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ABSTRACT 

In general, microrheology is carried out using active or passive particle-tracking 
techniques. In the present paper, a novel technique based on the out-of-plane bending 
vibrations of a microcantilever beam immersed into a liquid is proposed for 
microrheological property measurement. We propose to analytically link the damped beam 
motion with the rheological properties of the fluid in order to establish a dynamic rheogram 
which spans at least one decade of the kiloHertz frequency domain. The latest improvements 
in terms of both analytical modeling and experimental set-up are detailed, along with a 
complete explanation of the calculation method. Four rheograms of Newtonian and non-
Newtonian liquids obtained from the frequency response of three immersed cantilevers of 
different geometries are presented. 
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INTRODUCTION 

Exploring in-situ microrheology is of fundamental interest and is widely used in many 
applications, such as viscoelastic monitoring of screen-printing ink and small-volume texture 
monitoring of commercial foams or gels. This paper presents a method for the improvement of 
viscoelastic property extraction for complex fluids using a microcantilever as a dynamic rheometer 
oscillating in the kiloHertz domain [1]. This frequency range is difficult to explore with classical 
dynamic rheometers due to inertial limitations. MEMS rheometers [2,3] (as well as other 
mechanical resonators [4-6]) are good candidates as high-frequency rheometers (for determining 
elastic, G', and viscous, G", shear moduli vs. frequency) by characterizing complex fluids at the 
microscale by using very small amounts of liquid. In this context, dynamic rheology is performed 
by exploring the use of small-scale devices and short characteristic times; this yields viscoelastic 
property measurements on downscaled specimen sizes not obtainable with traditional instruments, 
thereby forming the basis of “microrheology”.  

The concept of microrheology dates from 1922, when Freundlich and Seifriz used magnetic 
particles to study the elasticity of gelatin gels [7]. Over the last two decades, rapid developments 
have occurred in this field [8-11]. Renewed interest in microrheology has been increased by virtue 
of the technological innovations in colloidal engineering, light scattering, position sensitive 
detection and video microscopy. Currently there are two main categories of microrheology: active 
microrheology which involves the active manipulation of the probe particle by external forces (e.g., 
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optical and magnetic tweezers and atomic force microscopy (AFM)) and passive microrheology 
which relies on the Brownian motion (thermal fluctuation) of the probe particles (e.g. video (VPT) 
and laser (LPT) particle tracking). Diffusing wave spectroscopy (DWS) is also a common 
microrheological technique widely used to characterize complex mixtures. As with other optical 
methods, DWS is based on the mean square displacement measurement which characterizes 
Brownian motion and permits the calculation of an equivalent microscopic and local shear 
modulus.  

Microcantilevers vibrating in fluids are strongly influenced by the surrounding fluid properties 
[12]; thus, the out-of-plane transverse deflection response may be mathematically linked to the 
rheological properties of the surrounding liquid [13]. Based on previous work [14,15], we present 
here a considerably enhanced analytical model in order to (1) identify highly sensitive parameters 
in the determination method; (2) eliminate a misleading simplifying hypothesis in the solution; and 
(3) produce accurate rheograms in the case of non-Newtonian fluids. We also discuss the accuracy 
of the proposed method in order to examine the validity of the high-frequency rheograms produced 
and to demonstrate proof of concept. Using this new modeling approach, microcantilevers can 
probe the high-frequency viscoelastic behavior of fluids, especially the viscous characteristics, over 
a large frequency bandwidth around the resonant frequency. One of the main advantages of our 
technique is a faster response time than macrorheometers or other microrheological techniques. 

I. MODELING OF MICROCANTILEVER BEHAVIOR IN COMPLEX FLUIDS 

The Euler-Bernoulli differential equation (Eq. 1) governing the out-of-plane bending vibration 
of a microcantilever in a liquid medium is used to model the sensing situation: 

 

 
4

2
1 24

( , )
( , ) ( , ) ( , ) ( , ) ( ) ( )L ext

w x
EI j g x w x g x m w x F x L

x
 (1) 

 
where E is the Young Modulus, I is the second moment of area of the rectangular cross section, 
w(x, )  is the vibration amplitude at position x along the length axis, depending on the radial 
frequency  of the vibration, L is the beam length and the position of the free-end of the cantilever, 
mL is the cantilever mass per unit length, Fext ( ) is the applied force amplitude at the cantilever 
free-end,  is the Dirac function and g1 and g2 are, respectively, functions of the dissipative and 
inertial part of the hydrodynamic force per unit length, Fhydro, exerted by the fluid on the cantilever.   

