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Abstract

Limit cycles of combustion instabilities can be estimated by studying the
nonlinear behavior of flame dynamics. In the present study the flame describ-
ing function (FDF) framework is combined with a linear acoustic Helmholtz
solver in order to estimate the growth rate of the acoustic perturbations in
a swirled combustor. It is assumed that when this growth rate equals the
inherent dissipation of the system, acoustic oscillation amplitudes cease to
grow and a stationary state, i.e., a limit cycle, is reached. In the same way,
the FDF is combined with an analytical acoustic model for a quasi-1D version
of the combustor. Numerical and analytical results are compared to exper-
imental data and a reasonable agreement is obtained in terms of frequency,
growth rate and amplitude of oscillations at the limit cycle.
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1. Introduction

Modern aeroengines and gas turbines are required to have high perfor-
mances with low fuel consumption and reduced emissions. To achieve these
requirements, these systems are designed to operate in a premixed mode at
low equivalence ratios with the drawback to enhance the flame sensitivity to
flow perturbations. Under certain conditions, the unsteady heat release pro-
duced by the turbulent flame and the acoustic fluctuations generated in the
chamber may couple, giving rise to what is known as combustion instabilities.
An earlier criterion for such instabilities was proposed by Rayleigh (1878),
much research on these issues was carried out in the field of liquid rockets (see
for example Crocco (1969)). More recent investigations are reviewed by Can-
del (2002). Combustion dynamics in gas turbines are the subject of a book
edited by Lieuwen and Yang V., (Eds.) (2005). This phenomenon may have
serious consequences, causing structural vibrations, increasing heat fluxes to
the chamber walls and reducing the system life duration.

Combustion instabilities constitute an active domain of research where
much attention has been focused on the physical modeling of the processes
leading to oscillations. Current analytical models have been designed in
order to estimate the response of flames submitted to velocity fluctuations.
In many of these models it is assumed that acoustic fluctuations remain small
in comparison to the mean values of the flow: acoustics is then considered
linear and second order terms in the dynamical equations can be neglected.
A Flame Transfer Function (FTF) is used in this framework. In its simplest
definition, the FTF only depends on frequency and links the ratio begween

the Fourier transforms of the unsteady heat release rate fluctuations ) and
acoustic velocity fluctuations u as follows:

Qw)/Q

F(w) = G(w)e™ = 2

(1)

where w = 27 f stands for the angular frequency of the perturbation, G
is the gain and 7 a time delay (Crocco, 1951, 1952). Here Q and @ denote a
mean flame power and velocity introduced for scaling purposes. The FTF can
be either measured or modeled theoretically or numerically (Ducruix et al.,
2000; Kiilsheimer and Biichner, 2002; Truffin and Poinsot, 2005; Durox et al.,
2009; Huber and Politke, 2009; Kim et al., 2010; Schuermans et al., 2011;
Duchaine et al., 2011; Tay-Wo-Chong et al., 2012; Palies et al., 2011b). In a



second step, this function can be combined to a model of the system acoustics
which is often obtained analytically (Dowling and Stow, 2003; Sattelmayer
and Polifke, 2003; Poinsot and Veynante, 2005). Also, the FTF can be com-
bined to numerical tools which are used to solve the wave equation, usually
expressed in the frequency domain (Roux et al., 2005; Nicoud et al., 2007;
Camporeale et al., 2011). These numerical tools allow to account for the ge-
ometrical complexity of real systems and rely on Helmholtz solvers to model
linear acoustics in low Mach number flows. By means of these methodologies,
it is possible to estimate the frequency, structure and growth rate of the un-
stable acoustic modes of the system. The growth rate is exponential in linear
acoustics, and since non-dissipative and only linear terms are accounted for,
the amplitude of oscillations increases infinitely (Bloxsidge et al., 1988). In
order to estimate acoustic amplitudes of limit cycles, nonlinear terms must
be included into the modeling (Culick, 1994; Dowling, 1997; Noiray et al.,
2008; Boudy et al., 2011; Palies et al., 2011a).

Modeling of nonlinearities is needed to retrieve the evolution of acous-
tic oscillations when the system becomes unstable. In a complete nonlinear
analysis, all second (or higher) order terms should be kept. Nonlinearities as-
sociated to gas dynamics are responsible for acoustic damping, mode to mode
transfer of energy and limit cycles. In this context, Culick (1994) proposed
a methodology in which a Galerkin method based on an expansion of flow
variables on the acoustic eigenmodes is used to convert partial differential
equations into ordinary differential equations. This provides a set of second
order equations of modal amplitudes. All nonlinearities are contained in the
source terms. When the time derivative of the amplitude is equal to zero, a
limit cycle is reached. Another approach has been proposed (Dowling, 1997)
in which it is supposed that the main nonlinear terms are those representing
the unsteady heat release rate associated to velocity perturbations. In many
systems, it is shown that acoustics remains linear and that limit cycles are
reached due to a saturation of the heat release rate or change in the phase
lag between flow and heat release rate perturbations (Noiray et al., 2008).

