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Path selection rules for droplet trains in single-lane microfluidic networks

A. Amon, A. Schmit, L. Salkin, .. Courbin, and P. Panizza
IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
(Dated: September 12, 2013)

We investigate the transport of periodic trains of droplets through microfluidic networks having
one inlet, one outlet, and nodes consisting of T junctions. Variations of the dilution of the trains,
i.e. the distance between drops, reveal the existence of various hydrodynamic regimes characterized
by the number of preferential paths taken by the drops. As the dilution increases, this number
continuously decreases until only one path remains explored. Building on a continuous approach
used to treat droplet traffic through a single asymmetric loop, we determine selection rules for the
path taken by the drops and we predict the variations of the fraction of droplets taking these paths
with the parameters at play including the dilution. Our results show that, as dilution decreases,
the paths are selected according to the ascending order of their hydrodynamic resistance in the
absence of droplets. The dynamics of these systems controlled by time-delayed feedback is complex:
we observe a succession of periodic regimes separated by a wealth of bifurcations as the dilution is
varied. In contrast to droplet traffic in single asymmetric loops, the dynamical behavior in networks

of loops is sensitive to initial conditions because of extra degrees of freedom.

PACS numbers: 47.60.Dx 47.55.D- 47.20.Ky
I. INTRODUCTION

A laminar, steady, and Newtonian flow in a rigid pipe is
described by the Hagen-Poiseuille equation which states
AP=RQ, with @ the volumetric flow rate, AP the pres-
sure drop between the pipe’s inlet and outlet, and R a
constant having units Pa s m™> whose value solely de-
pends on the fluid viscosity and the geometry of the
pipe [1]. Because of the analogy between this equation
and the classical Ohm’s law for the analysis of electric
circuits, relationships analog to Kirchhoff’s laws for the
electrical current and voltage drop can be written for @
and AP, respectively [1-3]. Hence, obeying to the com-
bination rules of resistors, R is known in the literature
as the hydrodynamic resistance of the pipe [4].

Now, considering a fluidic network made of numerous
interconnected branches, the determination of the flow
rates in each branch can be difficult. For monophasic
Newtonian flows, this problem has a unique solution eas-
ily derived using the analogy between fluidic networks
and electric circuits mentioned above. For two-phase
flows however, e.g flows in (droplet-based) digital mi-
crofluidic applications [5, 6], strong nonlinearities arise
and the problem becomes challenging. Indeed, the trans-
port of discrete elements or information through net-
works, such as droplet traffic in single-lane microchannels
having lateral dimensions comparable to the drop size,
road traffic [7], blood microcirculation [8], and cell sig-
naling [9], are all regulated by time-delayed feedback and
nonlinear couplings. When reaching a node, a droplet
generally flows in the channel having the largest instan-
taneous volumetric flow rate [10, 11]. Since the hydro-
dynamic resistance of a channel depends on the presence
of flowing drops [12], the path selection of a drop at a
node is monitored by the entrance and exit of the pre-

ceding drops in all the branches of the network. Even in
the simple case of two bifurcating channels, the traffic of
drops or bubbles can be amazingly complex and yields
a rich variety of dynamics including periodic and mul-
tistable traffic patterns [11, 13-16]. However, so far in-
vestigations mostly focus on trains of bubbles or droplets
flowing through a single loop [11, 13-22], while a few deal
with more complex geometries [23, 24].

Here, we investigate droplet traffic in complex single-
lane networks to determine whether the approaches and
simple rules employed to rationalize experimental find-
ings for a single loop are still valid. The paper is or-
ganized as follows. In section II, we briefly present
the phenomena observed when studying droplet traf-
fic in the most studied configuration, an asymmetric
loop [10, 11, 13-18] and we give the basic elements used
in the continuous [10, 11, 15-18] and the discrete [13, 14]
models that rationalize observations. In addition, we pro-
vide the complete derivations of the analytical results
obtained using discrete models [13]. In section III, build-
ing on these theoretical grounds, we study droplet traffic
through networks having one inlet and one outlet that
can be connected using more than two different ways;
the nodes of the networks are T junctions. We model
the flow and we validate the resulting predictions with
microfluidic experiments.

II. TRAFFIC THROUGH A SINGLE-LANE
ASYMMETRIC LOOP

A. Background

The basic elements necessary to describe the trans-
port of droplets in single-lane microfluidic conducts hav-
ing lateral dimensions of the order of the drop size and



through an asymmetric loop are the following [10, 11, 13—
18, 25]:

(a) The hydrodynamic resistance R of a pipe of length
L and constant cross-section S varies linearly with
the number N of drops it contains, R =a(L+NL,).
In this expression, a has units Pa s m~* and is a
function of the viscosity of the continuous phase
and of the geometry of the channel cross-section [1],
and L, is a parameter having the dimension of a
length which corresponds to the effective resistive
length each droplet adds to the pipe in terms of
hydrodynamic resistance.

(b) The velocity V' of droplets flowing in such a pipe
varies as V=B% where @ is the total flow rate and
[ is a dimensionless number characterizing the mo-
bility of the drops in the pipe.

(c) At a T junction, a droplet always flows in the pipe
having the larger total flow rate.

The validity of the expressions for R and V in points
(a) and (b) has been demonstrated by both millifluidic
and microfluidic experiments in channels having circular
and rectangular cross-sections, respectively [10, 12, 18].
Such equations can be derived using a phenomenological
model considering that the droplets are sufficiently far
apart so that they do not interact hydrodynamically [12].
The value of L, depends on the geometry of the cross-
section, the viscosity ratio between dispersed and con-
tinuous phases, and the droplet confinement p defined as
the ratio between the drop size and the lateral dimension
of the channel [12]. The modeling of the flow described
above is valid for confinements typically varying in the
range 0.7—1 for which L, increases with p. For smaller
p, the hydrodynamic resistance appears to be nearly in-
dependent of the presence of droplets, L,~0. For larger
values of p, nonlinearities may arise because of capillary
effects [11]. The mobility S is a decreasing function of p
which varies between 2 and 1 for circular cross-sections.
(8 can be either larger or smaller than 1 in the case of
rectangular cross-sections [12, 26] because of corner flows
that only exist in this geometry. The path selection rule
at a node given in point (¢) has a limited range of valid-
ity since experiments have shown that collisions between
successive drops can occur at a node and regulate traffic
when droplets are close enough [21, 25]. In what follows,
we only consider situations for which the distance A be-
tween drops reaching a junction is sufficiently large to
avoid such collisions to occur.

