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Event-Based Control of the Inverted Pendulum:
Swing up and Stabilization

Sylvain Durand, J. Fermi Guerrero-Castellanos, Nicolas Marchand, W. Fermin Guerrero-Sánchez

Abstract: Contrary to the classical (time-triggered) principle that calculates the control signal in
a periodic fashion, an event-driven control is computed and updated only when a certain condition
is satisfied. This notably enables to save computations in the control task while ensuring equiva-
lent performance. In this paper, we develop and implement such strategies to control a nonlinear
and unstable system, that is the inverted pendulum. We are first interested on the stabilization
of the pendulum near its inverted position and propose an event-based control approach. This
notably demonstrates the efficiency of the event-based scheme even in the case where the system
has to be actively actuated to remain upright. We then study the swinging of the pendulum up to
the desired position and propose a low-cost control law based on an energy function. The switch
between both strategies is also analyzed. A real-time experimentation is realized and shows that
a reduction of about 98% and 50% of samples less than the classical scheme is achieved for the
swing up and stabilization parts respectively.

Keywords: Event-based control, energy-based sampling, inverted pendulum, low computational
cost control

INTRODUCTION

While a pendulum is, by definition, a weight suspended
from a pivot which can freely swing, an inverted pendu-
lum is a pendulum whose mass is above its pivot point.
As a result, whereas a normal pendulum is naturally sta-
ble, an inverted pendulum is inherently unstable and has to
be actively balanced in order to remain upright and resis-
tant to a disturbance. A common strategy used to achieve
the expected behavior is to move the pivot point as part
of a closed-loop feedback system. This problem involves
a cart which is able to horizontally move and a pendu-
lum placed on the cart such that its arm can freely move
(in the same plane than the cart). The only way to bal-
ance the inverted pendulum then consists in applying an
external control force to the system. This is done thanks
to a DC servo-motor which provides the control force to
the cart through a belt drive system. A digital controller
allows to control the pendulum, simply acting on the mo-
tor. A potentiometer measures the cart position, from its
rotation, while another one measures the angle of the pen-
dulum. Their derivatives can also be deduced. The goal
of the control law is to move the cart to a given position
without causing the pendulum to tip over. This can be di-
vided into two steps: i) a strategy swings the pendulum up
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to its upright position and, then, ii) another one stabilizes
the pendulum near its inverted position. The classical ap-
proach to realize the first part is based on using an energy
function [1, 2, 3, 4], whereas a dynamical state-feedback
control calculated on the linearized model of the system
can behave the second step [5, 6, 7, 8].

As long as the control of the inverted pendulum system
is concerned, all proposed strategies were developed in a
(classical) time-triggered and periodic fashion. Although
periodicity simplifies the design and analysis, it results in
a conservative usage of resources since the control law is
computed and updated at the same rate regardless it is re-
ally required or not. In the present study case for instance,
the controller actuates the cart during the swinging even
while the energy of the pendulum naturally decreases, and
yet, this is not useful. In the same idea, it is not necessary
to actively control such an unstable system in order to re-
main upright in the stabilizing part. A discussion on these
points follows in the sequel.

In the recent decades, some works addressed resource-
aware implementations of the control law using event-based
sampling, where the control law is event-driven. Such
a paradigm calls for resources whenever they are indeed
necessary, that is for instance when the dynamics of the
controlled systems varies. Typical event detection mech-
anisms are functions of the state variation (or at least the
output) of the system, like in [9, 10, 11, 12, 13]. Although
the event-triggered control is well-motivated and allows
to relax the periodicity of computations, only few works
report theoretical results about the stability, convergence
and performance. In [14] notably, it is proved that such
an approach reduces the number of sampling instants for
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the same final performance. Some stability and robust-
ness proprieties are exploited in [14, 15, 16, 17, 18]. An
alternative approach consists in taking events related to
the variation of a Lyapunov function – and consequently
to the state too – between the current state and its value
at the last sampling, like in [19], or in taking events re-
lated to the time derivative of the Lyapunov function, like
in [20, 21, 22]. In the latter reference in particular, the up-
dates ensure the strict decrease of the Lyapunov function,
and so is asymptotically stable the closed-loop system.