In this framework it is possible to introduce the Flame Describing Func-
tion (FDF) concept. The FDF model accounts for the flame nonlinearity
but does not represent the possible nonlinear interactions with turbulence or
other flow features like the precessing vortex core (PVC) existing in swirling
flows. It has been shown however that such interactions are of lesser im-
portance to the combustion instability process (see for example Moeck et al.
(2012) where such interactions are investigated). When considering the FDF
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approach, the flame response depends not only on the frequency of the acous-
tic velocity perturbation, but also on its amplitude (Dowling, 1997, 1999;
Noiray et al., 2008; Durox et al., 2009). The FDF is then defined as

Q(lal,w)/Q

F(lilw) = Gl w)e 7 = =

(2)

where |4| denotes the amplitude of the acoustic perturbation. Studies
carried out on this basis lead to some reasonably close representations of
experimental observations like mode switching, triggering, frequency shifting
during transients (Noiray et al., 2008; Boudy et al., 2011). The FDF is mea-
sured experimentally and is used as an input of analytical representations of
the system acoustics. The output of this quasi-analytical approach are the
growth rate of the acoustic modes, their frequency of oscillation and spatial
structure as a function of the perturbation amplitude level. For a given fre-
quency and for increasing values of the acoustic velocity amplitude, the gain
and phase of the FDF evolve (Balachandran et al., 2005; Bellows et al., 2007;
Durox et al., 2009; Schimek et al., 2011; Kim and Hochgreb, 2011). Depend-
ing on |u|, a mode may be found stable or unstable; when the growth rate w;
exceeds damping at small amplitude the mode is unstable and the limit cycle
corresponds to the particular value of |a| for which the growth rate tends to
the damping rate. Limit cycles reached in a swirled turbulent combustor were
recently estimated for different operating conditions and burner geometries
by following this general framework (Palies et al., 2011a). Despite important
assumptions regarding the geometry (the combustor was represented as an
acoustic network of three coupled cavities), good estimation of the resonant
frequencies and limit cycles were obtained, especially for configurations in
which strong combustion oscillations take place.

Analytical approaches require that the geometry is simple enough to be
represented by an arrangement of 1D homogeneous elements and usually
rely on the compact approximation in which combustion and geometrical
changes take place over regions of small dimension compared to the acoustic
wavelength. This approximation is not always justified for practical industrial
combustion systems such as (modern) aero-gas turbines. The purpose of the
present work is to investigate how the FDF formalism can be used in a more
general framework. The stability behavior is here analyzed by means of a
Helmholtz solver combined with FDF methodology to represent the nonlinear
response of the flame. This is illustrated by analyzing the swirled burner



dynamics considered by Palies et al. (2011a). It is shown that a relatively
simple procedure including the nonlinear flame response provides estimates
of the amplitudes of limit cycles while accounting for the 3D geometry of the
system.

This paper is organized as follows: the swirled combustor under study
is presented in conjunction with its idealized geometrical representation in
section 2. Subsequently, the acoustic modeling of the combustor is explained
and the flame describing function is introduced in section 3. The fourth
section deals with the Helmholtz solver and numerical issues are discussed.
The method used to insert the FDF into the Helmholtz computations is
explained in the fifth section. After a validation of the numerical procedure,
linear and nonlinear stability analyses of the target configuration is carried
out in the last section. It is shown that it is possible to predict unstable modes
of a swirled combustor when some information about the dissipation of the
system is available. Finally, the growth rate trajectories of the fundamental
mode of the combustor are calculated and compared to analytical results.
These trajectories are then used to assess limit cycle amplitudes.

2. The swirled combustor

The experimental combustor designed and built at EM2C laboratory has
been thorougly used to study the dynamics of turbulent swirled flames (Palies
et al., 2009, 2010, 2011a,b,c). It comprises an upstream manifold of variable
length, an axisymmetric convergent duct and a cylindrical combustion cham-
ber of variable size schematically represented in Fig. 1. A mixture of methane
and air is injected at the bottom of the upstream manifold. This mixture
passes through a fine honeycomb grid structure which serves to break down
large scale fluctuations. The flow then reaches a convergent duct that ac-
celerates the stream and causes a decrease of its boundary layer thickness.
As a result, the flow velocity develops a nearly flat profile just upstream of
an axial swirling vane. The vane blades are twisted to induce a swirled flow
characterized by a swirl number S = 0.55 where S is the ratio of the axial
flux of the tangential momentum to the product of the axial momentum flux
and the injection tube radius. As shown in Fig. 1, the swirler also comprises
a central rod which contributes to the flame anchoring. Under normal oper-
ating conditions, the flame is stabilized at both the central rod and at the
outer lip of the injection channel.
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Figure 1: Swirled flow configuration examined by Palies et al. (2011a).

The stability of this system has been analyzed thanks to a nonlinear
dispersion relation (Palies et al., 2011a). It is assumed that the system can
be represented by three one dimensional coupled cavities (see Fig. 2). The
lengths of the upstream manifold /; = 96,160,224 mm and the convergent
axisymmetrical duct [ = 145 mm are replaced by equivalent lengths /; =
124.8,188.8,252.8 mm and [, = 116.7 mm in the idealized geometry presented
in Fig. 2 as explained in Palies et al. (2011a). Four different lengths are
considered for the combustion chamber I3 = 100, 150,200,400 mm. An end
correction of 28 mm, which corresponds to 0.4 times the combustion chamber
diameter (0.4d3), is added to these values when performing analytical and
numerical computations. The real and idealized geometries of the combustor
are displayed in Fig. 2, where the respective transversal section dimensions
are shown. The twelve different set-ups studied are shown in Tab. 1.

3. Acoustic modeling of the swirled combustor

3.1. Passive flame

The acoustic response of the idealized configuration in Fig. 2 is first ex-
amined in the absence of unsteady combustion. At the inlet of the configura-
tion, a zero velocity fluctuation is imposed as boundary condition whereas at
the outlet a zero pressure fluctuation is prescribed. A system of equations is
formed by assuming that at each interface the acoustic pressure and flow rate
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ds =70 =~ - ds =70

I3 = 100, 150, 200, 400 I3 = 100, 150, 200, 400

dy = 22 7*1 T do =21.17
Iy = 145.5— T ——— 1, =116.7
2 = / -
1= 96,160,224 I = 124.8,188.8, 252.8
di =65

dy =65

Figure 2: Swirled flow configuration explored in this study. Left: Numerical/Experimental
configuration. Right: Idealized configuration adopted from Palies et al. (2011a). Dimen-
sion are given in millimeters.