Assuming that g1 and g2 are independent of x [16], an exact analytical solution of Eq. 1 exists 
for the free-end cantilever deflection, w(L, ). This solution gives a frequency-dependent response 
partially influenced by the rheological properties of the fluid: 
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and k0 is the cantilever stiffness. In Eqs. 2-3, the hydrodynamic properties of the surrounding fluid 
are contained in the terms g1 and g2 that are related to the imaginary and real parts of Fhydro. 
However, Eqs. 2-3 do not allow the inverse problem to be solved, meaning that g1 and g2 cannot be 
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expressed explicitly as functions of the different parameters and measurement data (w(L, ), E, I, 
L, k0, Fext, mL). Nevertheless, these analytical equations may be used to fit the experimental 
mechanical spectra of microcantilevers measured in known fluids. To do so, final rheological 
properties must be linked to g1 and g2, respectively, depending on the viscous and inertial parts of 
the hydrodynamic force:  

 

 
2
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The differential equation solution supposes that the viscosity η (hidden in the terms g1 and g2) 

is a real number. Viscoelastic characterization probed by microcantilevers is based on the 
assumption that the fluid viscosity can have both a real and an imaginary part. Consequently, the 
constant real term  corresponding to viscosity is in this case replaced by a complex number * 
accounting for both the viscous and elastic behavior of viscoelastic fluids. (This is classic within 
the context of rheological modeling [17,18].) This notation is equivalent to considering a complex 
shear modulus G* for a viscoelastic fluid instead of an imaginary shear modulus. (See details in 
APPENDIX A). Moreover, a fluid is rheologically defined by a mass density f, and values G’ and 
G” which are, respectively, the elastic (real) part and the viscous (imaginary) part of the complex 
shear modulus G* at each frequency. A Newtonian fluid such as water has no elasticity (G’ = 0 Pa) 
and a viscosity with a frequency-independent real part (η = 10-3 Pa.s = 1 cP, in the case of water). 
This defines a viscous modulus G” that linearly increases with frequency (G” = η ). A fluid is 
considered as complex if it does not satisfy those two conditions.  

In the case of thin rectangular microcantilevers, an exact equation of the hydrodynamic force 
has been developed, first by Sader [16] and then fitted by Maali et al. [19] in order to express 
separately the real and imaginary parts of the hydrodynamic force in terms of four constant 
coefficients (a1, a2, b1, b2) whose values are dependent on the Reynolds number range. The 
accuracy of the fitting expressions are very good, provided that the appropriate Reynolds number 
range restriction has been verified. Based on those works, analytical equations of g1 and g2 as 
functions of the shear modulus were established [20]. Those expressions are recalled in Eqs. 5-7 
(due to physical considerations detailed in APPENDIX A, a1 = 1 and a2 = b1):  
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and b is the cantilever width.  

Using Eqs. 2-7 and considering a fluid with a known rheological behavior and a 
microcantilever with known geometry and material, it is possible to calculate the free-end 
deflection of the microstructure at each frequency and to compare it with experimental 
measurements. This also means that we are able to simulate experimental data.  
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II. INVERSE PROBLEM: METHOD FOR DETERMINATION OF RHEOLOGICAL 
FLUID PROPERTIES 

A. From g1, g2 to G’, G" 

With the expression of the hydrodynamic force from Sader [16] it is impossible to dissociate 
analytically the real part from the imaginary part, whereas it is possible with the approximation 
developed by Maali et al.[19]. Then, based on Eqs. 5-7, the elastic and viscous shear moduli can be 
expressed. (Details are presented in APPENDIX B.) The analytical expressions are 
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The calculation of G’ and G” for any radial frequency  can then be performed provided that 

g1 and g2 can be estimated with enough accuracy from the spectrum measurements. The calculation 
of the terms g1 and g2 as a function of both the amplitude and phase of the cantilever free-end 
deflection measurements is the purpose of the next section. 

B. Improvement of the inverse problem: from deflection to g1, g2 

The calculation of g1 and g2 from the amplitude and phase of the cantilever free-end deflection 
has been previously done by Belmiloud et al. [13]. At that time, the authors have considered that 
the analytical solution (Eq. 2) of the differential equation (Eq. 1) can be approximated by a second 
order mechanical low-pass filter with the transfer function H considered as follows: 
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0,vac is the cantilever’s fundamental radial eigenfrequency in vacuum.  
Eq. 10 is almost equivalent to the Taylor series development of Eq. 2 as a function of the non-

dimensional term AL. However, assuming the non-dimensional term Z = (AL)4, it is also almost 
equivalent to the ratio of two polynomial functions of Z, with the numerator order equal to 0 and 
the denominator order equal to 2; this corresponds to taking only the first resonant mode into 
account. In order to improve the accuracy of the approximating function to Eq. 2, orders were 
added to the numerator and the denominator by expanding the Taylor series to higher orders. 
Examples of these results are presented in Fig. 1. As the Taylor series order is increased, the exact 
transfer function is approached more and more accurately.  
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Fig. 1 - Approximation of the amplitude of the transfer function (Eq. 2) for a 
1440x285x20 µm3 silicon microcantilever with numerator and denominator orders 
respectively equal to 0 and 2 (blue), 1 and 2 (dashed green), 2 and 2 (dotted red), 3 

and 3 (dotted light blue) which correspond to Taylor series of increasing orders. 
The reference curve (Eq. 2 is shown in purple) 