In this paper, we propose to develop event-based strate-
gies to control an inverted pendulum, for both swinging up
and stabilizing its arm. Such approaches have never been
addressed in the literature. More particularly, an event-
based scheme is especially designed for the swinging up
part.

The rest of the document is organized as follows. In
section 1., the model of the inverted pendulum is given
and the event-based formulation is introduced. The prob-
lem is also stated and the proposed control algorithms for
both swinging up the pendulum and stabilizing its arm are
intuitively presented. The main contributions are detailed
in section 2.: subsection 2.1. and subsection 2.2. deal with
stabilization and swing up problems respectively, and the
switch from the one to the other is treated in subsection 2.3..
Some experimental results are presented in section 3. to
highlight the capabilities of the proposed approaches and
some discussions finally conclude the paper.

1. PRELIMINARIES AND PROBLEM
STATEMENT

1.1. Model of the inverted pendulum
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Fig 1: Representation of the inverted pendulum system

The system of the present paper is depicted in Fig. 1,
where an inverted pendulum is actuated via a cart, as ex-
plained in introduction. From this representation, the equa-
tion of motion of the pendulum is

Iθ̈ + kθ̇ −mgl sin(θ)−ml ṗcos(θ) = 0 (1)

and the equation of motion of the cart is

(M+m)p̈+ f ṗ−mlθ̈ cos(θ)+mlθ̇ 2 sin(θ) = ρu (2)

where M is the mass of the cart, m is the mass of the pen-
dulum and l is the distance from the pivot to the center

of this mass, I = J +ml2 where J is the moment of iner-
tia with respect to the pivot point, g is the acceleration of
gravity, f and k are the friction force and friction coeffi-
cient of the pendulum respectively. θ is the angle between
the vertical and the pendulum, where θ is positive in the
trigonometric direction and zero in the upright position,
and u is a horizontal acceleration of the cart (the input),
where u is positive if it is in the direction of the positive x-
axis. Also, ρ is a parameter used to convert a voltage into
a force applied on the cart. This model is notably based
on assuming that the pendulum is a rigid body and there is
no limitation on the velocity of the pivot. One could refer
to [2] for further information.

Reformulating (1) and (2) gives the dynamics of the
complete system

p̈ = λ1(θ)
[
κ1λ3(θ , θ̇ , ṗ,u)+ l cos(θ)λ2(θ , θ̇)

]
θ̈ = λ1(θ)

[
l cos(θ)λ3(θ , θ̇ , ṗ,u)+κ2λ2(θ , θ̇)

] (3)

with
∣∣∣∣ κ1 := I

m
κ2 := M+m

m

and

∣∣∣∣∣∣∣∣
λ1(θ) :=

1
κ2I−ml2 cos2(θ)

λ2(θ , θ̇) := mgl sin(θ)− kθ̇

λ3(θ , θ̇ , ṗ,u) := ρu− f ṗ−mlθ̇ 2 sin(θ)

which is a four-state system, whose states are the position
of the cart p and the angle of the pendulum θ , as well as
the velocity of the cart ṗ and the angular speed θ̇ . As a
result, let

x :=
[
θ θ̇ p ṗ

]T (4)

be the state vector of the system.

Linearized model
Let consider the linear time-invariant dynamical system

ẋ = Ax+Bu (5)

Such a linearized state-space representation of the pendu-
lum close to the equilibrium point can be obtained from
(3). In fact, two equilibriums exist, that are when the pen-
dulum is in its stable position (i.e. θ = π) and when it is
in the upright – and unstable – position (i.e. θ = 0). We
consider the latter one. This yields the linearized matrices
are defined by

A =


0 1 0 0

κ2mgl
κ3

−κ2k
κ3

0 −l f
κ3

0 0 0 1
mgl2

κ3
−lk
κ3

0 −κ1 f
κ3

 and B =


0
ρl
κ3
0

ρκ1
κ3

 (6)

with κ3 := κ2I−ml2

This linearized model will be used in the sequel for the
stabilizing part.
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1.2. Event-based control
The model of the inverted pendulum (3) can be written

as a nonlinear affine-in-control system

ẋ(t) = ξ
(
x(t)
)
+ψ

(
x(t)
)
u(t) (7)

with x(0) = x0

where ξ and ψ functions are smooth and ξ vanishes at the
origin, x ∈ R4 and u ∈ R in this particular case.