Table 1: Twelve different configurations explored. Numerical computations are carried
out by considering the actual dimensions of the combustor. Analytical predictions are
performed on an equivalent idealized configuration. [; indicates the upstream manifold
length and I3 corresponds to the combustion chamber length. Dimensions are given in
millimeters.

| Cases Studied | 13 =100 | I3 =150 | I3 =200 | 5 =400 |
Expe./ Num. | 13 =96.0
Analytics l; =124.8
Expe./ Num. | l; = 160.0
Analytics l; =188.8
Expe./ Num. | l; =224.0
Analytics l; =252.8

C01 C02 Co03 C04

C05 C06 co7 C08

C09 C10 C11 C12




fluctuations are continuous and by setting the respective acoustic boundary
conditions. It yields:

711|:c=0 =0
ﬁ1|x:l1 = ﬁ2‘:p:ll

Sla1|az:ll = 82ﬁ2|x:l1

ot

(=)
~— — — — ~— ~—

132 |m=l1+lg = ﬁ3|1‘:l1+l2

82112 ’I:l1+lg = 53’&3‘33211-{-12

8

Pile=ty 15413 = 0

where S; = wd?/4 stands for the cross section area of diameter d; with
1=1,2 or 3, and [; = [3 +0.4d3. In each element the pressure p and velocity
4 fluctuations correspond to waves propagating in the positive and negative
directions:

ﬁ:A+€ikm+A—e—ikm

ﬁéﬁ, — A+€zkm _ A—e—zkm

9)
(10)

where the complex amplitudes A* and A~ differ in each duct section. The
resulting 6 x 6 linear system reads:

1 -1 0 0 0 0 11A:1 [o
eikuly e—ikuly -1 -1 0 0 A7 0
getl el -1 L O LY an
0 0 eikul2 e—ikulz -1 -1 A; 0
0 0 Zeikule  _Te-ikula  _q 1 A3 0
i 0 0 0 0 eikblér efikb@ Ag_ 0
M

where k, and k;, are the wave numbers in the unburned and burned gases
respectively, and

E= (SZ/S?))(Pbe)/(puCU)

(12)

is a dimensionless parameter which quantifies the degree of coupling be-
tween the combustor and the injector. Modes of the three coupled cavities
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correspond to non trivial solutions of det M = 0. The following dispersion
relation can be found analytically (Schuller et al., 2012):

cos (kpl3) [cos(k:ull) cos(kyla) — % sin(kylq) sin(kzulg)]
2
(13)
—sin (kyl3) = [cos(kull) sin(kyly) + % sin(ky,l1) COS(kulg)] =0
2

In the absence of unsteady combustion and damping, these modes are
marginally stable meaning that the corresponding angular frequencies take
only real values.

3.2. Flame Describing Function

The interaction between combustion and acoustics is modeled by making
use of a FDF determined experimentally (Palies et al., 2010). The data are
expressed in terms of a gain G and a phase ¢ as follows:

Qi) w.)/Q

f(|a|7wr) = G(|ﬂ|,wr)ei¢(|ﬁ|awr) _ ik
U/

(14)

where w, stands for the real part of the complex angular frequency w.
Two operating points at the same equivalence ratio 0.7 are considered corre-
sponding to mean flow velocities in the injector u;, = 2.67 m.s™* (Case A) and

iy = 4.16 m.s™! (Case B) and total flame power @) = 1.94 kW (Case A) and

Q =3.03 kW (Case B) respectively. Figure 3 shows the values of the gain G
and phase ¢ for six different amplitudes of acoustic perturbations for these

two cases. Note that this is a global FDF in the sense that Q stands for the
volume integrated heat release rate fluctuations.

The FDF description of a flame can be viewed as a set of transfer functions
for amplitudes of modulations which cover the linear (|a|/u, < 0.1, say) as
well as the nonlinear regime up to reaching || » @,. In the work of Palies
et al. (2010), six different ratios of |u|/u, were considered as displayed in
Fig. 3. Overall, it can be stated that the different FTF present a similar
behavior in both gain and phase. The gain of these FTF is characterized
by two maxima with a strong local minimum in between. Here, for the
smallest values of |@]/@,, these maxima are observed in the vicinity of 25 Hz
and 100 Hz for the Flame A, and around 50 Hz and 125 Hz for Flame B.
The local minimum, on the other hand, is seen at 60 Hz for flame A and
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Figure 3: Flame Describing Function from Palies et al. (2010)

at 98 Hz for flame B. It was shown by Palies et al. (2010, 2011c) that these
minimum and maximum are associated to interfering acoustic and vorticity
waves featuring a different propagation velocity between the plenum and
the flame (perturbations in flow rate propagate at the speed of sound but
also generate perturbations in the swirl number which are convected by the
mean flow). When the ratio ||/, increases, the gain decreases and the two
maxima slightly shift to higher or lower frequencies. For the highest levels of
|i|/w, and for frequencies larger than 40 Hz one observes that the flame does
not act anymore as an amplifier and that the gain is less than one. At high
frequencies the gain reduces progressively to zero and the flame response is
limited to frequencies lower than 250 Hz for flame A and 350 Hz for flame B.
Considering the phase of these F'TFSs, it is observed that all curves collapse
for frequencies lower than 200 Hz. The linear behavior of the phase ¢ = wr
implies that the time delay 7 taken by the incident perturbation to reach the
reactive region is roughly constant for all frequencies. In Palies et al. (2010)
it is shown that 7 is associated to the mean convection velocity u;, of the flow
at the injector. This FDF can now be used to analyze the system dynamics
with usteady combustion.
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3.8. Flame acoustics coupling

When the flame generates unsteady heat release rate fluctuations, the
continuity of the acoustic flowrate Eq. (7) used in section 3.1 must be replaced
by the following jump condition

’C‘S’Qa2|x:ll+l2 = S3a3|x:l1+l2 (15>

)

T, and T3 being the flow temperature in the second and third cavities
(see Fig. 2). The resulting matrix is the same as in Eq. (11) except for the

where K is given by

K (w, o)) = [1 v Gew( (16)

fifth row:

[ 1 -1 0 0 0 0
i ikull _i *’L’kull _1 1 0 0
€ e
M =152 0 Sa 0 gikula p-ikla 1 _1 (17)
0 0 KZetkul2  —KZe-thul2 -1 1
| 0 0 0 0 eikl} e—ikbzg‘

Modes of the three coupled cavities correspond to non trivial solutions
of det M = 0. The corresponding roots are associated to complex values of
w where the real and imaginary components denote their angular oscillation
frequency and growth rate respectively. Solutions with positive growth rate
indicate unstable modes, while negative values correspond to damped or
stable modes.