So far, most studies have considered one-dimensional
(1-D) trains of monodisperse droplets produced at a con-
stant rate f and flowing through a single asymmetric loop
(Fig. 1). The reason for considering periodic 1-D trains
is threefold. First, their production is easy using robust
geometry-based methods such as T junctions [27, 28] or
Flow Focusing Devices [29]. Second, most digital mi-
crofluidic high-throughput applications in chemistry [30],
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FIG. 1. Schematic of the flow model for a single-lane asym-
metric loop defining A, L1, and La>L1.

biotechnology [31, 32], and material sciences [33] require
to index the drops and/or to use a space-to-time conver-
sion, two characteristics that are inherent to 1-D trains.
Finally, the use of such trains makes the modeling eas-
ier. We consider that both arms of the loop have the
same constant cross-section S but different lengths L,
and L,>L, (Fig. 1). The other parameters at play are
B, Ly, and A, the velocity of the droplets being V=Af.
More details on microfluidic and millifluidic set-ups able
to monitor independently L,, f, and A can be found
in [10, 12]. Note, however, that L, and g, which depend
on the droplet confinement, can never be set indepen-
dently.

The problem can be addressed numerically using a sim-
ple algorithm [11, 12, 17, 20, 34]. At each time step 7 = %
a droplet whose physical volume is neglected reaches the
inlet node of the loop. One computes the numbers of
droplets N, present in each arm (i) (i=1 or 2) and the
hydrodynamic resistance of this arm R,. The drop at
the inlet node is then injected in the arm having the
smaller hydrodynamic resistance. Afterwards, N, and R,
are updated. In each arm (i), the velocity of the drops V;
is computed using the conservation of the total flow rate
and the relationships describing the transport of droplets
in a pipe of constant cross-section. The droplets present
in each arm (i) are then moved until N, changes, i.e.
until the exit of a drop or the entrance of a new drop.
Whenever a droplet exits the system, the values of N,
R;, and V; are updated so that the displacements of all
droplets are reevaluated. For a given set of parameters
(L,,L,y,L,), when A is varied, experimental and numerical
findings share the following features:

e At high dilutions, all droplets flow in the shorter
arm. For smaller )\, partitioning of the drops be-
tween both arms is observed. The transition be-
tween these two regimes, respectively known as the
Filter and Repartition regimes, occurs at A=\, (see
Fig. 2). In the latter regime, periodic patterns of
droplets partitioning are obtained.

e When droplets take both paths at the junction, the
total flow rates Q1 and ()2 in the arms, hence V;



and V5, fluctuate in time around equal mean values.

e In the Repartition regime, at a given A, a peri-
odic pattern is characterized by three invariants
that are independent of the initial conditions, i.e.
the number and the positions of the droplets ini-
tially present in the loop: the cycle time 7.,. of the
pattern (i.e. the number of drops per cycle), the
fraction of drops F;, flowing in the longer arm, and
the number of “packs” N,... per cycle; a pack is the
number of drops flowing in the shorter arm between
two successive drops taking the longer arm.

e When plotted versus A, each invariant presents se-
ries of “plateaus” separated by discontinuous tran-
sitions (see Fig. 3 through Fig. 5).

The results presented in Fig. 2 through Fig. 5 are out-
comes of numerical simulations and predictions of the
continuous and discrete models that are discussed in de-
tails in section II B and section II C, respectively.

B. The continuous model

To rationalize some of these findings and derive analyt-
ical expressions for F, and A, one can use a continuous
approach [12]. This description neglects the temporal
fluctuations of the number of drops present in each arm
and postulates, in the Repartition regime, the equality of
the total flow rates in both arms [10, 12, 14, 16]. Hence,
the rate f; of the passing drops in the arm (¢) and the
distance \; between two successive drops are assumed to
be constant. In the Repartition regime, using the con-
servations of the total flow rate and dispersed phase and
writing the two relationships given in section IT A [points
(a) and (b)] for each arm, one obtains an analytically
solvable system of four equations satisfied by A, and f;
(see [12] for details). With the resulting expressions for
A; and f;, one finds that F: =f—J? linearly decreases with
A

1 A, —1
F=——(1- : 1
A2+1( )\2Ld) (1a)

where A2=£—f. Hence, F,(A = A\;)=0 gives:

This prediction for the transition between Filter and
Repartition regimes correlates with numerical results

(A\;~X; in Fig. 2). Expressions for the mean number of
droplets <N,>=L, /), in each arm () can also be found.

The fluctuations of R;, which are due to the exit and
entrance of droplets in the loop, remain small compared
to the resistances’ mean values when working with long
enough arms. In that case, the model concurs well with
numerical results as shown in Fig. 2 [12, 14, 16]. How-
ever, the model does not explain the plateaus observed
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FIG. 2. Numerical fraction of droplets F» versus A for L; =100,
L>=150, and L,=2. The lengths have arbitrary units. The
solid line is a prediction calculated using Eq. (1a).

numerically in the variations of F, with A (see Fig. 2).
This limitation results from the discrete nature of the
drops which a continuous approach cannot account for.
Another limitation of this approach resides in the impos-
sibility of describing the dynamics of the system.

C. The discrete model
1. Introduction

To account for the discrete nature of the droplets, one
can introduce an approximation for V; making the prob-
lem tractable and allowing for a complete theoretical de-
scription of the dynamics [13, 14]. This approach neglects
the temporal fluctuations of the hydrodynamic resistance
of the arm (i), R,=a(L;+L,N,). One assumes that the
temporal variation of N, does not significantly affect V.
This “mean-field” approach is reasonable when the mean
number of drops present in each arm is large or when the
lengths of both arms are large compared to L,. As shown
in section II C2, neglecting the nonlinear couplings be-
tween N, and (); one can demonstrate that (); is nearly
constant and equal to one half of the incoming total flow
rate in the Repartition regime so that V;~V/2 [13, 14].

