U s )Z) = Γ s G 0 Z ∀Z ∈ V N ( 26 
)
This corresponds to the following approximations P N , T N , G 0,N of the operators P and T and of the external distributed force G 0 :

P N = Π N P Π N , T N = Π N T Π N , G 0,N = Π N G 0 ( 27 
)
In terms of these approximate operators, the approximate problem reads

seek U s ∈ V N such that P N (U s ) + T N (U s ) = G 0,N (28) 
Let us write, with M = M 3D in the 3D case and M = M 2D in the 2D case,

U s = M ∑ i=1 u s i τ i , U s e = (u s i ) 1≤i≤M , G e = (< τ i , G 0 >) 1≤i≤M , P e = (< τ i , P (τ j ) >) 1≤i, j≤M , N e = (< f i , f j >) 1≤i, j≤M , S e = (< f i , S( f j ) >) 1≤i, j≤M and T e = (< f i , T ( f j ) >) 1≤i, j≤M
Let us recall that

< τ j , P (τ i ) >= ( f 1 -aω 2 ) < τ i , τ j > +d < ∆τ i ∆τ j > and T e = N e S -1
e N e

The matrix form of problem (28) reads:

(P e + N e S -1 e N e )U s e = G e (29) 
According to paragraph 3.4.3, the matrix P e + N e S -1 e N e is inversible. The matrix equation ( 29) has a unique solution U s e , defining the unique solution U s ∈ V N of the approximate problem [START_REF] Kirby | Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations[END_REF].

Numerical study of the convergence of the approximate problem

Implementation of the computational method

The operators N and S the trace of N on Γ s are evaluated by a standard finite element method with the software FreeFem++ (version 2.19) [START_REF] Hecht | FreeFem++[END_REF].

In 2D, we use a regular mesh made of triangles generated by FreeFem++, in 3D, a tetrahedral mesh generated by TetGen [START_REF] Hang | TetGen Users' Guide: A quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator[END_REF]. The mesh density is controlled by the number n of nodes along the edge {y = 0, z = 0, 0 < x < 1}, which we call here the 'mesh resolution'. The number of nodes by unit length is the same for all edges, so that the total number of nodes in the domain Ω is proportional to n 2 in 2D,

n 3 in 3D.
The finite elements used for the pressure field P are P1-Lagrange (continuous piecewise linear finite elements) and the ones for the velocity field U f P1b (P1+bubble) as defined in [START_REF] Arnold | Mixed and nonconforming finite element methods implementation, postprocessing and error estimates[END_REF]. We use FreeFem++'s version of the UMFPACK solver [START_REF] Davis | UMFPACK User Guide[END_REF].

Using this finite element method, we evaluate the operator S N . In practice, we compute each finite element function S( f i ) for i ∈ 1, M . By a straightforward step of numerical integration under FreeFem++, we then computes the M 2 coefficients of the matrix S f = (< f i , S( f j ) >) 1≤i, j≤M . We also compute the coefficients of the other required matrices and vectors, namely P e , G e and N e . We use FreeFem++ version of the lapack module [START_REF] Anderson | LAPACK Users' Guide Third Edition[END_REF] to solve the matrix equation 29.

Convergence of the fluid computation

In this section, we study the precision of the finite element method implemented to evaluate the operators N et S. 

U f 0,x = U f 0,y = x(l x -x)y(l y -y)z(l z -z), U f 0,z = (l 2 z -z 2 )x(l x -x)y(l y -y) (30) 
We derive analytically the functions

P 0 = -A q div U f 0 , f 0 and G 0 such that (P 0 , U f 0 ) verifies N f 0 (G 0 ) = (P 0 , U f 0 )
, where N f 0 is the affine Neumann extension operator defined as

N f 0 : L 2 (Γ s ) -→ L 2 (Ω) × H 1 (Ω) 3 G -→ (P,U f x ,U f y ,U f z ) such that q A P + div U f = 0 on Ω qU f + 1 M 2 grad P -1 Re 2 grad(div U f ) -2 Re div e(U f ) = f 0 on Ω U f = 0 on Γ f U f x = 0 and U f y = 0 on Γ s n.((-P + 1 Re 2 div U f )Id + 2 Re e(U f )).n = -G on Γ s (31) 
Let N f 0 ,n denote the approximation by finite elements of the operator N f 0 with a mesh resolution n.