 
An optimum has been searched for in order to obtain both high accuracy and a quite simple 

expression of the transfer function H so that Z (hence A, g1, g2, G’ and G”) can be expressed 
analytically as a function of H. The Taylor series development order has been fixed to obtain 
numerator and denominator orders of three. This process led to the following approximate equation, 
which will be used in this paper instead of Eq. 10: 
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This is a quotient of third order polynomials in Z with H as a parameter. (H0 is the static value of 
H). Each one of the three solutions (the analytical expressions are detailed in APPENDIX C1) 
corresponds to a physical solution over different frequency ranges. As an illustration, Fig. 2 shows 
g1 obtained with each of the solutions and with the solution of Eq. 10 for a specific complex fluid1 
and a specific cantilever whose first- and second-mode resonant frequencies are equal to f0 and f1; 
solution 3 is valid over a larger frequency range, until 10 kHz in the simulated case. Then, using the 
appropriate solution depending on the considered frequency range, the hydrodynamic behavior can 
be calculated up to 30 kHz, that is, up to f1. Furthermore, results obtained with Eq. 11 are 
significantly more accurate than those obtained with Eq. 10, even at low frequency. Similar results 
are obtained for g2 and presented in APPENDIX C1. 

                                                 
1 The simulated complex fluid corresponds to data extracted from literature, fitted on Buchanan et al.’s results. 

The G’ and G” are fitted from a 4wt% CTAB solution, characterized in [21].  
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Fig. 2 – Viscous dissipative term (g1) respectively calculated from the three solutions 
(Z1:+, Z2: , Z3: ) of  Eq. 11, from the solution of Eq. 10 (o) and expected (-) for a 

1440x285x20 µm3 silicon microcantilever immersed into a simulated complex fluid2. 

 
By joining the different solutions Z1, Z2 and Z3 of this upgraded Taylor approximation, the 

viscous (g1) and inertial (g2) parts of the hydrodynamic force are now estimated from the free-end 
cantilever deflection amplitude and phase with a better accuracy and over a larger frequency range 
than in previous works. By using Eqs. 8 and 9, it is now possible to analytically calculate the 
complex shear modulus as a function of the free-end cantilever deflection. This method leads to 
accurate rheograms of complex fluids over a large range of frequency from 0 Hz to the second-
mode resonant frequency f1, whereas it was previously limited to the first-mode resonant frequency 
f0, and quite inaccurately.  

Further improvements in the solution of Eq. 11 are presented in APPENDIX C2 that will be  
used in the following sections, thus ensuring high accuracy even at frequencies slightly above f1.  

 C. From simulated experimental data to rheograms: discussion on accuracy 

 
1. Influence of the approximation made during the inverse problem 
 
In this part, experimental data are generated by simulation from input rheological properties of 

fluids and geometrical and material properties of cantilevers (see part I), and rheograms are 
produced with Eqs. 8- 10 (previous work) or 11 (this work).  The produced rheograms differ from 
the original ones only due to the approximation assumed with the inverse problem. Nevertheless, 
the error introduced by this approximation can be estimated. 

                                                 
2 The simulated complex fluid corresponds to data extract from literature, fitted on Buchanan et al.’s results. The 

G’ and G” are fitted from a 4wt% CTAB solution, characterized in [21].  
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In Figs. 3 and 4, the geometry of the silicon microcantilever is 1440x285x20 µm3, and the fluid 
used is water (with G” = η where η =10-3 Pa.s, and G’=10-11 Pa instead of 0); in Fig. 5, the 
microcantilever is the same, but the fluid is a complex fluid which corresponds to data extracted 
from the literature, fitted on Buchanan et al.’s results (the G’ and G” are fitted from a 4wt% CTAB 
solution, characterized in [21]).  

The determination of G” (Figs. 3 and 5) is accurate from 10 Hz to the second-mode resonant 
frequency f1 for both fluids by using Eq. 11. In Fig. 3, it also clearly appears that using Eq. 10 leads 
to inaccuracy over the entire frequency range considered.  

The determination of G’ of the complex fluid is also accurate (Fig. 5), whereas it is more 
troublesome in the case of water (Fig. 4). The interpretation is that the approximation becomes an 
issue for very low values of G’. The validity of the inverse model is demonstrated with simulation 
data for G’ and G” higher than 1 Pa. More specifically, it means that even for Newtonian fluids, 
the calculated value of G’ will be non-zero.  

 

Fig. 3 – Viscous shear modulus (G”) calculated from two of the solutions (Z2:●, Z3: ) of 
Eq. 11, from the solution of Eq. 10 (+) and expected (-) for a 1440x285x20 µm3 silicon 

microcantilever immersed in water.  
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Fig. 4 - Elastic shear modulus (G’) calculated from two of the solutions (Z2:●, Z3: ) of 
Eq. 11, from the solution of Eq. 10 (+) and expected (-) for a 1440x285x20 µm3 silicon 

microcantilever immersed in water (G’ = 0, simulated here with G’=10-11 Pa).   