Definition 1..1 (Event-based feedback): By event-based
feedback we mean a set of two functions, that are i) an
event function ε : R4×R4→R that indicates if one needs
(when ε ≤ 0) or not (when ε > 0) to recompute the control
law, and ii) a feedback function γ : R4→ R.

The solution of (7) with event-based feedback (ε,γ)
starting in x0 at t = 0 is then defined as the solution (when
it exists) of the differential system

ẋ(t) = ξ
(
x(t)
)
+ψ

(
x(t)
)
γ
(
x(ti)

)
∀t ∈ [ti, ti+1[ (8)

where the time instants ti, with i∈N (determined when the
event function ε vanishes) are considered as events and

xi := x(ti) (9)

is the memory of the state value at the last event.
With this formalization, the control value is updated

each time ε becomes negative. Usually, one tries to de-
sign an event-based feedback so that ε can not remain
negative (and so is updated the control only punctually).
In addition, one also wants that two events are separated
with a non vanishing time interval avoiding the Zeno phe-
nomenon. All these properties are encompassed with the
Minimal inter-Sampling Interval (MSI) property introduced
in [22].

Property 1..2: An event-driven feedback is said uni-
formly MSI if and only if there is some non zero minimal
sampling interval for any initial condition x0.

A uniformly MSI event-based control is a piecewise
constant control with non zero sampling intervals. In the
same paper [22], it is also proved that nonlinear systems
affine in the control – like the one of the present study
case in (7) – and admitting a Control Lyapunov Function
(CLF) can be globally asymptotically stabilized by means
of such an event-based feedback (this seminal result is de-
rived from the Sontag’s universal formula in [23]). An
linear version was also developed in [24].

1.3. Intuitive presentation of the proposed control algo-
rithms

In this paper, event-based strategies are developed for
the control of the inverted pendulum and experimentally
tested, for both swinging it up and stabilizing its arm near
the upright position. In particular, the seminal results in
[22, 24] can be directly applied for the stabilization of

the linearized expression (5)-(6) of the inverted pendulum
(see subsection 2.1.). As briefly explained before, in these
works the event function is related to a given control Lya-
punv function whose control law renders the closed-loop
system globally asymptotically stable. We then extend
such a principle for the swing up control where an energy
function is used in such a way the pendulum achieves the
inverted position. This extension is easily obtained since
a Lyapunov function is an energy function too. Based on
that, an event-based scheme is especially designed for the
swinging up part (see subsection 2.2.) and the resulting
algorithm is really low cost since the control law is only
updated once the pendulum changes its direction of rota-
tion in its balancing. Finally, the switch from balancing to
stabilizing is study (see subsection 2.3.) and show that the
transition is stable by construction of both control tech-
niques.

2. CONTROL OF THE INVERTED PENDULUM

2.1. Event-based stabilization near the upright position
Since we are interested here in the stabilization of the

pendulum near its equilibrium position, the event-based
feedback developed in [22] can be restricted to the stabi-
lization of a linear system in this subsection. The adap-
tation of the previous work in such a particular case is
trivial. Let consider the linear time-invariant dynamical
system (5). A positive definite matrix P solution of the
Riccati equation

PA+AT P−4PBBT P =−P (10)

exists since (A,B) is a stabilizable pair. Then

V1(x) := xT Px (11)

is a CFL for system (5) since for all x 6= 0, u = −2BT Px
renders V̇1 strictly negative. It is then known that it is pos-
sible to design a feedback control that asymptotically sta-
bilizes the system (5). The following theorem is a particu-
lar case of the event-based universal formula proposed in
[22] for linear systems:

Theorem 2..1 (Event-based stabilization of linear sys-
tem): Taking the CLF V1 in (11) for system (5), where P is
a positive definite matrix solution of the Riccati equation
(10), then the event-based feedback (ε1,γ1) defined by

γ1(x) :=−2BT Px (12)

ε1(x,xi) := (σ −1)xT (PA+AT P
)
x

−4xT PBBT P
(
σx− xi

)
(13)

where xi is defined in (9) and σ ∈]0,1[, ε > 0 are some
tunable parameters, is uniformly MSI and asymptotically
stable.