Let X = ( Ω |X| 2 ) 1/2 denote the usual L 2 (Ω) norm and let us write

(P n ,U f x,n ,U f y,n ,U f z,n ) = N f 0 ,n (G 0 ), ε x = U f n,x -U f 0,x U f 0,x , ε y = U f n,y -U f 0,y U f 0,y and ε z = U f n,z -U f 0,z U f 0,z
. By construction, we expect 2 shows the decrease of relative errors ε x and ε z toward 0 when n increases (by symmetry, in this setting ε x = ε y ). The decay rate indicates second order convergence. In this section, we study the precision of the method used for the evaluation of U s ∈ V N , as defined in equation [START_REF] Kirby | Zeta potential of microfluidic substrates: 1. theory, experimental techniques, and effects on separations[END_REF], with respect to N (the dimension of the space V N being equal to 4N 2 + 4N + 1 in 3D and 2N + 1 in 2D) and n (the mesh resolution). The parameters used for the fluid equations are the same as in the previous paragraph. The parameters used for the plate equation are r p = 4.1 × 10 -8 , a p = 2.0 × 10 -3 , G 0 = 3.6 × 10 -6 and g 1 = 7.3 × 10 -5 .

(P n ,U f x,n ,U f y,n ,U f z,n ) to converge toward (P 0 , U f 0 ) when n increases. Indeed, Figure
Like in the previous paragraph, we choose a reference velocity field U f 0 from which we derive analytically the functions

P 0 = -A q div U f 0 , f 0 , G 0 and G ext,0 such that U s 0 ≡ U f 0,z (x = 0, y = 0, z) verifies P (U s 0 ) + (S f 0 ) -1 (U s 0 ) = G ext,0 (32) 
with N f 0 defined as in equation ( 31) and with S f 0 defined as

S f 0 = T r • N f 0 .
Let us call U s n,N the solution in the finite space V N of the exact problem [START_REF] Krishnan | Young's modulus of single-walled nanotubes[END_REF]. Let us define the

convergence parameter ε n,N = U s n,N -U s 0 U s 0
. By construction, we expect U s n,N to converge toward U s 0 when n or N increases.

3D settings

In the 3D setting, we consider the polynomial velocity field:

U f 0,x = U f 0,y = x(l x -x)y(l y -y)z(l z -z), U f 0,z = (l z -z) 4 x 2 (l x -x) 2 y 2 (l y -y) 2 (33) 
For the parameters n and N as low as n = 13 and N = 2 (M = 25 basis functions), we obtain an error as low as 1.9 % (ε 13,2 = 0.019), which is very satisfying considering the low density of nodes in the volume.

2D setting

To limit computational costs, we have only carried out the full convergence study in 2D. We consider the following reference velocity field:

U f 0,x = (l z -z)z(l x -x)( l x 2 -x)x U f 0,z = (l z -z) 2 x 2 (l x -x) 2 ( l x 2 -x) 2 (34) 
We verify (Figure 3) that U s n,N → U s 0 when (n, N) → (+∞, +∞). Of course, since U s n,N results from a double approximation process, the accuracy is limited by either one of the approximation errors, which explains the asymptotic behaviour. The error also seems to increase when the number of modes is larger than a maximum value that depends on the mesh size. It is a lock-in phenomenon, which is standard in numerical analysis. 