The time is discretized in 7 units within this ideal
model. Each time step, a new droplet reaches the in-
let node of the loop and is injected in one of its arm.
At any time step, the positions of the drops present in
each arm are multiple of %, the origin of space being lo-
cated at the inlet node. Because of the finite number
of possible configurations and the deterministic nature
of the model, only periodic patterns are expected. A
drop located in the arm (i) at a position k3 from the
origin (k € N) has therefore reached the inlet node and
selected this arm a time k earlier in 7 units. Since the



droplets make a binary “choice” at the inlet, if a droplet
is located at k3 from the origin in the arm (2), a “hole”
(that is, the absence of a droplet) is necessarily located
at the same distance from the origin in the arm (1) and
vice versa. Hence, the maximum number of droplets that
can be accommodated in each arm is Ti:ceil(Qf" ). Us-
ing the space-to-time conversion, T; which corresponds
to the number of drops that have reached the inlet node
between the entrance and exit of a given drop in the arm
(7), is the discrete time in 7 units elapsed between these
two events. In what follows, 7 is the unit of time (i.e.
T:1) and we use the superscripts =~ and * to respec-
tively denote the functions evaluated just before or after
injecting a new drop in the loop. The values of N; and
N3 just before and after the entrance of the n-th droplet
in the loop respectively read:

Nem= Y HE (b,
k=n—T1+1
N; (Tl) = Z H[f(si(k)]v
k=n—T5+1
—n o1 Y H )
n—"Ts+1
and:
Nf(m)= > H5 (k)
k=n—T1+1
Nf(m)= > H[-5 (k)
k=n—T5+1
=T,— Y H[5 (k).
n—"T5+1

In these expressions, 5(t):L2L;dL1+N2(t)le(t) is the
normalized difference between the hydrodynamic resis-
tances of the two arms and H is the Heaviside function.
We next replace NZ-+ by N; for readability.

Using the previous relationships, one can derive two
equations. A balance on N, and N, over 7 between the
entrances of the n-th drop and the (n + 1)-th one gives
the first equation, that is, a recursive relationship:

5 (n+1)=6(n)—2H[6" (n)]+ H[§  (n+1—T,)]
+H[0"(n+1-T,)]
(2)

During 7, H0~(n+ 1 —T,)] and 1-H[0~(n + 1 — T5)]
drops respectively exit the loop via arms (1) and (2),
whereas H[0~ (n)] and 1—H [0~ (n)] drops enter these two
respective arms. Initial conditions over a time interval
are necessary to integrate the recursive relationship and
to describe the dynamics of the system; this feature is
common to any time-delayed systems. In our study, the

positions of the drops initially present in the loop define
such initial conditions. We next consider that the loop
does not initially contain any drop.

Using the expression of the number of holes in the
arm (1), N7 (n)=T, — Ny(n)=Y4_, 7, 1 H|=0~ (k). it
is possible to show that:

Ty Ty J
j=1 G=1 k=j—To+1
T2 j+T1_T2

=2 2

j=1k=j—Th+1

H[_(si (k)]a

T>
=Y NIG+T - T,

Jj=1

21: N (j).

J=14+T,—Ts

It is worthwhile noticing that this relationship is valid
for any n and can be written in the following form:

T2 T2
> NG+n) =Y NiG+n). @)
J=1-T1+T> j=1

2. Repartition regime: The flow rate’s equipartition rule

In the Repartition regime, as observed in both numer-
ical simulations and experiments [10, 12, 14, 16], the sys-
tem naturally tends to balance the hydrodynamic resis-
tances of both arms. As shown below a stability anal-
ysis permits to understand this phenomenon. When
9~ (n)>0, one easily shows using Eq. (2) that ~(n+1) =
0 (n)—24+H[) (n+1-T)]+H[6~ (n+1—1T,)]. Hence,
0~ (n)—2 <6 (n+1) < §d (n), so that 6~ either de-
creases or remains constant. Conversely, when 6~ (n)<0,
one shows that " (n+1) =0 (n)+ H[0 (n+1—-T,)]+
H[6~(n+1-1T,)]. Thus, 6" (n) <d (n+1) <4 (n)+2,
i.e. 7 increases or remains constant.

We now aim to show that §% can only take two values
after a transient regime. Distinguishing the values taken
by § before and after the entrance of the n-th droplet in
the loop, respectively denoted 6~ (n) and 67 (n), we use
the following relations characterizing (a) the entrance of
a new drop in the loop and (b) the exits of drops from
the loop:

(a) .M (n)=
.67 (n)=6"(n) + 1 when ¢~ (n)<O0.

(b) . 07 (n+1)=6"(n) when none of the drops exit
or two drops exit, each one passing through
each arm. Such cases are possible since the
residence times of the drops in the loop are
different.

.0 (n+1)=6"(n) + 1 if a drop exits via the
arm (1).

(n)=6"(n) — 1 when 6~ (n)>0.



.6 (n+1)=0%(n) — 1 if a drop exits via the
arm (2).

After a transient regime, 6~ (n + 1)=0"(n) for all n
only if all drops exit the loop by taking either the short
arm while §~(n)>0 or the long arm while 6~ (n)<0. The
first case implies that the hydrodynamic resistance of the
short arm filled with drops is always smaller than that of
the long arm: this is the Filter regime. The latter situa-
tion cannot be encountered since it requires the number
of drops in the long arm to be larger than that of the short
arm. Hence, in the Repartition regime, 6~ (n+1)<d~(n)
when 67 (n)>0 and 6~ (n + 1)>0"(n) when 6~ (n)<0.
For any initial conditions, after a transient regime in
which §~ evolves monotonically, its sign changes when 6~
reaches either € or e—1 with € = £2=21 —floor( LTdLl ); N,
being integers, € or e —1 which have opposite signs are the
two closest values to 0 that 6~ can possibly reach. After
the transient regime, one can verify that 6+ necessarily
fluctuates between these two values. A strict balance be-
tween the hydrodynamic resistances of the two arms is
unfeasible because of the discrete nature of the drops.
As a result, N,—N, is a function of time that can only

take two values, F*ﬁoor(LTLl) or C'=ceil(£2 Ll). In
— L

our study, we do not consider the case for wh1ch

is an integer as it is irrelevant experimentally. Since
Rs(t t L

P = S =1+45(t)/(N1+ £) and [3()] < 1, within
the limit Ny — oo or L, — 00, our analysis implies that:

Q1(t)
Q2(1)
Hence, within one of the above limit, an equipartition

of the flow rates Q1 and Q)2 occurs in steady state as
observed numerically and experimentally [12, 13].