Proof: The proof was given in [22] for nonlinear affine
in the control systems. The particular case of linear sys-
tems is hence trivial. �
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The idea behind the construction of the event function
(13) is to compare the time derivative of the Lyapunov
function (10) i) in the event-based case, that is applying
x(ti) in the feedback control law, like in (12), and ii) in the
classical case, that is applying x(t) instead of x(ti). The
event function is the weighted difference between both,
where σ is the weighted value. By construction, an event
is enforced when the event function vanishes to zero, that
is hence when the stability of the event-based scheme does
not behave as the one in the classical case. One can refer
to [22] for further details. The control parameters impact
is

• σ changes the frequency of events: the smaller σ is,
faster is the convergence but more frequent are events
in return ;
• ε changes how fast is the control signal: the larger ε

is, larger is the control signal and smaller is the output
of the controlled system (this parameter was identify
as an event-based LQR parameter in [24]).

Finally, this theorem can be directly applied for the stabi-
lization of the inverted pendulum near its upright position
using its linearized state-space representation (5)-(6). In-
deed, choosing a positive definite matrix P satisfying (10)
for A and B defined in (6) and applying the feedback con-
trol given in (12)-(13) will render the inverted pendulum
stable near its upright position.

2.2. Event-based swing up by energy control
Whereas the previous subsection details the stabiliza-

tion of the inverted pendulum near its upright position, an-
other control strategy is before required in order to swing
the pendulum up to this equilibrium. This was notably
presented in [2] – using an energy function – for the clas-
sical (time-triggered) case that we propose to adapt here
as an event-based strategy.

Classical strategy
Let us consider here only the equation of motion of the

pendulum (1) where the friction forces are neglected. This
leads

Iθ̈ −mgl sin(θ)−mlvcos(θ) = 0 (14)

where v := ṗ is a horizontal acceleration of the pivot (the
input in this particular case). Note that v is positive if
it is in the direction of the positive x-axis. The uncon-
trolled pendulum state space can be represented as a cylin-
der (since the origin of the system is assumed to be fixed,
because v = 0, and the pendulum of the study can only
move in two dimensions). In this case, the system has two
equilibria corresponding to θ = π , θ̇ = 0 (stable position)
and θ = 0, θ̇ = 0 (unstable position). The energy of the
uncontrolled pendulum is

E(θ , θ̇) =
1
2

Iθ̇
2 +mgl

(
cos(θ)−1

)
(15)

which is hence defined to be zero when the pendulum is
stationary in the upright position. One way to swing the
pendulum up to this upward position then consists in giv-
ing it an energy that corresponds to the upright position.
However, this cannot be done in one swing due to limita-
tion of the actuator. Actually, to perform energy control
it is necessary to understand how the energy is influenced
by the acceleration of the pivot. Computing the derivative
of E with respect to time, and substituting θ̈ from (14), we
find

Ė = Iθ̇ θ̈ −mglθ̇ sin(θ) = mlvθ̇ cos(θ). (16)

Controlling the energy is easy since the system is a simple
integrator with varying gain, however the controllability is
lost when the right-hand side of (16) vanishes. This occurs
for θ = ±π/2 or θ̇ = 0, that is when the pendulum is hor-
izontal or when it reverses its velocity. Also, to increase
energy the acceleration of the pivot v should be positive
when the quantity θ̇ cos(θ) is positive, and inversely. A
control strategy can be found using the Lyapunov method,
as proved in [2].

Theorem 2..2 (Swing up a pendulum by energy con-
trol): Taking the Lyapunov function

V2(θ , θ̇) :=
1
2

(
E(θ , θ̇)− ε

)2
(17)

for system (14), where E is defined in (15) and ε is a given
(desired) energy value, then the control law

v =−α
(
E− ε

)
θ̇ cos(θ) (18)

with α ∈ R+

where α is a tunable parameter, drives the energy towards
its desired value ε .