Behaviour of the fluid under harmonic homogeneous load

In this section, we set G 0 = 1 (homogeneous harmonic load on the boundary Γ s ) and we compute the pressure and velocity fields (P, U f ) = N (G 0 ). Let us define the non-dimensional acoustic admittance Y (z) as the L 2 -norm of the fluid velocity on a section of the domain parallel to Γ s (plane In non-viscous acoustics, the water-filled domain of width l z would resonate at the frequencies

Γ Z = {x, y, z = Z}) divided by the L 2 -norm of the load, that is Y (z) = Γ Z |U f z (x,y,z)| 2 Γ Z |G| 2 = Γ Z |U f z (x, y, z)| 2
f k = c λ k , with λ k = 4l z 1+2k , k ∈ N.
A quantitative analysis of the FRF presented Figure 4 indicates that the frequencies of the visco-acoustic resonances are close to the frequencies f k of the non-viscous resonances. For instance, for l z = 1.3 µm, the first resonance is down-shifted by only 3.1% ± 0.5% (Figure 7). The quality factor of the first resonance is 17.2 ± 14.3%. Here, the value of the parameter X 0 is the reference value of the parameter X as given in paragraph 3.2.3.

Boundary layer

We identify (Figure 8) two types of velocity profiles along the x-axis depending on the excitation frequency. At frequencies f much lower than the first resonance ( f << c 4l z ), viscous effects dominate over inertial effects. The velocity profile |U 

h BL = 1 2 (l x - l x 0 χ(x)) (35) 
with

χ(x) = 1 if x ∈ D and χ(x) = 0 if x / ∈ D (36) 
and

D = x ∈ [0, l x ] such that 0.95|U f z ( l x 2 , 0)| ≤ |U f z (x, 0)| ≤ 1.05|U f z ( l x 2 , 0)| (37) 
The domain D defines the interval along the x-axis along which the velocity is constant with 5% accuracy, and χ is the characteristic function for the 1D domain D. The quantity h BL is thus defined as the thickness of the layer along the boundary where the velocity is not constant.

A large value for h BL is characteristic of strong viscous effects. The Figure 10 displays h BL with respect to the frequency f . The plot presents definite peaks, approximately localized at the wavelengths λ κ ≈ 2l z κ , κ ∈ N, that is to say halfway between successive resonance frequencies. At these 'antiresonancies', the viscosity effect is maximal and the admittance is minimal. Between successive 'antiresonancies', h BL decreases with increasing frequency and becomes stationary around λ k ≈ 4l z 2k+1 : close to the resonance, the inertia terms play in the solution a dominant role over the viscosity terms. 

Behaviour of the elasto-acoustic system under harmonic homogeneous load

We consider in this section the fluid-plate system under an harmonic homogeneous load of amplitude G 0 = -8000 Pa. We study the plate displacement D s = 1 q U s ∈ H 2 0 (Γ s ) solution of equation [START_REF] Barber | The influence of knudsen number on the hydrodynamic development length within parallel plate micro-channels[END_REF]. The results are analyzed by computing the L 2 -norm of the plate displacement D s , denoted The shape of these fluide-plate modes (Figure 12) is similar to the shape of the fluid-only modes (Figure 8). For instance, the Figure 12 According to the Figure 13 presenting |D s (x)| with respect to x at 155 MHz for a plate of thickness 5 nm, Young's modulus 1 TPa and density 2, the observed resonance could either be the first or the third resonance of the plate (the second is excluded for symmetry reasons). In vacuum, the resonance frequencies of a plate are given by the formula φ 2 i = α i Eh 2

D s = ( 1 0 |D s (y)| 2 ) 1 2 .
(1-ν 2 )ρ s L 4 + g 1 a p with α 1 = 1, 027, α 2 = 2, 756 and α 3 = 5, 404 [START_REF] Cleland | Noise processes in nanomechanical resonators[END_REF]. It leads to φ 1 = 121 MHz, φ 2 = 331 MHz and φ 3 = 648 MHz in our case.