 

Fig. 5 - Elastic (G’: blue) and viscous (G”: red) moduli calculated from the three 
solutions Z1, Z2 and Z3 of Eq. 11, and the expected functions which have been used 

to generate the simulation data (-) in the case of a 1440x285x20 µm3 silicon 
microcantilever immersed in a complex fluid.  
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Nevertheless this systematic error does not matter as it will be shown in part II.C.2 and in part III. 
Its influence on the accuracy of the produced rheograms is negligible when compared to the error 
related to model parameter uncertainties and to the experimental signal to noise ratio.  

 
2. Influence of model parameters 
 
As all of the geometrical and physical parameters are not known precisely, the results obtained 

with simulated experimental data do not validate the measurements results. For instance, in Fig. 6, 
the influence of an error on H0, corresponding to the static deflection of the cantilever normalized 
by the applied actuation voltage (the applied actuation force is proportional to the applied actuation 
voltage), is tested. Undoubtedly, the G’ estimation is strongly dependent on the value of H0. The 
estimation of the viscous modulus (G”) is also dependent on this parameter in the same 
proportions. 

 

Fig. 6 - Elastic modulus (G’) calculated from the third solution (Z3) expressed in 
Eq. C11, with respectively -3% (red dotted line), -2% (green line), -1% (blue dotted 
line), 0% (light blue cross), 1% (magenta dotted line), 2% (orange line), 3% (brown 

dotted line) of error on H0 and the expected function for a 1440x285x20 µm3 
silicon microcantilever immersed in a complex fluid (-). 

In Table 1, a set of measured values of H0 are presented for three cantilevers of different 
geometries. Those values strongly differ from one cantilever to another depending on 
manufacturing considerations, such as the position of the structure on the silicon wafer. In addition, 
the low frequency noise of the vibrometer used for the measurement of the microcantilever free-end 
deflection makes a direct measurement impossible and an optical profilometer or any optical 
measurement technique would not satisfy the required accuracy (in practice the applied actuation 
voltage is set to 0.1V, so according to Table 1 the absolute value of the deflection is at the 
nanoscale and a resolution of less than one percent is required). Therefore, it becomes difficult to 
measure those values experimentally with an accuracy better than 1%. 
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Cantilever 
name 

Cantilever 
geometry 

H0, min 

(m.V-1) 
H0, mean 

(m.V-1) 
H0, max 

(m.V-1) 
LL 2810x100x20 µm3 1.8 10-8 2.33 10-7 3.0 10-7 
LH 1440x285x20 µm3 1.0 10-8 2.956 10-8 5.0 10-8 
A 500x100x20 µm3 1.5 10-11 9.377 10-10 1.3 10-9 

Table 1 – Measured values of H0 in water for the three cantilevers of different 
geometries  

A fitting and iterative method has been developed in order to determine precisely H0 (the complete 
calculation method is not detailed in this paper). 

Parametrical errors (like the one concerning H0) remain a problem, especially because few 
reference measurements exist for the probed complex fluids at the investigated frequency range. In 
this context, it is difficult to calibrate those parameters or to correct the results with a simple self-
calibration. Nevertheless, Fig. 6 shows that whatever the residual parametrical error on H0, the 
values of G’ (and G”) calculated at the resonant frequency is “exact”. Consequently, in the 
experimental rheograms the more accurate measurements of G’ and G” are obtained at the first 
resonant frequency. At other frequencies, an error on H0 or one of the other sensitive parameters 
(not detailed in this article) will strongly affect both the value and the slope of G’ and G” vs. 
frequency. 

III. DETERMINATION OF RHEOLOGICAL PROPERTIES OF FLUIDS USING 
MICROCANTILEVER MEASUREMENTS 

A. Experimental set-up and procedure 

In order to characterize the viscosity of various fluids, silicon microcantilevers have been 
designed and fabricated [22]. Three different geometries have been used for the measurements 
(specimens ‘LL’, ‘LH’ and ‘A’). They all have the same thickness (SOI wafer) but different lengths 
and widths, as presented in Table 1. An SEM image of a microcantilever can be seen in Fig. 7C, 
while the experimental set-up is summarized in Fig. 7A. The dynamic deflection (amplitude and 
phase) of the cantilevers has been measured optically using a laser vibrometer (MSA500, Polytec). 
The optical vibrometer is used in this paper because it provides accurate results, characterizing the 
dynamic behavior of the microstructure without any coupling or signal distortion issues, over a 
wide range of frequency. Silicon microcantilevers are actuated in the liquid medium (see Fig. 7B) 
by the electromagnetic Laplace force resulting from the interaction between an external magnetic 
field generated by a magnet and an electrical current generated by an external electrical voltage in a 
gold conductive path designed on the surface of the microcantilevers.  

Four different liquids have been characterized over a large frequency range (103-105 Hz) with a 
controlled room temperature of 19°C: two Newtonian fluids, deionized water and a 20-cP 
calibrated silicone oil (provided by Sigma Aldrich).  In addition two complex viscoelastic fluids, 
mixtures of cetyltrimethylammonium bromide (CTAB) and polyacrilamide (PAM), were tested.  