8. Repartition regime: Stationary solutions

Here, we aim to determine the existence of station-
ary solutions for which the numbers of droplets in both
arms remain constant over time. Mathematically, such
solutions correspond to N;¥(n + 1)=N;"(n) for any in-
teger n. Using the expressions of N (n) given in sec-
tion ITC1, it is straightforward to show that H[d ™ (n +
1)]J=H[0"(n — T; + 1)]. Hence, when N, is constant
over time, ¢ is a T;-periodic function. Conversely, a T;-
periodic system implies a constant N,. Both N; and N,
being constant over time, the system is simultaneously
T,- and Ty-periodic. T; and T, are therefore multiple
of the system’s period. Furthermore, since in this case
H[0~(n+1)|=H[6" (n—T,+1)|=H[0~ (n—T,+1)], the
system is also (T, — T )-periodic. Such a situation is pos-
sible only when T}, and T, are multiple of (T, — T}).

Stationary solutions exist but are only witnessed for
specific conditions over the parameters of the problem.
Since N, —N, is constant over time, it is therefore equal

to either F or C. Using Eq. (3) one can then write:

Z NH (), so that T\N, = T,N.
j=1 j=14T) —

Using previously established relations, one finds:

TN, = T,[T, — F — N,] or T,N, =T,[T, — C — N,].

Consequently,
T, T,
N, = T—|—T[T F] or N, = T—i—T[T Cl. (4)

To summarize, a stationary regime occurs whenever ei-
ther TT2T2 [T1 — F] or —L2_[T, — C] is an .integer. .When
such a condition is fulfilled, all the quantities remain con-
stant over time and can easily be expressed using rela-
tionships derived above.

4. Repartition regime: Non-stationary solutions

N, and N, usually evolve over time. However, after
a transient regime, numerical simulations show that at
least one of these quantities is constant. Since N,—IN,
only explores two consecutive values, so does the sum
N,+N,. We assume that N,+N, and N, — N, respectively
equal S or S+1 and F or F+1, where S is an integer
and F:ﬂoor(“L;dLl). Writing the integers NNV, and N, as
]\}f;:w + w and NQZW — NNy N2 , one shows
that:

e When S and F have the same parities, N, fluc-
tuates between SJFTF and SJFTF + 1 while NQZS;QF
remains constant over time.

e When F and S have different parities, N,=
remains constant over time and N, fluctuates be-
tween 37§+1 and 571;71.

S+F+1
2

To summarize, for non-stationary regimes, the number
of drops in one of the two arms is independent of time, the
other number fluctuating over time between two consec-
utive values. N; being constant over time, the dynamics
of the system is T;-periodic. We have shown that after
an initial transient state, periodic dynamics are always
obtained, the period being either T}, T, or T, — T;.

5. Repartition regime: Selection of the cycle time

Here, we derive the selection rules that determine the
values taken by one of the invariants of the system, the
cycle time T.,. of the binary series.

We begin by considering a T,-periodic regime for which

N,=22£ is constant. Using Z]Til NE(j)=T,N, estab-

2
lished in section ITC 3, one finds:

t(TIS;F)Jr(T )(TSJFTF1>T1N2,




where NV, 1:S+TF during a cumulative time ¢ and
N,=%tEL+1 during T,—t. Hence, t=(T, + T,)25E —
T,(T, — F — 1) with 0 < ¢ < T,; stationary solutions are
obtained when t=0 or ¢{=T,, both N, and N, remaining
constant over time in those cases. The inequality yields:

< 1.

T.
(I, —F)—N, < 2

O 2
YA T+ T,

N, being an integer, the occurrence of a T,- periodic solu-
tion therefore requires the fractional part of (T, —

F) to be smaller than T1+

T,
N, = floor (T T (T, — F)>

Following a similar approach for T}-periodic regimes in

Ty +T2
T - Then N, reads:

which N,=2++L remains constant over time, one finds:
T, T,
0< T —F T, — N, < 1.
A )= ( ) ST 3n

A T-periodic solution can therefore be obtained when
the fractional part of 77 +T (T, —F) is smaller than TﬁlTQ.

The number of holes in the arm (1), NHE=T, — N,, which
is constant over time is then given by:

NH = floor (T?—T (T, — F)>

As shown below, the two conditions required for
the respective occurrence of T,-periodic and T,-periodic

regimes are incompatible. By noting p:qu_;:T2 and

q= leer , any integer M can be written as M=pM + qM
since p 4+ ¢=1. I, and €, denoting the integer and frac-
tional parts of pM , the integer and fractional parts of
gM being I, and €4, one obtains M=I, + €, + I; + €.

Two different cases can then be distinguished. When
€p and €, are both different from zero, €, + ¢,=1=p + g.
It is then straightforward to derive that g<e,<1 when
0<ep<p, and p<ep<1l when 0<ey<g. Note that when
ep=p and e;=q, both p(M — 1) and ¢(M — 1) are inte-
gers. The latter situation corresponds to the condition on
q(T, — C) given Eq. (4) required for a (7, — T})-periodic
regime. When ¢, (or ¢;) is equal to zero, then ¢, (or €,)
is also equal to zero. This particular case corresponds to
the other condition on ¢(T, — F) for the occurrence of a
(T, — T))-periodic regime [see Eq. (4)].

6. Repartition regime: Selection of the number of packs

As previously discussed, for a given set of parameters
(Ly,Ly,Ly,\), numerical simulations show that N,,.. is
an invariant of the problem being independent of ini-
tial conditions. For T)-periodic regimes, the number of
holes in the arm (1) is constant. Since T, is the resi-
dence time of a drop or a hole in the arm (1), N, is

given by NH=floor (T (T - F )) Similarly, for T5-

periodic regimes, N,... is given by the constant value
of N2:ﬁoor<T 25 (1 — F)) For (T, — T))-periodic

regimes, the period is shorter than 77 and T, the res-
idence times in the short and long arms, respectively.
Using the space-to-time conversion, the emerging cyclic
pattern is observed over a portion of the arm (2) having
a length (7, — Tl)%. The number of drops in this portion
is szNlH, both being constant in time. N,,.. is then

given by either 52 ng (T, — F) or by 52 +% (T C).