If the observed resonance was the third plate resonance, its frequency downshift ratio would be 75%.

Assuming that a similar downshift ratio could be applied to the first resonance, we should observe this first resonance around 30 MHz, which is not the case. This means that the structure mode we observe is the first plate mode, strongly perturbed and upshifted by 13 %: the water load causes an added stiffness effect.

Compared to the situation in air described in [START_REF] Beltman | Implementation and experimental validation of a new viscothermal acoustic finite element for acousto-elastic problems[END_REF], it appears that the plate modes are much more strongly perturbed in water than in air, which was to be expected. There is however a similar added stiffness effect. 

Conclusions

We have developed a computational method for the modelling of a microplate vibrating between 10

MHz and 2 GHz in a water-filled domain of micrometric size. The method is based on the condensation of the fluid part of the fluid-structure equations on the structure by a finite element method, and on a spectral approximation of the structural equations. We have proved the well-posedness of the problem, numerically studied its convergence and analyzed the results provided by the method.

Although viscous terms occasion a frequency downshift and a decrease of the quality factors, the fluid domain is still resonant at frequencies close to the resonance frequencies observed in a non viscous acoustic cavity. The resonances observed for the system coupled with a thin plate are at the same frequency as the resonances of the fluid alone. When the plate thickness increases, the fluid domain resonances do not shift. However, a low quality factor resonance appears. It seems to be the strongly upshifted fundamental mode of the plate. Altogether, the frequency response function of the system is strongly sensitive to the pore width, which makes the device a good candidate for porosity monitoring.

In a further study, geometries will have to be complexified to account for more realistic pore shape in cementitious materials. Eventually, results will have to be interpreted in terms of observability of the characteristics of the porosity for cementitious materials instrumentation.
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 1 Figure 1: Model geometries: (a) 3D setting; (b) 2D setting.

0 , θ 0 and u f 0 = 0 .

 00 Let us first establish the equation that govern the fluid evolution. We assume that the water in the pore behaves like a compressible Newtonian fluid. There is no mean flow nor volume forces nor heat generation. Acoustic flows are laminar.The state variables of the fluid are p the pressure, ρ f the volume mass, θ the temperature, u f the velocity. Let us denote δp, δρ f , δθ and δu f the small amplitude variations of the state variables around their average values p 0 , ρ f Depending on the context, let us call grad the 2D or 3D

Equation ( 3 )

 3 follows from the combination of the linearized energy conservation equation (for example[START_REF] Landau | Fluid Mechanics[END_REF]) with the linearized form δh = C p δθ + 1-θ 0 α ρ f 0 δp of the enthalpy equation h = h(p, θ). Equation (4) is the linearized form of the fluid state equation p = p(ρ f , θ).

3. 4 .

 4 Fluid structure interaction 3.4.1. Coupling equations

  For this convergence study, we use the parameters ω = 0.90, A = 22000, M = 150, Re = 1500, Re 2 = -2200, l x = 1, l y = 1 and l z = 1.3. Let us choose a reference velocity field U f 0 :

Figure 2 :

 2 Figure 2: Convergence of the computed solution toward a known polynomial solution: relative errors ε x and ε z with respect to the mesh resolution n

Figure 3 :

 3 Figure 3: Convergence of the computed 2D solution toward a known polynomial solution: relative error ε n,N with respect to the number of modes M 2D = 2N + 1 for different mesh resolutions n (a) and vice versa (b)
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 11 From a 3D to a 2D settingThe Figure4compares the acoustic admittance Y (0) (e.g. the average velocity on Γ s ) of the 3D and 2D domain presented Figure1. The 2D and 3D frequency response functions (FRF) display very similar features in terms of amplitudes, resonance frequencies and quality factor of resonances.