Two different solutions of PAM were prepared by adding 50mM and 100mM of PAM, 
respectively, to 10mM of NaCl. CTAB was concentrated as follow: 100mM of surfactant added to 
40mM of NaSal. 

 
The same protocol has been used for the three cantilever geometries. First the cantilever 

deflection spectrum was measured in air (the eigenfrequency in vacuum needed for the rheogram 
calculation was deduced from the measurement in air). Then the cantilever resonant spectrum was 
acquired in deionized water. Finally the measurements in the complex mixture or in the silicone oil 
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were obtained. Each presented experimental spectrum was obtained in less than one minute by 
averaging 100 spectra. In these conditions, for a given cantilever in a given fluid, repeatability was 
excellent provided that temperature does not change and that the concentration of the mixtures does 
not fluctuate due to, e.g., evaporation. This is guaranteed in our set-up by a room temperature 
control and by performing all the measurements in a short period of time after exposing a new 
sample to air. The measurements obtained with two identically designed cantilevers are slightly 
different due to small differences caused by the manufacturing process. This is the reason why a 
calibration procedure in water has been developed.   

 

   

Fig. 7 – Experimental set-up illustration. Method summary (A); view of a 
microcantilever within liquid recipient (B); an SEM photo of the silicon-etched 

device (C). 

Different sets of cantilevers were used for each complex fluid. The silicone oil was also 
characterized using other cantilevers for cleaning considerations. (Oil leaves many traces on the 
cantilever surface that are difficult to clean in water-based solutions.)   

B. Newtonian Fluids 

 
1. Calibration in water 
 
Even though very few reference measurements exist over the investigated frequency range, 

many rheologists (see acknowledgments) believe that there is no single physical reason why water 
should deviate from Newtonian behavior: to our knowledge, it is the best existing reference fluid (it 
could be suspected that some Newtonian calibration fluids composed of large molecules might 
partially behave as non-Newtonian fluids at high frequency when considered at very small scales, 
see Fig. 10). Therefore, measurements in deionized water should lead to a very small value of G’ 
and a constant viscosity (versus frequency) close to 1 cP, depending only on temperature.   

A calibration method based on these expected measurements in water is used to calibrate the 
model parameters identified as crucial for the accuracy of the experimental shear modulus 
determination. This method depends on the cantilever’s geometric parameters (h, b, L), the 
cantilever mass per unit length (mL) and H0, and is based on minimizing the mismatch between the 
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experimental and the simulated spectra obtained using the method developed in parts I and II, 
assuming specified variations in these five parameters of a few percent around their nominal values. 
The nominal values of h, b and L are taken directly from the cantilever mask design values. The 
nominal parameter mL is calculated using the cantilever mask design values and the actual 
cantilever density, taking into account that it is made of layers of different materials (Si, SiO2, Au, 
Ti). The nominal value of H0 comes from the above-mentioned fitting and iterative method and is 
not detailed in this paper. 

Fig. 8 presents the three microcantilevers’ deflection measurements when the devices are 
immersed in water and the results of the best simulation cases; as can be seen, the comparisons are 
excellent. The results of the calibration parameters corresponding to the three cantilevers (LL, LH 
and A) immersed in water are presented in Table 2. The variations of parameters are deemed to be 
physically reasonable. 

 

Fig. 8 – Real (reH) and imaginary (imH) parts of experimental and simulated free-
end deflection complex modulus (H) for the three geometries of cantilevers 

immersed in water: 1) LL; 2) LH; 3) A. 
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Percentage 
change on  

 
h 
 

 
b 

 
L 

 
H0 

 
mL 

LL 3.0 0 6.0 1.9 0 
LH 1.4     0 4.5 10-2  -1.5  0.11 
A 3.7 10-1 0 0 5.2 0 

Table 2 –Model parameter variations around their nominal values obtained to 
optimally simulate the free-end cantilever deflection which corresponds to the one 

measured for each geometry (LL, LH or A) immersed in water. 

The rheogram presented in Fig. 9 illustrates the Newtonian behavior of water obtained with the 
three cantilever spectrum measurements. Referring to the curve illustrating the influence of H0 (cf. 
Fig. 6), both G’ and G” are calculated with an error which modifies the slope of those rheograms; 
the same influence is observed for the other model parameters. This is particularly observable in the 
case of cantilever A. The fact discussed in the simulation description (section II -C) that we are not 
able to accurately measure the elastic shear modulus under 1 Pa is confirmed: the behavior of G’ 
appears to be clearly inconsistent. However the behavior of G” (and therefore the viscosity) is very 
close to the expected behavior in terms of the quantitative values and the continuity between the 
measurements made using different microcantilevers.  

More than one decade separates both portions of the complex modulus; thus, G’ can be 
considered negligible as compared to G”. In the opinion of the authors, this is sufficient to confirm 
the Newtonian behavior of water.  