Proof: Substituting (18) in (16), and substituting this
result in the derivative of the Lyapunov function (17) with
respect to time gives

V̇2 = Ė
(
E− ε

)
=−αml

((
E− ε

)
θ̇ cos(θ)

)2
(19)

The Lyapunov function (17) hence decreases as long as
θ̇ 6= 0 and cos(θ) 6= 0. Moreover, since the pendulum can-
not maintain a stationary position with θ =±π/2 then the
control law v drives the energy towards ε . �

One could note that once the energy of the pendulum is
close “enough” to the desired value ε , the control switch to
the strategy depicted in subsection 2.1. in order to stabilize
the inverted pendulum near the upright position. This will
be discussed in subsection 2.3.. Nevertheless, the value
of ε can be defined by the designer from (15) for a given
angle and rate of change of the angle, afterwards denoted
θε and θ̇ε .
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Event-based proposal
In this paper we propose to adapt the classical control

strategy in order to prove that the pendulum can swing
up to its upright position when applying an event-based
feedback. As explained in subsection 2.1., an event-based
strategy means to keep constant the control signal between
two events, as follows

v = γ2(θi, θ̇i) ∀t ∈ [ti, ti+1[ (20)

where

θi := θ(ti)
θ̇i := θ̇(ti)

(21)

making the analogy with the principle detailed in (9), and
γ2 is the feedback function defined next.

Let analyze in detail how varies the Lyapunov function
(17) used to swing the pendulum up to its inverted posi-
tion. As already explained in the proof of Theorem 2..2,
the Lyapunov function decreases as long as θ̇ 6= 0 and
cos(θ) 6= 0. Therefore, why not to enforce events when
these conditions are met (since one does not really need to
update the control law while one of these two conditions is
achieved). This is the main idea of our proposal. Making
the assumption that only the one or the other changes at a
given time, an event can hence be simply detected when
changes the function

sgn
(
θ̇ cos(θ)

)
(22)

with sgn(z) :=


1 if z > 0
0 if z = 0
−1 if z < 0

Based on this idea and on Theorem 2..1, we propose the
following theorem:

Theorem 2..3 (Event-based swing up of the inverted
pendulum): Making the assumption that only θ̇ or cos(θ)
changes at a given time and taking the Lyapunov func-
tion V2 in (17) for system (14), where E in (15) describes
the energy of the system, then the event-based feedback
(ε2,γ2) defined by

γ2(θ , θ̇) :=−α
(
E− ε

)
sgn
(
θ̇ cos(θ)

)
(23)

ε2(θ , θ̇ ,θi, θ̇i) := |sgn
(
θ̇ cos(θ)

)
− sgn

(
θ̇i cos(θi)

)
| (24)

where θi, θ̇i and α are defined in (21) and (18) respec-
tively, is uniformly MSI and drives the energy towards its
desired value ε .

Proof: The proof for the energy driving is trivial and
based on proof of Theorem 2..2. Substituting (23) in (16)
and then in the time derivative of the Lyapunov function
(17) gives

V̇2 =−αml
(
E− ε

)
θ̇ cos(θ)

(
Ei− ε

)
sgn
(
θ̇i cos(θi)

)
(25)

where Ei := E(θi, θ̇i). The Lyapunov function (17) de-
creases as long as θ̇ 6= 0, cos(θ) 6= 0, sgn

(
θ̇ cos(θ)

)
=

sgn
(
θ̇i cos(θi)

)
and sgn

(
E − ε

)
= sgn

(
Ei − ε

)
. As be-

fore, the pendulum cannot maintain a horizontal position,
which solves the problem for the two first conditions. Also,
the problem of the third one is solved thanks to the event
function ε2 since an event is enforced when it occurs. As
regards the latter one, E − ε < 0 could only occur when
the energy is towards the upright position (if ε was defined
with respect to the switching condition, this is discussed
latter in subsection 2.3.), and so is switched the control
strategy for the stabilization of the pendulum. As a con-
sequence, the event-based feedback proposed in (23)-(24)
drives the energy towards its desired value ε .

As regards the uniformly MSI property of the event-
based feedback (23)-(24), one knows that an event is en-
forced when the pendulum reverses its velocity by con-
struction and, consequently, two events cannot successively
occur due to inertia. This ends the proof. �

Finally, note that the event-based swing up control strate-
gies can also be easily adapted to take into account the
maximum acceleration of the pivot, as detailed in [2] for
the classical scheme.