4. The Helmholtz solver

The Helmholtz solver, called AVSP (Nicoud et al., 2007), uses a finite
volume formulation with a cell-vertex discretization on tetrahedral elements.
AVSP solves the eigenvalue problem defined by the homogeneous Helmholtz
equation. For a passive flame, this equation reads :

V- (*Vp) +w?p=0 (18)
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in which ¢ and p stand for the mean sound velocity and the acoustic
pressure fields respectively. Solutions of this equation subject to specific
boundary conditions yield the acoustic modes (complex amplitude p) and
eigenfrequencies (the complex valued angular frequency w). This equation
accounts for spatial gradients in the mean sound velocity ¢ induced by the
presence of a flame. The Helmholtz equation Eq. (18) only holds for low Mach
number flows, which is generally the case in turbine combustion chambers.
Standard boundary conditions are of the Neumann type (Vp-n = 0, where
n is the unit normal vector to the boundary, pointing outwards) or of the
Dirichlet type (p =0). While the former is applied on a rigid wall, the latter
is suitable for pressure outlets discharging in the atmosphere. In order to
account for nonlinear acoustic-flame interactions, it is necessary to introduce
a local flame describing function which relates the local value of the unsteady
heat release rate c}(sc) to the acoustic velocity in a reference section and
reference direction tyef - Nyef:

Q(w)/ Qref
Uret * Dref/ Uret
where Gy, and ¢, represent the local gain and the local phase lag respec-
tively. The quantities Zyes and Gyt stand for the reference velocity and heat
release rate respectively, introduced for units consistency. The Helmholtz

equation with a heat release rate source ¢ is given for example by (Poinsot
and Veynante, 2005):

Froe(®,wy, [0]) = Groe (@, wy, ] )&/ Pec@r o) = (19)

V- (EQVﬁ) + WP = iw(y - 1)q(x) (20)
Equation (20) is now combined with Eq. (19) to give:

VA (EZVﬁ) + wQﬁ = zw(’y - 1)qurif—‘nrefGloc($7wrv |ﬁ|)€i¢106(m7wr7|ﬁl) (21)

ref

Using the linearized momentum equation for low Mach number flows
(iwpt = Vp), Eq. (21) becomes:

v (@09)+ - (- )P Bl (0 i)t 2 (22)
S —— PUref
Ap w?p

H(Drer,w)
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AP + WP + H(Pre,w) =0 (23)

Here p represents the eigenvectors of the system and is associated to
the discretized acoustic field. The complex valued scalar w represents the
eigenvalues (eigenfrequencies) of the system. The matrix A that comes up
once the operator V-(¢2V) is discretized depends on the discretization scheme.
Finally, H is a complex vector that depends, in addition to P, on the
eigenvalue w, the gain Gy, and the phase lag ¢, and the mean field. This
mathematical problem reduces to Ap + w?p = 0 when the flame is neutral
(H =0). This is a linear eigenvalue problem which is solved in this study by
means of the Arnoldi Algorithm (Trefethen and Bau, 1997).

When the third term of Eq. (23) is taken into account (the flame produces
heat release rate fluctuations), the problem becomes a nonlinear eigenvalue
problem and an additional algorithm is needed to obtain a linearized version
which can be used in an iterative procedure. Here, the flame term is given
at a frequency value w’ = w + zwf for the j-th iteration and Eq. (24) is used
to calculate an updated value w’* of w:

V42T - (1= D Gl i) DT | o ()50 (20
ref
— T
A*p

In this expression, the operator V.t should be understood as the gradient
at the reference point and along the reference direction n,es. Solving Eq. (24)
provides, in addition to the respective eigenvectors p, the eigenvalues w of the
problem. The objective is now to find a suitable iterative procedure in order
to make w? — w. The simplest but at the same time most robust technique
consists in applying the fixed point algorithm with relaxation. Naming the
entire system as g, this algorithm can be summarized by the following relation

W= aw’* + (1 -a)w?! where g:w > w’* (25)

In this expression, 0 < a < 1 denotes the relaxation coefficient of the
method. Variables of Eq. (25) are summarized in table 2. Note that when
a = 1, this algorithm reduces to the standard fixed point method where wi*! =
g(w’). The iteration procedure stops once w’/ ~ wi*l. Assuring convergence
is a difficult task when the standard fixed point algorithm is applied to some

13



Table 2: Variables for the fixed point algorithm with relaxation

w - Input of computation j
wi* - Output of computation j
witlt > Input of computation j + 1

a = Relax coefficient taken as 0.5 in this study.

Table 3: Mean thermodynamical parameters

| [T ()] p(Po) ] 7]
Upstream of the flame 300 | 101325 | 14
Downstream of the flame | 1600 | 101325 | 1.4

of the cases studied. However, in the present study it was observed that
when relaxation with o = 0.5 is added to the standard algorithm convergence
is always achieved. Moreover, only a small number of iterations (~ 10) is
required to reach a suitable value of € = |w/ — w’*| < 0.01, when the initial
guess W is taken as the solution of the passive flame problem (Eq. (18)).