 
Fig. 9 – High-frequency rheogram of water measured with three microcantilevers (LL, LH and A) and spanning 

the frequency range 103-105 Hz using the inverse model (Eqs. 8-9 and 11). 
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2. Rheogram of a 20cP silicone oil 
 
The model parameter values obtained after calibration in water for each cantilever were kept 

unchanged during measurements achieved in a 20 cP silicone oil. The corresponding obtained 
rheogram is presented in Fig. 10.  

 

Fig. 10 –Rheogram of a 20-cP silicone oil measured with a classical cone-plate 
rheometer and three microcantilevers (LL, LH and A) spanning the frequency range 

103-105 Hz using the inverse model (Eqs. 8-9 and 11). 

The behavior of G” is as expected because there is continuity between the measurements 
obtained with the classical rheometer at low frequencies and the measurements made with the 
different cantilevers. The obtained viscosity value of 21.3 cP, is in agreement with the expected 
viscosity at 19°C for this silicone oil (measurement made with a cone/plate rheometer with a Peltier 
temperature control).  

More than one decade of difference is systematically obtained between G’ and the larger value 
G”, which is deemed to be large enough for indicating Newtonian behavior. This is particularly 
true at the resonant frequency, where the model parameter influence is the weakest: the value of G’ 
is more than two decades lower than the value of G”. According to the G” high frequency slope, it 
can be suspected that the fluid become complex at very high frequency, i.e., in the megahertz range.  

The results obtained with silicone oil and water using three microcantilever geometries (LL 
LH, A) demonstrate that the viscous modulus G” determination between 10-1-104 Pa is possible in 
the extended range of frequencies 103-105 Hz. 

C. Complex Fluids 

Characterization of CTAB and PAM, prepared as mentioned above, are presented in Figs. 11 
and 12, respectively. They are supposed  to be complex fluids behaving according to linear 
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viscoelasticity with our experimental set-up, a point that has been carefully checked in a previous 
work [23]. The limit to the linear regime depends on the amplitude of the applied pressure due to 
the cantilever motion and therefore on the amplitude of the driving voltage. In our case, the 
pressure that defines the limit between the linear and non-linear viscoelastic regimes, has been 
measured around 1 Pa at 10 kHz for the CTAB mixture. This corresponds to approximately 800 
mV for the LH cantilevers whereas all of the presented measurements have been performed at 100 
mV.  

 
Fig. 11 presents our results for G’ and G” of CTAB obtained at 19°C both with cantilevers and 

with a cone-plate rheometer as well as published [24] DWS reference measurements with the same 
mixture obtained at 22°C. As expected, unlike Newtonian fluids, G’ is no longer negligible.  Except 
for the G’ measurements obtained with the LL cantilevers (G’LL), all sets of measurements of G’ 
and G” clearly follow the same trends until 100 kHz, given the temperature difference. The 
inconsistent results obtained for G’LL are most likely due to some cantilever inhomogeneities or to 
non-ideal clamping, effects which are not yet taken into account in our model. Nevertheless, except 
for G’LL, the cantilever-based shear modulus measurements seem to corroborate and extend the 
DWS reference measurements up to 100 kHz.  

 

 

Fig. 11 - Rheogram of CTAB over a [10-2-105] frequency range measured with a 
classical cone-plate rheometer, with three different cantilever geometries using the 

inverse model (Eqs. 8-9 and 11) and reported from DWS measurements in the 
literature. 

For the two concentrations of PAM (Fig. 12), very encouraging results are obtained for the 
viscous part G”, both in terms of its order of magnitude, qualitative trend and concentration-
dependence. On the contrary, results for the elastic modulus G’ are more bothersome. Below 5 kHz, 
these results are inconsistent, even though one could consider the elastic part to be much smaller 
than the viscous part. Above 5 kHz, G’ exhibits a counter-intuitive concentration-dependent 
behavior: the elastic part seems to be decreasing with increasing concentration whereas the low-
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frequency behavior up to 100 Hz (e.g. measured in [25]) suggests the opposite.  This surprising 
result is under investigation but at the moment we consider the obtained elastic value as 
inconsistent in this precise case due to a parametrical error, as will be discussed in the next section.  

 

Fig. 12 - High-frequency rheogram of PAM (two concentrations) measured with 
three cantilever geometries (LL, LH and A) and spanning the frequency range 103-

105 Hz using the inverse model (Eqs. 8-9 and 11). 

D. Discussion 

In this paper we have demonstrated proof of concept for a new method for microrheological 
measurements but have also pointed out some limitations of the proposed method. The positive 
aspects are primarily related to the determination of G”: an accurate measurement of the viscous 
part G” is obtained showing good continuity between the results obtained with the different 
cantilevers. This would not be possible without improvements made to the modeling effort as 
documented herein. The limitations mainly concern the determination of G’: at present the method 
appears to yield valid results only for high values of G’ and gives inconsistent results for smaller 
values (below 100 Pa), thus warranting further physical verification an/or model improvement.  