2.3. Switch from balancing to stabilizing
In previous subsections, we detailed how to i) swing

the inverted pendulum up to its upright position and then
ii) stabilize it near this unstable position. The switch be-
tween both is done when the angle is in a given region,
which can be summarized by

(ε,γ) =

{
(ε1,γ1) if |θ | ≤Θ

(ε2,γ2) elsewhere
(26)

where Θ is a tunable parameter. Actually, its value as to
be defined with respect to the value of θε used to define
the energy to achieve during the swing up strategy, i.e. ε

obtained by (15) for a given θε and θ̇ε . Such a solution is
to choose θ̇ε = 0 and θε as the desired angle for switching.
However, the switch could not occur when Θ = θε , due to
frictions and some other perturbations. Also, if Θ is lower
than θε then the balancing will not swing the pendulum
up to this angle and so never will occur the switch. As a
result, Θ has to be higher than and close “enough” to θε ,
since with a high Θ the strategy would switch whereas the
rate of the angle of the pendulum is still important.

In order to facilitate the switch between balancing and
stabilizing strategies, the designer has to guarantee that
the rate of change of the angle is small enough and so is
kept the pendulum in this region when using the stabiliz-
ing control strategy. In other words, whereas stabilizing
feedback control proposed in (12)-(13) renders the time
derivative of the Lyapunov function (11) strictly negative
– and so is decreasing the energy of the whole system – is
also ensured the decrease of the pendulum only ?
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Let define

xθ :=
[
θ θ̇

]T and xp :=
[
p ṗ

]T (27)

Using this notation, the linearized system of the inverted
pendulum becomes (when neglecting the friction forces)

d
dt

(
xθ

xp

)
=

[
A1 0
A3 A2

](
xθ

xp

)
+

[
B1
B2

]
w (28)

with A1 =

[
0 1
a1 0

]
, A2 =

[
0 1
0 0

]
, A3 =

[
0 0
a3 0

]
and B1 =

[
0
b1

]
, B2 =

[
0
b2

]
where w is the new control input and ai,bi > 0 can be
found back from (5)-(6).

Theorem 2..4 (Stability of the switch from event-based
balancing to event-based stabilizing): Taking the Lyapunov
function

V3(xθ ,xp) := xT
θ Pθ xθ + xT

p Ppxp (29)

for the linearized system (28), where xθ and xp are defined
in (27), where Pθ and Pp are some positive definite matri-
ces solution of the Riccati equations defined as follows

Pθ A1 +AT
1 Pθ −4Pθ B1BT

1 Pθ =−Pθ

PpA2 +AT
2 Pp−4PpB2BT

2 Pp =−Pp
(30)

and taking the control law defined by

w :=−a3

b2
θ +u (31)

where the control law for u is given in (12), then the switch
from event-based balancing defined in Theorem 2..3 to
event-based stabilizing defined in Theorem 2..1, using the
switching condition (26), is stable.

Proof: The derivative of the Lyapunov function (29)
with respect to time is

V̇3 = xT
θ Pθ

(
A1xθ +B1w

)
+ xT

p Pp

(
A2xp +A3xθ +B2w

)
Substituting (31) yields

V̇3 = xT
θ Pθ

(
(A1− b1/b2A3)xθ +B1u

)
+xT

p Pp

(
A2xp +B2u

)
(32)

This means that the decrease of V̇3 implies the decrease
of the energy of the pendulum. Also, the stability of the
event-based feedback (12)-(13) using (31) for system (28)
is still ensured. �

The principle intuitively remains true taking into ac-
count the friction forces f and k since they can only slow
down the motion of the pendulum. Furthermore, one could
note that the only condition to ensure the stability of the

switch in Theorem 2..4 consists in taking the Lyapunov
function in (11) as defined by

P :=
[

Pθ 0
0 Pp

]
(33)

This condition benefits by doing more simple the com-
puting – reducing by four the number of products in the
Lyapunov function – and, consequently, the event func-
tion (13). The one for balancing in (23) requires small
computing too. As a consequence, the whole event-based
proposal can be said low cost.