5. Helmholtz solver computations

The AVSP Helmholtz solver is used in a first step to determine the eigen-
values of Eq. (21). The mean sound velocity ¢ defines the effect of the steady
flame and this distribution must be available at each point of the geometry.
In addition to ¢, a local gain G, and a local phase ¢, must be assigned
which, as shown later in this section, must be consistent with the measure-
ments of the FDF described in section 3.2.

The field of ¢ can, for example, be deduced from numerical simulations.
It is here deduced from an approximate flame shape modeled following a
pattern given by flame images (Fig. 4) provided in Palies et al. (2010). By
following this geometrical pattern, it is possible to establish a mean sound
velocity field (Fig. 5(a)). The thermodynamical values shown in Tab. 3 are
implicitly accounted for. It has been checked, but not shown in this article,
that results (growth rate and eigenfrequencies) do not depend on the details
of the flame shape, in agreement with the fact that the flame is acoustically
compact (hgame/Aac # 0.05 where hgame and A,e represent the height of the
flame and the smallest acoustic wavelength considered respectively).

The values of the gain GG and phase ¢ provided by experiments are global

values, relevant to the volume integrated response Q of the flame. The
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a) Flame A b) Flame B

Figure 4: Trace of the flame chemiluminescence in the symmetry plane of the burner.
(Palies et al., 2010)

¢ [m.s™1] Gloe 7 [ms]

I 801 Io.55 I 4.6

688 0.42 3.5

574 0.28 2.3

460 0.14 1.1

I 347 0.00 I 0.0
(a) (b) (¢)

Figure 5: Example of three fields needed for AVSP computations (Flame A). (a) Mean
sound velocity field (m.s™!), (b) Example of G}, field or w,= 2760 rad s~* and |d|/1;, = 0.07,
(c) Example of field for the time lag 7 = ¢joc/w; for w,= 2760 rad s~ and |4|/u, = 0.07.
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Helmholtz solver requires local values of these parameters. From Eq. (19)
the local unsteady heat release rate ¢ can be then expressed as:

qA(m) = ﬁref : nref/arefGloc(wu Wr, |a|)ei¢l06(m’wm|ﬁl)q7ref (26>

Integrating Eq. (26) over the entire volume of the combustor leads to:

[/ qA(w)dV = [/ Ut - nref/ﬂrefGloc(ma Wry |ﬁ'|)eiqﬁl“(m’w“w)(}refdv (27)

Noting that @ef- nyer and s are values independent of @, considering
the flame as compact (the gain G),. and the phase ¢, being uniform in the
flame zone and set to zero elsewhere) Eq. (27) becomes:

[/ (}(w)dv = ﬁ/ref : nref/arefGloc(wa Wr, |7l|)ei@w(m’wmml)&ref‘/f (28>

where V; is the volume of the compact flame. The local flame description
will be consistent with the global flame response if

[ i@av-q (29)
Combining Eq. (28) and Eq. (14), choosing et = 1y, and ¢yoe = ¢ leads to:

QG(WM |ﬁ|) = G!locq'ref‘/f (30)

It was checked that if the constraint Eq. (30) is satisfied, results are
independent of the details of the definition of the flame region. Should the
latter be made smaller, the flame volume decreases and the local response
Goc increases because of Eq. (5_30) In the end, the overall flame response is

recovered. By choosing gyes = Q/ V¥, the local value of the gain G, is then
given by:
Gloc = G(Wm |ﬂ|) (31>

within the flame, while it is zero outside the flame. In the same way, the
local value of the phase is chosen as:

Proc = (b(wﬁ |ﬁ|) (32>
inside the flame and ¢, = 0 outside. Two examples of local gain and
phase lag fields are shown in Figs. 5(b,c). The two operating points corre-

spond to thermal powers Q = 1.94 kW and Q = 3.03 kW.
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Table 4: Three types of computations.

Type H Geometry \ Solver ‘
T1 Idealized configuration (1D by parts) Analytics
T2 Idealized configuration (1D by parts) | Helmholtz solver
T3 Real configuration (3D) Helmholtz solver
6. Results

6.1. Numerical and analytical computations on a simplified configuration

It is first natural to validate the computational tool by considering an
idealized geometry and comparing analytical and numerical results (T1 and
T2 in Tab. 4). Here, the experimental data for the FDF presented in section
3.2 are not accounted for. Instead, the idealized geometry, already described
in section 2 and shown in Fig. 2, is considered together with increasing val-
ues of both gain G and time delay 7. The analysis is carried out for the
first acoustic mode of the coupled cavities system in the configuration C05
(see Tab. 1). Calculations displayed in Fig. 6 are in good agreement with
analytical results.

— Analytics
126} O Numerics

Frequency (Hz)
B

0T =1 fie

0 1 50
Growth rate , (s)