7. Selection rules

We summarize below the rules established in previous
sections that govern the dynamics of the system. Four

cases are identified depending on ac—T 2 (T — F):
e When z is an integer:
T, — T,
T.,,.=1T,—T and N, = T — F);
: =i - F)
e When the fractional part of x is strictly bounded
by 0 and 7 +T1'

T,
T.,.=1T,and N,,., = floor (T T (T, — F))

T .
To+T1 "

e When the fractional part of z is equal to

T, -1,

T, =T,-T, and Npack = T, + T,

~(T, = C);

e When the fractional part of z is strictly bounded

T :
by T and 1:

cyc

T,
T.,.=1, and N,,,, = floor (T T (T, — F)>

The invariants are indeed independent of the number
and positions of the drops initially present in the loop
and solely depend on L,, L,, L,, and A\. As shown in
Fig. 3 and Fig. 4, these theoretical predictions for the
evolutions of T,,. and N,,., concur well with numerical
simulations. They predict the occurrence of the various
plateaus obtained numerically and the numerous bifur-
cations between these plateaus as A varies [13]. Between
two successive plateaus, we note the emergence of singu-
lar periodic regimes with very long cycle times. These
regimes which are not predicted by our model only exist
for very narrow ranges of A\, narrower than the experi-
mental stochastic noise of A\, are not observable experi-
mentally [13].

Using these predictions, one may also derive analyt-

ical expressions for the third invariant of the system,

Npac
F,=—pack

T , the fraction of droplet flowing through the
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FIG. 3. (a) T.,. versus X for L,=100, L,=150, and L,=2.
The lengths have arbitrary units. The solid line is calculated
using the discrete model. Closed circles stand for numerical
results. (b) Bifurcation diagrams of T.,./T: as a function of
A/As shown in the range A\/\;=0.5-0.8.

long arm. When comparing predictions of the continuous
(Fig. 2) and discrete (see Fig. 5) models, the numerical
results are better described by the latter model.

A simple criterion permits to predict the values of A for
which a bifurcation between different periodical regimes
may occur [13]. As \ varies, one expects a change of dy-
namical behavior whenever the integers T or T, change
by 1. This occurs whenever A=\ (i, k) with:

2L L,—L
i — ﬂ 2 1
WO oor (71% ) +k, (5)

where ¢ = 1,2 and k € N*. Although this simple criterion
overestimates the number of observed bifurcations [13], it
predicts the exact value of A=A\, at which the transition
between Filter and Repartition regimes occurs:
2L
Ar = - (6)

floor (—L2L_dL1) + 1.
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FIG. 4. N, versus A for L;=100, L,=150, and L,=2. The
lengths have arbitrary units. The solid line is calculated using
the discrete model. Closed circles stand for numerical results.
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FIG. 5. F, versus A for L,=100, L,=150, and L,=2. The
lengths have arbitrary units. Numerical results (circles) are
compared with the prediction of the discrete model (solid
line), calculated using Fo=Npacr /T eye-

8. Connections between the two models

When L., L, and L, — L, are large compared to L,,
one can write chw%’i_l) and Ti~2§"'. Within this
limit, using Eq.(6) and the selections rules previously es-
tablished, it is straightforward to show that A,~ A22Lj1
and szﬁ[l — )\1\22;;]. These mathematical expres-
sions for the predictions of A\, and F, are identical to

those found using the continuous model [12].




IIT. COMPLEX NETWORKS: TWO
EMBEDDED LOOPS

A. Numerical algorithm and steady state results

We now study the flow of a periodic train of droplets
in two embedded loops made of four arms of different
lengths and two inlet nodes A and B (Fig. 6); channels
have identical widths and L,<L,.

arm (4) - arm (2)
length La iength Lo
A
>
O—0O1 =010
d ) t arm'/(l) gow )
roplets length L, rection
arm (3)
length L

-O——

FIG. 6. Schematic of the flow model for two imbedded loops
having two inlet nodes A and B. Defined are A\ and L; with
i=1, 2, 3, and 4, and L,<L.

Our simulations are based on an algorithm similar to
the one used in the study of a single asymmetric loop
described in section II. Drops periodically feed the in-
let node A at a rate f. Whenever a drop reaches either
A or B, the number of drops N, and the hydrodynamic
resistance R, are computed. The drop located at one of
the inlet node is then injected in the branch having the
largest flow rate. Afterwards, the values of N;, R, and
V, are updated and all drops are moved until N, changes.
The whole network does not contain any drops when sim-
ulations begin. After a transient state, several hydrody-
namic regimes are observed when A varies. As shown
below, an important parameter is the hydrodynamic re-
sistance of the branch formed by the arms (1), (2), and
(4). This resistance is identical to that of a single arm
having a length L.,=L, + L,L,/(L, + L,). For a given
A, the observed regime depends on whether L ,>L;.

When L.,>L;, we observe the following sequence of
regimes when A decreases (see Fig. 7):

e A>A: all droplets flow through the arm (3);
e \'V>A>\P: drops explore both arms (3) and (1);
e \P’>\: the droplets flow through all the arms.

When L.,<Ls;, we observe the following sequence
(Fig. 8):

e A>\{": all droplets flow through the arm (1);
e \V>A>AP: drops only flow in arms (1) and (2);

FIG. 7. Variations of F; (o), F, (O), and F; (e) with .
The parameters expressed in arbitrary units are L;=L;=100,
L,=125, L,=60, and L4=2.7 (L.,>L3). The solid lines are
predictions calculated using the continuous model (see sec-
tion IIIB). R, PF, and F respectively denote the Reparti-
tion, Partial Filter, and the Filter regimes.

e A\ >)\: the droplets explore all arms.

FIG. 8. Variations of F; (o), F, (O), and F; (e) with .
The parameters expressed in arbitrary units are L;=L;=100,
L,=125, L,=25, and L,=2.7 (L.,<L3). The solid lines are
calculated using the continuous model (see section IIIB).

The critical dilutions A{” and A\ separating the three
observed hydrodynamic regimes depend on the parame-
ters of the problem, [L;,L,]. As shown below, mathemat-
ical expressions for these quantities depend on whether
or not L.,>Ls, both cases presenting similar features.

As )\ decreases the number of selected paths increases
until A<A, a region where all possible paths are ex-



plored: this is the Repartition regime (denoted R). When
AP <\, only one path is taken: this is the Filter regime
(denoted F') in which all drops flow in the arm having the
smallest hydrodynamic resistance in the absence of drops.
For intermediate dilutions, that is, for A\ <A<\’ the
droplets only explore two out of the three possible paths,
we next refer to this regime as the Partial Filter regime
(denoted PF). As X decreases, the paths in which drops
flow are selected according to the ascending order of their
hydrodynamic resistances in the absence of drops.
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FIG. 9. Variations of Q;/Q with A\, Q; and Q being the
total flow rates in the arm () and in the whole circuit. The
symbols (x), (e), (O), and (o) respectively correspond to i=4,
3, 2, and 1. The parameters expressed in arbitrary units are:
Iq:Lg,:];OO7 L2:1257 L4:6O7 and Ld:27 (qu>L3).