3. EXPERIMENTAL RESULTS

Fig 2: Inverted pendulum system used for the experiments

In this last section, we implement and test our proposal
on a practical inverted pendulum, depicted in Fig. 2. The
system runs in real-time in the Matlab/Simulink environ-
ment. As already explained, two steps are required: i)
a first controller swings the pendulum up to its upright
position (the control strategy is based on an energy func-
tion, as explained in section 2.2.) and, then, ii) another
strategy stabilizes the pendulum near this unstable equi-
librium (state-feedback control, see section 2.1.). Actu-
ally, the complete identification of the system and the clas-
sical (time-triggered) control strategies were already done
for the present inverted pendulum study case (one could
refer to [25] for further details). The different parameters
of the model are M = 2.57kg, m = 1.47kg, l = 0.028m,
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J = 0.024kg.m2, g = 9.8m.s−2, f = k = 10−4 kg.m2.s−1

and ρ = 3, leading to the linearized system

A =


0 1 0 0

16.3 −6 ·10−3 0 −4 ·10−5

0 0 0 1
0.2 −4 ·10−5 0 −2.5 ·10−5

 , B =


0

1.24
0

0.76


The simulation results of both parts are represented in

Fig. 3 when using classical (time-triggered) control laws.
The four top plots show the dynamics of the system states,
that are the position and the velocity of the cart, the angle
and the angular velocity of the pendulum. The bottom plot
shows the control signal. Note that the number of samples
required to perform the bench is also indicated. Note that
the periodic sampling period is 10ms here. The two parts
be be clearly identified in Fig. 3. Thus, i) from 0 to about
20s the angle of the pendulum oscillates – moving the cart
(as one can see looking at the position) – until achieving
the upright position, that is θ = 2 jπ, j ∈N. Then, ii) once
the equilibrium point is achieved (or almost achieved), the
control switches in order to now stabilize the inverted pen-
dulum in this position and, finally, the cart has to move to
a given position without causing the pendulum to tip over.

The event-based proposals are then tested. The simula-
tion results are depicted in Fig. 4, where one can see that
the pendulum is stabilized in about the same time while
the number of updates is divided by 2.5. The two steps
are next more detailed.

Event-based balancing
On one hand, the system runs with the event-driven pro-

posal detailed in Theorem 2..3, that is for the swinging of
the inverted pendulum. The control parameters were cal-
culated for

P =


0.12 0 0 0

0 0.87 0 0
0 0 3.63 0
0 0 0 186.86


The results are shown in Fig. 5(a), where an extra plot
represents the sign of the function (22) used for enforc-
ing events. One could notice that an important reduction
of the number of samples is achieved (about 98% less)
with similar performance since the pendulum achieves its
inverted position in almost the same time.

Event-based stabilization
On another one, the system runs with the event-driven

proposal presented in Theorem 2..1, that is for the stabi-
lization of the pendulum close to its inverted position. The
control parameters are α = 0.8 and ε = 0.12J. In particu-
lar, a zoom is performed between 45 and 55s. The exper-
imental results are shown in Fig. 5(b), where an extra plot
represents the system energy (that is the Lyapunov func-
tion). An important reduction of the number of samples is

also achieved (about 55% less) with similar performance
since the cart achieves a given position (p = 0) in almost
the same time. Moreover, whereas the control is kept con-
stant during two events (which can be several times the
time-triggered sampling period) – like at time 46.5s – an
unstable system can be stabilized anyway.

Switch
The switch between balancing and stabilization is done

for Θ = 0.2rad. It can be seen in Fig. 4 at about 18s
when the angle arises about 2π and so changes the control
strategies.

CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper is to propose event-
based control strategies for a highly nonlinear and unsta-
ble system, that is the inverted pendulum. The principle
consists in only updating the control signal when required
from a stability point of view. Some strategies were thus
presented to control both the swing of the pendulum up to
its upright position and its stabilization near this unstable
equilibrium. The first setup is based on an energy func-
tion which allows to drive the pendulum towards the up-
right position, the second is an event-based state feedback
whose event function is built from a Lyapunov function.
The switch between both strategies is also studied. The
proposals are tested on a real-time testbed, where the num-
ber of samples is clearly reduced (about 98% and 50%
less than in the classical scheme when respectively swing-
ing and stabilizing the pendulum) with similar final perfor-
mance. As a result, the encouraging results strongly con-
firm the interest for developing event-based control strate-
gies. Next step is to develop nonlinear event-based control
strategies in the spirit of [22].
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