For small values of G’ (that is, for Newtonian or near-Newtonian fluids), one part of the 
problem may stem from the linearization performed in solving the inverse problem, as shown in 
Fig. 4. The other source of problem, and perhaps the more significant, is related to experimental 
issues, since Figs. 9 and 10 show larger discrepancies for experimental G’ values than for their 
simulated G’ counterparts when comparisons are made to the expected results. For higher values of 
G’ (that is, for non-Newtonian fluids), linearization yields no problem (see Fig. 5) but major issues 
continue to appear with experimental results (see Fig. 12).  
It is worth mentioning that classical rheometers also have physical artifacts that lead to non-zero 
measured values for G’ of Newtonian fluids of up to 10-2 Pa (see Fig. 10). In the case of 
microcantilevers using the proposed method this phenomenon still exists with increased anomalous 
behavior in G’ being exhibited at higher frequency.  The reason why G’ is problematic whereas G” 
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is not requires further investigation.  It could possibly be due to the very high sensitivity of the 
calculation to the system parameters and measurement data (w(L, ), b, h, L, H0, mL) and the 
uncertainty in these quantities. In this case, a very small error during the calibration procedure, due 
to phase or amplitude of deflection measurement errors, could lead to a large error in property 
estimation. This is indicated by Fig. 6 and by similar figures that could be presented for the other 
parameters. For example, we have preliminary evidence that any experimental phase offset may be 
critical for G’ determination.  These problems could also be due to the proposed model itself. 
Should that be the case, the model could be generalized to take into account (i) internal losses in the 
beam, (ii) microscale temperature effects due to Joule heating in the gold path, (iii ) effects of finite 
b/h and L/b ratios that are neglected in the present elementary beam theory model, and (iv) the 
inertial effects of the gold path at the free-end of our devices. Generalization of the model, 
however, would pose some technical challenges. For example, the inverse problem may no longer 
be solvable analytically (e.g., if the inertia of the gold is included) or addition system parameters 
may need to be incorporated (e.g., if the internal losses are modeled).     

Another strategy for overcoming the above-mentioned obstacles can be used. In lieu of 
attempting to determine G’ and G” over a broad frequency range, the objective could be focused 
only on the properties at the eigenfrequency, in which case use can be made of a similar model 
[13]. Recently we achieved consistent measurement of G’ and G” for opaque viscoelastic fluids 
using microstructures [26]. Nevertheless the strategy we employed eliminates completely the 
advantage of the frequency-dependent analytical method developed in this work. A future 
analytical correction to the present model will be developed, based on some of the results provided 
by the model in the present paper. It will permit maintaining the generality of the analytical method 
developed here, which is valid for a wide range of cantilevers and fluids. Moreover, it will help to 
characterize accurately not only G” but also G’ as a function of frequency in a very general 
context. 

To conclude, the viscous modulus obtained with the present method is consistent with linear 
trends for Newtonian fluids as well as with reference data from the literature for complex fluids; 
however, such consistency has not yet been achieved for the elastic modulus results. Further 
improvements to the model are currently being pursued, but in its present form it shows promise for 
measuring the viscoelastic tendencies of fluids at high frequencies. 

CONCLUSIONS AND FUTURE WORK 

Here we have demonstrated the potential for microcantilevers to be used to probe the high-
frequency viscous modulus of small volumes of Newtonian and non-Newtonian fluids covering a 
specific frequency range from 1 to 100 kHz.  The analytical method has been improved in order to 
eliminate the previous error3 of the shear modulus estimation method as a function of the complex 
free-end deflection. In addition some parameters have been identified as crucial for the accuracy of 
the experimental shear modulus determination; they have been optimized as much as possible given 
the present state of the model. Finally, high-frequency rheograms of four fluids, Newtonian and 
non-Newtonian, have been produced: they partially validate the presented inverse analytical model 
and prove the feasibility of a microcantilever-based microrheometer. Those two points have been 
carefully demonstrated, highlighting the actual advantages and limitations of this characterization 
method. 

 

                                                 
3 As demonstrated in this paper, the previous error of the shear modulus estimation (developed in [14]) was due to 

the use of a simplified second order transfer function (Eq.10) to estimate the complex free-end deflection. 
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One of the advantages of the proposed method is the very short computational time associated 
with the approach (on the order of seconds). Possible further improvements concerning the 
parameter determination methods and some modifications of the actual modeling have been noted. 
In particular, future improvements are needed to be able to measure accurately the elastic modulus 
G’. Then, the integration of arrays of cantilevers, simultaneously performing measurements, is 
another direction for future work. Finally an electrical characterization of the cantilever deflection 
strain could possibly lead to an embedded microrheometer that could overcome practical issues 
associated with making measurements on opaque fluids. 
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APPENDIX A: HYDRODYNAMIC FORCE FOR NEWTONIAN AND COMPLEX FLUIDS 

 
The hydrodynamic force per unit length, Fhydro, exerted by the fluid on the cantilever is 

composed of two terms (Eq. A1): one proportional to the microcantilever velocity (viscous 
coefficient g1 depending on the radial frequency ) and one proportional to the microcantilever 
acceleration (inertial coefficient g2 depending on the radial frequency ).  
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2 1( ) ( , ) ( ) ( , )hydroF g w x j g w x  (A1) 
 
Furthermore, g1 and g2 can also be expressed as functions of both the real part 
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 and the 

imaginary part 
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 of the hydrodynamic function: 
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where 
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b

R
 (with Re the Reynolds number as defined by Sader [16]). 