Figure 6: Analytical (T1) and numerical (T2) computations performed on the C05 con-
figuration. The gain takes four different values: Go =0, G; = 0.5, G3 = 1.0 and G5 = 1.5.
The time lag 7 takes values from 7 =0 to 7 = 1/( f15;) where f15 = 118.4 Hz.
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In addition to validation purposes of the Helmholtz solver, simulations
shown in Fig. 6 also provide indications on the influence of the unsteady
heat release rate ¢ on the eigenfrequencies of a typical combustion system.
It shows how the gain G and the time delay 7 of a given transfer function
affects the resonance frequency and the growth rate of acoustic modes in an
academic 1D combustor. For a steady flame when G =0, i.e. ¢ =0, there is
only one eigenfrequency corresponding to the first acoustic mode of the sys-
tem fi5. This eigenfrequency is the center of the circular trajectories shown
in Fig. 6 and is a real number (Im(fis) = 0). Once a gain is attributed to
the transfer function (G # 0), and 7 is kept equal to zero, it is seen that
the resonance frequency of the system decreases and that the growth rate
remains zero. Keeping the same value of GG, 7 is made to change from zero to
7 =1/(2f1s). Eigenfrequencies lie on a semi-circumferential trajectory swept
clockwise which is located on the left half of the complex plane. The imag-
inary component of the eigenfrequency, i.e. the growth rate of the acoustic
mode, is always negative and the system is as a consequence stable. Mean-
while, the real part of the eigenfrequency, i.e. the resonance frequency of the
acoustic mode, goes from a minimum to a maximum value. For larger values
of the time lag 1/(2f1s) < 7 < 1/ f1s, the trajectories lie on the right half of
the complex plane. The growth rate now takes positive values and the system
is unstable. In this case, resonance frequencies change from a maximum to
a minimum value. It is also observed that the radius of the circumferential
trajectories in Fig. 6 only depends on the gain of the transfer function F. To
sum up, the phase ¢ = 27 f147 of F defines whether the combustion system
is stable or not, while the gain G acts on the resonance frequency shift with
respect to the original value. Besides, the good agreement between the T}
and T, types of calculations presented in Fig. 6 shows that the Helmholtz
solver gives virtually the same results as the analytical approach when the
idealized geometry is considered. As a consequence, any differences between
Ty and T3 computations would be most probably due to geometrical effects.
Such computations are considered in the next section.

6.2. Stability Analysis

In this section the numerical simulations T3 considering the real geometry
of the combustor with active flames are discussed. Figure 7 shows the values
of the growth rate w; of the first acoustic mode for the twelve configurations
investigated (see Tab. 1). These growth rates w; are computed considering
the smallest value of |i|/w@, for the two flames regimes A and B. For a system
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with no intrinsic dissipation, stability would be given directly by the sign of
w;. Nevertheless, for complex configurations, acoustic energy can be dissi-
pated in various ways. Measuring this damping rate under realistic operating
conditions is difficult and there is no well established experimental procedure
for this measurement.

Palies et al. (2011a) evaluated the acoustic damping of their combus-
tor by analyzing the associated resonance sharpness, which was obtained by
submitting the combustor to external acoustic waves and measuring the re-
sponse for a range of frequencies around a resonance. From this response
one finds the frequency bandwidth Af which can be used to determine the
quality factor @ = f/Af. Assuming that the system behaves like a harmonic
oscillator, one deduces an effective damping rate o’ = 7Af. This method is
used in many cases to obtain estimates of the damping in a complex system.
It rests on the assumption that the dynamic response can be assimilated to
that of a second order system, which is reasonable for acoustic systems. By
making use of a projection on the modes of the system, it is possible to show
that the modal amplitudes satisfy a set of second order differential equations
coupled by acoustic nonlinearities and unsteady heat release source terms.
It is thus natural to use a second order model to represent damping of each
particular mode. There is no special assumption on the flame symmetry but
one has to consider the flame contribution to the effective damping.

The measurements of o’ were performed for stable operating regimes cho-
sen within configurations C01-C12. It is shown in Palies et al. (2011a) that
the resonance sharpness of all stable configurations (C01, C02, C05, C06, C09
and C10) is similar. As a consequence, the configuration C05 will be consid-
ered as representative in what follows. The values of the effective damping
rate of C05 were found to be o/ =23 s7! for flame A and o’ = 56 s~! for flame
B. This effective damping rate o/ is a function of both the ‘actual’ damping
rate of the system « and the damping or growth rate attributed to flame
dynamics w;. More precisely it is defined as o' = o — w;, where w; is taken as
positive if the flame acts as an amplifier and as negative if the flame damps
acoustic oscillations. In cases where w; > 0, the ‘actual’ damping rate of the
system « is estimated by adding to o the damping that was removed by the
growth rate induced by the flame.

In addition to o', which is associated to all stable configurations, the
growth rate induced by the flame w; should be also representative of all
stable configurations. As a consequence, this value of the growth rate w?"
is then computed as the average of all independent values w; of the stable
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cases C01, C02, C05, C06, C09 and C10 for each operating condition A and
B. Values equal to w® = 59 s7! for the Flame A and to w® = 62 s7! for
the Flame B are obtained. The damping rate of the system for flame A is
therefore estimated as a4 = 82 s~! whereas it is ag = 125 s7! for flame B. In
this work these values were kept for all the cases investigated with flame A
and flame B respectively. This is different from the choice made by Palies
et al. (2011a) where a unique value of o was defined as a ~ 55 + 10 s71.

Assuming now that all configurations present similar values of a4 and apg
for each operating condition A and B respectively, it is possible to predict
if the system is either stable, marginally stable or unstable. The regime is
considered here stable if the growth rate is smaller than the damping rate,
marginally stable if the growth rate lies between « + 10 s~! and unstable if
the growth rate is larger than the damping rate values. Numerical results are
shown in Fig. 7 and summarized in Tab. 5 where the actual state observed in
the experiments is also shown. Numerical computations succeed in most of
the cases to predict stability, marginal stability and instability of the swirled
combustor. The partial disagreements reported in Fig. 7 correspond to cases
where the experiments gives marginal stability (S-U in Tab. 5) while the
computation predicts instability (U in Tab. 5) or vice versa. Note also that
no large differences between predictions and measurements were observed;
the overall agreement is thus very good.

160
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Figure 7: Linear stability prediction. The gray bounds indicate the marginally stable
region defined by a'+10 s™!. Empty symbols indicate agreement with experimental results
while filled symbols represent partial agreement (see Tab. 5).
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Table 5: Linear stability analysis of flame A and flame B. Comparison between experi-
mental and numerical results. (S) Stable, (S-U) Marginally stable/unstable, (U) Unstable.
The geometrical configurations C01 to C12 are defined in Tab. 1.