Figure 4 : 2 ,

 42 Figure 4: Non-dimensional admittance Y (0) with respect to frequency for a 3D domain of size l x =1 µm x l y =1 µm x l z =1.3 µm and two 2D domains of size l x =1 µm x l z =1.3 µm and l x =1 µm x l z =10 µm.

Figure 5 :

 5 Figure 5: Frequency (a) and quality factor (b) of the first resonance for 3D domains of same height l x = 1 µm, same width l z = 1.3 µm and different depth l y (solid lines). As expected, when l y increases, the 3D values shift toward the 2D limit values (dashed line)

Figure 6 :

 6 Figure 6: Isovalue lines of the non-dimensional velocity fields |U f z | (a-c) and |U f x | (d-f) at the first three resonances, for a domain of width 1 µm and length 1.3 µm.

Figure 7 :

 7 Figure 7: Non-dimensional admittance Y (0) at frequencies close to first resonance for various parameters. The domain length is 1.3 µm.

Figure 8 :

 8 Figure 8: Non-dimensional velocity profile at z = 0 for different frequencies for a domain of height l x =1 µm and width l z =1.3 µm

Figure 9 :

 9 Figure 9: Normalized velocity profile at z = 0 at first resonance (281 MHz) and at first "antiresonance" (573 MHz) for a domain of height l x =1 µm and width l z =1.3 µm

Figure 10 :

 10 Figure 10: Boundary layer thickness h BL with respect to frequency for a domain of height l x =1 µm and width l z =1.3 µm

Figure 11 :

 11 Figure 11: Norm of the dimensional plate displacements D s l x with respect to frequency for a domain of width l x =1 µm and length l z =1.3 µm
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 522 displays the profile of the plate vibrations |D s | at the first resonance computed from 23 basis functions. The lateral velocity peaks are apparent, as well as an approximately 'flat' portion between the peaks. The oscillations in this 'flat' portion of the profile are due to the Fourier approximation. Plate resonances and added stiffness effect These elements indicate that the fluid resonances are only weakly perturbed by the presence of the plate. On the contrary, the plate resonances are strongly perturbed by the presence of the fluid. Indeed, for a very thin plate (h < 5nm), no resonance can be observed in the FRF. When the plate thickness h increases (h = 5 nm), one of the resonances of the FRF appears at a frequency significantly different from the frequencies of the fluid resonances (Figure11). The frequency and amplitude of this resonance strongly depend on the parameters of the plate E, ρ s , h and l x .

Figure 12 :

 12 Figure 12: Displacement profile |D s | at 281 MHz (first resonance), computed for N=11 (23 modes) and n=100.

Figure 13 :

 13 Figure 13: Displacement profile |D s | of a h = 5 nm thick plate at 155 MHz, frequency associated to a plate resonance

Table 1

 1 sums up the resonance shifts and the resonance quality factors computed for different fluid parameters. It shows that the frequency downshift increases and the quality factor decreases with decreasing parameter Re, i.e when the role of the viscous terms in Navier-Stokes equations increases. Note that the errors given in Table1result from the various non-dimensional frequency steps δω used for the computation of Y 0 with respect to ω.

	L L 0	ρ f ρ f 0	p p 0	κ T κ T,0	µ µ 0	Re Re 0	Frequency downshift (%) Quality factor
	5	1	1	1	1	5	1.6 ± 0.2	150 ± 18%
	1 10 1	1	1	(10)	2.7 ± 0.5	29 ± 18%
	1	1	1	1	1	1	3.1 ± 0.5	17 ± 14%
	1	1 10	1	1	1	3.1 ± 0.5	17 ± 14%
	1	1	1	10	1	1 √ 10	4.4 ± 0.5	8.4 ± 7%
	1	1	1	1	10	1 10	6.4 ± 1.0	4.4 ± 8%

Table 1 :

 1 Frequency downshift and quality factor of first resonance with respect to various parameters.
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(Γ s ), so that we choose V N as approximation space

f z (x, z = k)| along the x-direction is parabolic. Beyond a
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