At any node of the network where the drops divide
between two arms, the total flow rates in each of these
arms are nearly equal (Fig. 9 and Fig. 10). Such features
seem inherent to any dynamics of droplet traffic in single-
lane microfluidic networks since they can be observed in
other complex circuits (results not shown here).

B. Interpretation using the continuous approach

Our numerical findings can be understood using the
continuous approach employed for single asymmetric
loops (section IIB). Similarly to that case, we define the
mean frequency f; characterizing the entrance (or exit) of
drops in the arm (i) and the mean distance A, between
two consecutive drops in this arm; we use the variable
X,=1/\, for readability.

In the Repartition regime, using the equipartition of
the total flow rate and the conservation of the dispersed
phase at nodes A and B, one derives two equations:
Xs+X,=2/X and X, + X,=2X,. Writing the equality of
the pressure drops between the ends of arms (1) and (2)
and between the extremities of the arm (3) and the ends
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FIG. 10. Variations of Q;/Q with A\, where Q; and Q are the
total flow rates in the arm (¢) and in the whole circuit. The
symbols (x), (e), (O), and (o) respectively correspond to i=4,
3, 2, and 1. The parameters expressed in arbitrary units are:
1112113:1007 L2:1257 L4:257 and Ld:27 (qu<L3).

of the branch formed by arms (4) and (1), and using the
equipartition of the total flow rate at the two nodes, two
other equations can be obtained: A,(1+L,X,)=1+L,X,
and A;(1+ L, X3)=A,(14+L,X,)+ (1+ L,X,)/2, where
A%:j’%' By solving this set of four linear equations, one
finds the mathematical expression for X,. Then, ana-
lytical expressions for both f; and the fractions Fi=f,/f
of drops flowing in the arm (i) are obtained by using the
equipartition of the total flow rate at the nodes A and B.
One easily finds f,=X,\f/2, [;=X\f/2, [i=X,\f/4,
and f,=X,\f/4; f. is independent of L.,/ L.

The analytical expression for F; can also be found in
the Partial Filter regime using the continuous approach.
However, these expressions which we next derive depend
on whether L, ,>L, or L.,<L,, as the two selected paths
are different in the two cases.

When L.,<L,, for A" > >\ all drops flow either in
the arm (1) or in the arm (2), i.e. F;=0 and all drops
reaching the node A flow in the arm (4) (see Fig. 6). The
droplets are therefore fed in the asymmetric loop made
of the arms (1) and (2) at the rate f. Then the train
of drops reaching the node B is also periodic in space,
but its period A is no longer A since some continuous
phase flows in the arm (3) at the node A. Hence, the
expressions derived for F, and F,=1 — F, when drops
divide in single asymmetric loops are still valid provided
that one replaces A by A in Eq. (1a). In what follows,
we determine the needed relation between A and A. The
total flow rates at the nodes A and B are Q=S\f/f and
q=S\f /B, respectively. Using the equipartition rule at
the node B, the total flow rate in the arm (1) is ¢/2.
Writing the equality of the pressure drops of the arm (3)
and the serial association of arms (1) and (4) and using



the conservation of the total flow rates at the node A,
one finds:

~ A A,

A+ Ao+ 7770) = AA = LAt 770) (D)

When L., >L,, F,=0 in the Partial Filter regime, so
that all drops flow either in the arm (1) or in the arm
(3) and f,=f, (see Fig. 6). Using the equipartition rule
at the node A and the conservation of the total flow rate
at the node B, one finds the total flow rates in arms
(3) and (4), Q/2=SAf/28=S\.f./B=SXs[5s/5. Also, in
arms (1) and (2), the flow rates are ¢g=S\, f, /8 and Q/2—
q, respectively. Using the equality of the pressure drops
of the arm (1) filled with droplets and the arm (2) in
the absence of drops, one shows A\, =(\;A, — L,)/(1+A,).
By using the equality of the pressure drops of the arm
(3) and the serial association of arms (1) and (4), the
conservation of the total flow rate, and the conservation
of the dispersed phase at the node A, F, reads:

F _ 2LdA3 - A[A4 - A3 + A2/(1 + Az)] (8)
' 2L A5+ A+ A/ (1 +A;)]
One then easily finds F;=1— F, and F,=F;. As shown

in Fig. 7 and Fig. 8, the predictions concur well with
numerical results both for L., <Ls; and L.,>Ls.

C. Dynamics: a restricted discrete approach

We now study the dynamical properties of the system.
The drops are indexed when entering the network (node
A), and their successive path selections are coded into
series of —1, 0, and 1 when they flow in the arm (3), (2),
and (1), respectively. Our numerical simulations reveal
that in the Repartition regime, in contrast to the Partial
Filter regime, the cycle time of the corresponding signals
depends on initial conditions, i.e. the number and posi-
tions of droplets initially present in the circuit. For the
sake of simplicity, in both cases L.,<L; and L.,>L,, we
will discuss results for which no droplets are present in
the network when simulations start.

We first study the case L.,<Ls;. Figure 11 shows the
variations of the period of the signals describing the suc-
cessive selected paths with . In the Partial Filter regime,
one observes a succession of plateaus where the period is
constant, separated by bifurcations. In the narrow re-
gions between two successive plateaus, the period is un-
usually large, much larger than the different residence
times of the drops in the network; such regimes irrele-
vant to experiments are also observed in the case of sin-
gle loops (section IIC 7). In the Partial Filter regime, all
drops flow in either the arm (1) or the arm (2). Simi-
larly to our modeling in the previous section, replacing
A by A and using Eq. (7), we can use the selection rules
derived in section ITC7. One obtains a relatively good
description of the dynamics in this regime (see Fig. 12).
The value of T,,. for a plateau and the transition be-
tween plateaus are well predicted. Since F,=N,,.,/T.,.
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FIG. 11. Variations of T.,. with A\. The parameters ex-

pressed in arbitrary units are: L;=L3=100, L,=125, L,=25
and L,=2.7 (L.,<L3). The dotted, dashed, and solid lines
correspond to the mean travel times of drops exiting by the
arm (3), (2), and (1), respectively. These times are computed
using the continuous approach.
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FIG. 12. Shown is T.,. versus \ for L;=L3;=100, L,=125,
L,=25, and L;=2.7 expressed in arbitrary units (L.,<Ls).
The solid lines is calculated using the expressions derived with
the discrete approach for which A is replaced by A.

in the Partial Filter regime, this approach also permits
to model the variations of F, and F,=1 — F, with A in
this regime (Fig. 13). The resulting predictions provide a
better description of the fraction of drops than the con-
tinuous model (see Fig. 8).