 
The real and imaginary parts of the hydrodynamic function have been expressed by Maali et 

al.20: 

 
1 2r a a

b   (A3) 
and  
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Considering the relation between the viscosity  and the shear modulus G, 

  G j   (A5) 
the expression of the hydrodynamic function becomes:  
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If the fluid is complex (viscous and elastic): G is complex ' ''G G jG  and ' ''j  
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After a few calculations, Eq.A6 implies that  
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If the fluid is Newtonian (no elasticity): ''G jG  with '' 0G   and G’ = 0. 
Therefore 
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Note: 
According to Sader [16] when 

eR  (e.g., when " 0G ), for cylindrical and rectangular 

beams ( ) 1r newtonian  and ( ) 0i newtonian .Therefore: 

  1 1a  (A11) 
The model of Maali et al  [19] yields a very similar result for the value of a1 as it was based on 

a fit of Sader’s equations [16]Erreur ! Signet non défini. (a1 = 1.0553, a2 = 3.7997, b1 = 3.8018 and 
b2 = 2.7364 are the “Maali’s parameters”). 

  
If the fluid has only elasticity (no viscosity): 'G G  ,  '' 0G . So: 
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In this case because there is no viscosity and, thus, no damping effect; consequently 0i
. 

We can deduce that: 

 1 2b a   (A14) 
(The model of Maali et al [19] gives b1 ≈ a2 ). 
 
General case considering Eq. A11 and Eq. A14 
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These equations can be written as follow: 
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APPENDIX B: COMPLEX SHEAR MODULUS AS FUNCTION OF THE TERMS g 1 AND 
g2  

The objective is to invert Eqs. A19-A20 to obtain G’ and G” as functions of g1 and g2. 
 

Eqs. A19-A20 can be expressed as follows: 
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By introducing the notation 

1" "K g DG  and 2' 'K g C DG , the difference of Eq. B1 and 

B2 gives 
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The product of Eq. B1 and Eq. B2 gives 
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From Eq. B4, it follows that  
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Then using the definition of K’: 
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Combining Eq. B5 and Eq. B3 yields 
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This is a polynomial equation in K” which can be written as 
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The positive solution of Eq. B8 is 
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Then using the K” definition we obtain 
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APPENDIX C: SOLUTIONS OF THE INVERSE PROBLEM 
 
C.1 Solution of Eq. 11 
 

Three solutions (Z1, Z2, Z3) of Eq. 11 are obtained using a mathematical solver. Each analytical 
solution has been tested on simulated data and they correspond to the physical case (each solution 
corresponding to a different frequency range).This can be seen in Fig. C1 which represents the 
inertial term (g2) calculated using those three solutions. 
 
Using the following notation, 1 2 3 4 53 742200; 2554051 500; 1260; 311 850; 315n n n n n ,  

Considering the definition of the terms, T1, T2, U1, U2 and V1: 
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The solutions (Z1, Z2, and Z3) of Eq. 11 are expressed as follows: 
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Fig. C1 – Inertial term g2 calculated from the three inverse solutions (Z1:+, Z2:  
Z3: ) of Eq.11  and the expected function which has been used to generate the 

simulation data. 
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C.2 Beyond Eq. 11 
 
Until now, Eq. 11 has been approximated by a ratio of 3rd-order polynomials, but it can be 

written exactly using an infinite sum since all the coefficients kp and qp can be calculated: 
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This equation can be written as 
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The three solutions (Z1, Z2, Z3) are the solutions of (C10) if the sum is truncated at p = 3: 
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The difference between the exact solutions of Eq. C10 and Eqs. C6-C8 can be included into a 

term called Δ which is added to each known solution Zn: 
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(C13) is a polynomial equation of  since both Z1|2|3 and αi are known. Due to the properties of 

Taylor series development, the role of Δ is very small at low frequencies, but increases with 
frequency. Also, the weight of parameters ki and qi (and consequently αi) is decreasing while i 
increases. Therefore, at low frequencies, the terms αi and j can be neglected for the highest values 
of i and j. For example, if (C13) is truncated at i=6  and j=2 (and taking (C11) into account):  
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For each of the three solutions Z1, Z2 and Z3, Eq. C14 has two solutions, denoted by 
( )
1|2|3
a

 and 
( )
1|2|3
b

. Then, Z1|2|3+ 
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 or Z1|2|3+
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b

 
are more accurate solutions of Eq. 11, over a larger 

frequency range, than Z1|2|3.  
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