CASE Flame A Flame B

C01 | C02 | CO3 | CO4 || CO1 | CO2 | CO3 | CO4
Experiment S S S U S S |S-U| U
Simulation S S S U S S | SSU | U

Co05 | CO6 | CO7 | CO8 || CO5 | CO6 | COT | CO8
Experiment S S |S-U| U S S S
Simulation S S |S-U| U S S | S-U

U
U
C09 | C10 | C11 | C12 || CO9 | C10 | C11 | C12
U
U

Experiment S S | S-U
Simulation S S U

| G
| n
| n
ol L
c

6.3. Growth rate trajectories

The growth rate variation of the fundamental mode is now analyzed as a
function of the amplitude of the acoustic oscillations. Figures 8 and 9 show
the growth rate and resonance frequency trajectories for flame A and B as
a function of the perturbation level ||/, taking values in the range 0.01
to 0.71. These figures indicate that for large amplitudes of acoustic velocity
perturbations the growth rate decreases. A stationary state, i.e. a limit cycle,
is reached when the growth rate equals the damping rate of the system. The
amplitude at which this happens corresponds to the oscillation level at the
limit cycle.

It is worth stressing that predictions of limit cycles are extremely sensitive
to the measurements of the damping rate of the system. Uncertainties of
the order of 1 to 10 rad s~! may lead to differences up to 1-2 m.s™! in the
prediction of the acoustic velocity corresponding to 500 Pa in combustion
noise. As a result, one cannot expect precise estimates of oscillation levels
because accurate measurements of the damping rate are not available.

Nevertheless, interesting observations can be made from growth rate and
frequency trajectories. For almost all the trajectories, small acoustic pertur-
bations (|a|/u, ~ 0.01) present the highest values of w;. However, as long as
w; < « the system dissipates all the acoustic energy generated by the cou-
pling with the flame. In only ten, out of twenty-four trajectories, the acoustic
mode amplitude is augmented (w; > «) until the acoustic growth rate equals
the damping rate of the system. There is only one trajectory (C04-Flame B)
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in which w; does not equal « for the range of values |i|/@, displayed. How-
ever, the corresponding crossing point may be estimated by extrapolating
the trajectory to larger values of |u|/@,. Results of |u|/@,, for which w; ~ a,
are summarized in Tab. 6 together with measurements. Although there is
a general underprediction of these values compared to experimental results,
there is a good qualitative assessment of the intensity of oscillation present
in the system. Numerical results, on the one hand, show that, for flame
A, the strongest combustion instability takes place in C12, closely followed
by CO08 and C04; CO7 and C11 are estimated to be the weakest instabilities
for Flame A. On the other hand, for Flame B, simulations predict that C04
would experience the highest amplitude level followed by C08 and C12; C03
is estimated to experience a weak combustion instability in this case. All
these observations correspond to similar trend to experimental data. The
weakest instability for Flame B is however not well predicted by these sim-
ulations. This takes place for the C11 case in the experiments, while results
obtained with the Helmholtz solver indicate that CO7 yields the weakest un-
stable mode.

The predicted oscillation frequencies at limit cycles can be compared to
experimental data. KEvolutions of the instability frequencies are shown in
Fig. 9. Nine trajectories are of special interest: C04, C07, C08, C11 and C12
for Flame A, and C03, C04, C08 and C12 for Flame B. These trajectories are
intersected by the values of |u|/@, found at limit cycles providing quantitative
estimates of this oscillating state. Results are shown in Tab. 6. For all
cases there is a slight overestimation of this frequency ranging from 2 Hz
for C04-A to 10 Hz for CO8-B. Nevertheless, a good qualitative estimate
is again obtained by the present methodology. For flame A, the highest
frequency (within the measurable configurations) is predicted for the C04
case, while intermediate frequencies are found for the C07, CO8 and C11
configurations, the lowest oscillation frequency corresponding to C12. For
flame B, the highest frequency is found for C03 closely followed by C04; the
lowest frequencies are predicted for CO8 and C12. Again, these results are in
good agreement with measurements.

6.4. Computing growth rate trajectories for the idealized geometry

In the previous section growth rates and instability frequencies were esti-
mated on the actual 3D geometry by means of a Helmholtz solver. It is also
interesting to examine predictions obtained with the analytical model given
by Eq. (17) with the idealized configuration shown in Fig. 2. Calculations
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Figure 8: Growth rate trajectories as a function of the velocity fluctuation level |i|/a, at
the flame base. Flame A (left) and Flame B (right). White crosses indicate predictions
and black crosses correspond to measured limit cycle levels. The dashed-dotted lines
surrounded by the gray band indicate the region where the growth rate is balanced by
damping.
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Table 6: Numerical and experimental values of the amplitude and frequency of oscillation
at limit cycles.

Flame A Flame B

Case | Frequency (Hz) | Amplitude (u'/up) | Frequency (Hz) | Amplitude (u'/up)

Exp. Num. Exp. Num. Exp. Num. Exp. Num.
C01 - - - - - - - -
C02 - - - - - - - -
C03 - - - - 143 150 0.3 0.2
C04 | 137 140 0.8 0.6 140 147 0.9 ~ 0.8
C05 - - - - - - - -
C06 - - - - - - - -
Co7 | 120 122 0.3 0.2 - - - 0.1
C08 | 116 120 0.9 0.7 126 136 0.7 0.6
C09 - - - - - - - -
C10 - - - - - - - -
C11 | 115 110 0.4 0.1 127 - 0.3 -
C12 | 102 107 0.9 0.7 126 129 0.5 0.4