We now investigate the case L.,>L;. Figure 14 shows
the period of the signals as a function of A\. Both in
Repartition and Partial Filter regimes, we also obtain a
succession of bifurcations between different plateaus. As
observed for single and imbedded loops when L., <L,
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FIG. 13. Variations of F; (o) and F, () with X for

L,=L5;=100, L,=125, L,=25, and L,=2.7 (L.,<L3). The
solid lines are calculated using the discrete model in the Par-
tial Filter regime; these predictions that are extended to the
other regimes are established by replacing A by A.

irrelevant regimes with unusually long cycle times appear
in the narrow regions between successive plateaus. In the
Partial Filter regime, droplets only flow in either the arm
(1) or the arm (3). However, in contrast to the case of a
single asymmetric loop, the temporal fluctuations of the
number of drops, thus those of the holes, present in the
two selected paths can be larger than one. This difference
results from the presence of node B which provides an
extra degree of freedom to this system. The exit and
entrance of drops in the arm (1) alter the total flow rate
in the arm (2), which in turns modify the velocity of the
droplets traveling in arms (1) and (4). For this reason,
in contrast to the case L.,<Lj, one cannot employ the
discrete approach to find simple selections rules.

D. Experiments

To validate our numerical predictions, we carry out ex-
periments with planar microfluidic devices made of poly-
dimethylsiloxane (PDMS) and fabricated using standard
soft lithography techniques [35] (see Fig. 15).

A periodic train of monodisperse water-in-oil droplets
is produced in a flow focusing geometry [29]. The drop
size D and the production rate f are controlled by the
flow rates @7 and @, of the continuous and dispersed
phases, respectively (Fig. 15). Additional volumes of
the continuous phase can be infused or withdrawn down-
stream the production module by changing the flow rate
Q¢ in a dilution module (Fig. 15). Adjustments of Q¢
permit to vary the velocity of the droplets V', i.e. the di-
lution A=V/f, while D and f remain constant [25]. The
drops are then directed towards the inlet of two imbedded
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FIG. 14. Shown is T.,. versus A for L;=L3=100, L,=125,
L,=60, and L,=2.7 (L.,>L3). The dotted, dashed, and solid
lines correspond to the mean travel times of drops exiting
by the arm (3), (2), and (1), respectively. These times are
computed using the continuous approach.
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FIG. 15. Experiments: Schematic of the microfluidic device
and photographs defining D, A, and V.

loops (Fig. 15); this network is similar to the one depicted
in Fig. 6. The dispersed and continuous phases consist of
a mixture of water containing 15 g/L of sodium dodecyl
sulfate (SDS) and hexadecane, respectively. Videos of
the flow are recorded with a fast camera (Phantom V7)
typically working at 1000 frames/s. D, V, A, as well as
the trajectory of each drop in the network are obtained
from image analysis using a custom-written software de-
veloped with MATLAB. In all experiments, the Reynolds
and the capillary numbers are very small and span the
ranges 1073—107! and 1073—1072, respectively. For this
range of capillary numbers and any values of D, we do
not observe droplet breakup nor collision between drops
at any T junctions of the circuit [21, 25, 36-40].

Figure 16 shows the three hydrodynamic regimes



(a) Leq<L3 (b) Leq>L3
o w | e e
L
Yol v o L, L,
B =y 1]l
’ Ls L,
100 pm 100_,um
PF
7‘ 7.‘ i PF H L,
Ly L, Ly L,} — _
1 f of
L =
3
B = mr
L PN e
L, v Ly
~<
FIG. 16. Images of the three hydrodynamic regimes ob-

served in imbedded loops when varying A for (a, L.,<Ls)
L,=L;=4 mm, L,=5 mm, L,=1 mm and (b, L.,>Ls3)
Li=L;=4 mm, L,=5 mm, L,;=2.6 mm. The inlet and outlet
of the loop are respectively located on the left and on the
right of each image.

found experimentally as A varies when either L., <L,
or L.,>L,. In both cases, at large dilutions, all drops
flow through one arm. As the dilution decreases, the
drops explore two and eventually three paths. As shown
in Fig. 16, the sequence of selected paths depends on
whether L., <L, or L.,>Ls. In each case, the observed
sequence concurs with numerical and theoretical find-
ings. As suggested by our simulations, as A decreases,
the paths are selected according to the ascending order
of their hydrodynamic resistance in the absence of drops.

We study the variations of the droplet fraction F; in
each arm () with A for L.,>L, and constant values of
D and f. Comparing the results to predictions calcu-
lated using the continuous approach, L, being the only
free parameter, we obtain a relatively good agreement
(Fig. 17). This indicates that the continuous model can
describe droplet traffic in complex single-lane networks.

12

-
04 R PF F
02"# 0o 0 B 3 7

] B L o 9} ! »} E’\ 7‘7,
OL\H I PERRg s W
500 1000 1500 2000 2500
A(pm)

FIG. 17. Experimental variations of F; (o), F» (O), and F;
(e) with A in the configuration shown in Fig. 16(b). The
solid lines are calculated using the continuous approach with
L;=165 pm in the Repartition and Partial Filter regime.

IV. CONCLUSION

We have investigated the flow of periodic trains of
monodisperse droplets through various single-lane net-
works. At steady state, when drops divide at a node
between two arms, our results show that the mean total
flow rates in these arms are nearly equal for any topol-
ogy of the network. Using this generalized Equipartition
rule, we have demonstrated that the continuous model-
ing approach, introduced to describe traffic through sin-
gle asymmetric loops [10, 12, 14, 16], can be successfully
adapted for more complex single-lane networks. This
approach which neglects the discrete nature of droplets
gives a good description of the steady states provided
that the temporal fluctuations of the hydrodynamic resis-
tances of the various arms can be neglected; such fluctu-
ations result from the entrance and exit of drops in these
arms. In the case of two imbedded loops, our study re-
veals the existence of three hydrodynamic regimes as the
dilution varies, each regime being characterized by the
number of paths explored by the drops. Above a criti-
cal dilution, the droplets only take the path that has the
smallest hydrodynamic resistance in the absence of drops:
this is the Filter regime. As the dilution decreases, the
number of explored paths increases and eventually, the
whole network contains droplet in the so-called Repar-
tition regime. As the dilution decreases, the paths are
selected according to the ascending order of their hydro-
dynamic resistance in the absence of drops.

The dynamics of droplet traffic in microfluidic net-
works is controlled by time delayed feedbacks as a path
selection depends on the paths taken by the preceding
drops. Complex dynamical behaviors result from such
feedbacks, notably long-lasting periodic states separated



by a wealth of bifurcations as the dilution varies. In con-
trast to the case of a single asymmetric loop, the period
of the system may strongly depend on initial conditions.
This sensitivity to initial conditions is due to extra de-
grees of freedom, related to the presence in the network
of more than one node where the drops select the path
to take. In the Partial Filter regime in which the drops
only explore two paths, depending on the topology of the
network, we have shown that the discrete approach devel-
oped by Sessoms et al. [13] in the context of asymmetric
loops can successfully describe the dynamics. Such an
approach is possible provided that downstream the node
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where the drops divide, no bifurcations exist along the
two possible paths.

ACKNOWLEDGMENTS

This work was partially funded by an ACOMB grant
(Droplets) obtained from the Brittany region of France,
a PEPS grant from CNRS, and the Université de Bre-
tagne (EPT Physfood). We acknowledge fruitful discus-
sions with D. A. Sessoms and we thank J. Bonte and
G. Jézéquel for preliminary numerical and experimental
studies.

[1] H. Bruus, Theoretical Microfluidics (Oxford University
Press, New-York, 2008).
[2] A. Ajdari, C. R. Phys. 5, 539 (2004).
[3] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, Lab. Chip
12, 515 (2012).
[4] One can introduce capacitors in the analog electric cir-
cuits to account for the deformability of the conducts.
[5] M. Joanicot and A. Ajdari, Science 309, 887 (2005).
[6] N. Lorber, F. Sarrazin, P. Guillot, P. Panizza, A. Colin,
B. Pavageau, C. Hany, P. Maestro, S. Marre, T. Delclost,
C. Aymonier, P. Subra, L. Prat, C. Gourdon, and E.
Mignard, Lab. Chip 11, 779 (2011).
[7] K. Nagel, Phys. Rev. E 53, 4655 (1996).
[8] R. T. Carr, and M. Lacoin, Ann. Biomed. Eng. 28, 641
(2000).
[9] D. Angeli, J. E. Ferrell, and E. D. Sontag, Proc. Natl.
Acad. Sci. U.S.A. 101, 1822 (2004).
[10] W. Engl, M. Roche, A. Colin, P. Panizza, and A. Ajdari,
Phys. Rev. Lett. 95, 208304 (2005).
[11] F. Jousse, R. Farr, D. R. Link, M. J. Fuerstman, and P.
Garstecki, Phys. Rev. E 74, 036311 (2006).
[12] D. A. Sessoms, M. Belloul, W. Engl, M. Roche, L.
Courbin, and P. Panizza, Phys. Rev. E 80, 016317 (2009).
[13] D. A. Sessoms, A. Amon, L. Courbin, and P. Panizza,
Phys. Rev. Lett. 105, 154501 (2010).
[14] T. Glawdel, C. Elbuken, and C. L. Ren, Lab. Chip 11,
3774 (2011).
[15] M. J. Fuerstman, P. Garstecki, and G. M. Whitesides,
Science 315, 828 (2007).
[16] O. Cybulski and P. Garstecki, Lab. Chip 10, 484 (2010).
[17] M. Schindler and A. Ajdari, Phys. Rev. Lett. 100, 044501
(2008).
[18] V. Labrot, M. Schindler, P. Guillot, A. Colin, and M.
Joanicot, Biomicrofluidics 3, 012804 (2009).
[19] B. J. Smith and D. P. Gaver III, Lab. Chip, 10, 303
(2010).
[20] M. D. Behzad, H. Seyed-allaei, and M. R. Ejtehadi, Phys.
Rev. E, 82, 037303 (2010).
[21] M. Belloul, L. Courbin, and P. Panizza, Soft Matter 7,
9453 (2011).

[22] P. Parthiban and S. A. Khan, Lab. Chip 12, 582(2012).

[23] W. Choi, M. Hashimoto, A. K. Ellerbee, X. Chen,
K. J. M. Bishop, P. Garstecki, H. A. Stone, and G. M.
Whitesides, Lab. Chip 11, 3970 (2011).

[24] R. Jeanneret, J. P. Vest, and D. Bartolo, Phys. Rev. Lett.
108, 034501 (2012).

[25] M. Belloul, W. Engl, A. Colin, P. Panizza, and A. Ajdari,
Phys. Rev. Lett. 102, 194502 (2009).

[26] S. Jakiela, P. M. Korczyk, S. Makulska, O. Cybulski, and
P. Garstecki, Phys. Rev. Lett. 108, 134501 (2012).

[27] J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov,
Langmuir 19, 9127 (2003).

[28] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M.
Whitesides, Lab. Chip 6, 437 (2006).

[29] S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys.
Lett. 82, 364 (2003).

[30] H. Song and R. F. Ismagilov, J. Am. Chem. Soc. 125,
14613 (2003).

[31] A. D. Griffiths and D. S. Tawfik, Trends Biotechnol. 24,
395 (2006).

[32] B. T. Kelly, J. C. Baret, V. Taly, and A. D. Griffiths,
Chem. Commun. 18, 1773 (2007).

[33] P. Panizza, W. Engl, C. Hany, and R. Backov, Colloids
Surf. A 312, 24 (2008).

[34] O. Cybulski and P. Garstecki, Phys. Rev. E, 82, 056301
(2010).

[35] J. C. McDonald, D. C. Dufly, J. R. Anderson, D. T.
Chiu, H. Wu, O .J. A. Schueller, and G. M. Whitesides,
Electrophoresis 21, 27 (2000).

[36] D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone,
Phys. Rev. Lett. 92, 054503 (2004).

[37] L. Ménétrier-Deremble and P. Tabeling, Phys. Rev. E 74,
035303(R) (2006).

[38] M.-C. Jullien, M.-J. Tsang Mui Ching, C. Cohen, L.
Menetrier, and P. Tabeling, Phys. Fluids 21, 072001
(2009).

[39] L. Salkin, L. Courbin, and P. Panizza, Phys. Rev. E 86,
036317 (2012).

[40] L. Salkin, A. Schmit, L. Courbin, and P. Panizza, Lab.
Chip 13, 3022 (2013).