carried out indicate that the values of w; estimated analytically (T1 in Tab. 4)
for the twenty-four cases are slightly lower than those calculated numerically
(T3 in Tab. 4) and shown previously in section 6.3. As a consequence, the
respective value of the analytically estimated acoustic damping rate « is also
lower: o% =79 s7! and o% =98 s71. Figure 10 shows that similar predic-
tions are obtained when estimating oscillation amplitudes of limit cycles for
Flame A by both analytical and numerical models. High levels of instabil-
ity are found for configurations C04, CO8 and C12 whereas weak instability
is predicted in cases C11 and CO7. In contrast, different observations arise
when considering results for Flame B (Fig. 11), with some notably different
estimations of oscillation levels. Whereas a good qualitative description of
these instabilities is obtained by the Helmholtz solver, as already discussed
in the previous section, the analytical model does not perform as well. The
amplitude of the combustion instability in CO8 and C12 is largely underesti-
mated, as already observed in the work of Palies et al. (2011a). This is not
only due to a shift to lower oscillation levels of the related trajectories, but
also due to changes in shape as observed, for instance, in the C12 case. It
should be noted that both analytic and numerical results are subjected to
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the same constraints (limitations) of the FDF approach and to the same dif-
ficulties that arise in estimating the damping of the system. The most likely
reason for the difference between the analytical model (1D model) with re-
spect to the numerical simulations (Helmholtz solver) is that the latter has
the capability of capturing acoustic waves that are not strictly planar, and
that may arise in the region close to the dump plane of the combustor. This
acoustic field is closer to reality than the one obtained analytically and since
it constitutes the input to the non-steady heat release one expects to obtain
better results.

It will be shown in next section that differences in predictions between
analytical and numerical calculations are mostly due to the geometrical sim-
plification of the system (1D instead of 3D) and not to the distribution of
the flame (represented by the gain G and phase ¢ of the corresponding FDF)
within the computational domain.

6.5. Influence of geometrical simplifications on the growth rate trajectories

It was shown in the previous section that for some particular trajecto-
ries (notably C09-C12 for Flame B) there is a significant difference in the
prediction of the growth rate when using the analytical description with the
idealized geometry (T1 in Tab. 4) instead of the numerical approach based on
the real geometry (T3 in Tab. 4). This section aims to demonstrate that this
difference is mostly due to the 1D geometrical simplification in the analytical
model. The configuration C12 (Tab. 1) for Flame B is chosen here because of
the remarkable difference between analytical and numerical approaches (see
Fig. 11). Analytical results predict a low oscillation level: C12 trajectory
reaches the damping region for small velocity perturbation ratios. This is
however observed neither in experiments nor in the 3D numerical results. In
order to better interpret this observation, the influence of the flame distri-
bution in the T3 computations conducted on the real geometry is analyzed.
Instead of considering a ‘V’ shaped flame, as already mentioned in section
5 and shown in Fig. 5, a planar flame is modeled as shown in Fig. 12(a).
The corresponding growth rate trajectories presented in Fig. 12(b) show a
small difference between simulations conducted for the V-flame and the pla-
nar flame. Contrary to what might be expected, the C12 trajectory for the
planar flame keeps the same shape as the one associated to the ‘V’ flame
and is slightly shifted to higher values of growth rates. These results demon-
strate that the compact flame assumption is well suited in this study and that
the flame shape has a very limited influence on the results. It should be
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Figure 10: Growth rate trajectories evolution as a function of the velocity fluctuation
level |i|/u, (Flame A). Left: analytical model predictions with the idealized 1D geometry
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pointed out, nevertheless, that for non-compact flames the geometry of the
combustion region should play an important role when studying combustion
instabilities. In such cases, local values of the FDF obtained more readily
from simulations than from experiments, become central to the prediction of
instability and of limit cycle oscillations.

After considering the flame as planar, the only remaining parameter dif-
fering from analytical calculations and numerical computations is their ge-
ometry. Numerical simulations were thus conducted with the same idealized
1D geometry and with a compact planar flame as in the analytical approach.
These simulations are designated by T2 in Tab. 4. As expected no signifi-
cant difference between T1 and T2 calculations is observed as illustrated in
Fig. 12(b). As a result, it could be stated that resolving the acoustics on the
actual geometry of the combustion system may become crucial for a good
estimation of growth rate trajectories of combustion instabilities.
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in “T'3" computations for C12 - Flame B

Figure 12: Influence of geometrical simplifications on the growth rate trajectories calcu-
lated for the C12 configuration. Flame B. See Tab. 4 for labeling.
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7. Conclusions

Analysis of the thermo-acoustic behavior of a swirled premixed combus-
tor has been carried out in a systematic manner by considering a large num-
ber of geometrical configurations and two operating conditions. It has been
demonstrated that a numerical tool based on the Helmholtz equation and the
Arnoldi algorithm for solving the corresponding eigenvalue problem can be
combined with the FDF methodology in order to estimate growth rate values
of acoustic modes, limit cycle frequencies and amplitudes. Some convergence
problems can arise when solving the nonlinear eigenvalue problem, but they
can be overcome if the fixed point method is applied under relaxation con-
straints. This numerical procedure has been validated by comparing the cor-
responding results to an analytical description using a simplified geometry.
The Helmholtz solver is then used to compute the complex eigenfrequencies
of the exact geometry of the combustor. The stability of the burner is then
evaluated and predictions are found to agree in almost all cases with the
experimental behavior of the combustion system. Finally, the growth rate
trajectories of the fundamental mode of the system are estimated by the
computational tool. The amplitude of the limit cycles obtained for the lin-
early unstable operating points are then assessed by equating the computed
growth rates to the measured acoustic damping of the combustor.

The effect of the flame shape is encompassed in the FDF under the as-
sumption that the flame is compact (i.e., that the acoustic wavelength is
large compared to the flame size). This has been checked in many previous
analytical studies which commonly use a thin discontinuity to represent the
flame. The comparison carried out in this article supports this idealization.
The flame shape becomes important at higher frequencies when the wave-
length is commensurate with the flame size. It is then important to consider
that unsteady combustion is distributed and one has to resort to a local
description of the flame response.

One uncertainty is that of assessing the damping of the system but this
can be tackled by combining measurements of the resonant response of the
system with calculations of the flame contribution. Using this idea, a fair
agreement was found between the observed and the computed limit cycle
amplitudes.
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