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Contrary to the classical (time-triggered) principle that calculates the control signal in a periodic fashion, an event-driven control is computed and updated only when a certain condition is satisfied. This notably enables to save computations in the control task while ensuring equivalent performance. In this paper, we develop and implement such strategies to control a nonlinear and unstable system, that is the inverted pendulum. We are first interested on the stabilization of the pendulum near its inverted position and propose an event-based control approach. This notably demonstrates the efficiency of the event-based scheme even in the case where the system has to be actively actuated to remain upright. We then study the swinging of the pendulum up to the desired position and propose a low-cost control law based on an energy function. The switch between both strategies is also analyzed. A real-time experimentation is realized and shows that a reduction of about 98 % and 50 % of samples less than the classical scheme is achieved for the swing up and stabilization parts respectively.

INTRODUCTION

While a pendulum is, by definition, a weight suspended from a pivot which can freely swing, an inverted pendulum is a pendulum whose mass is above its pivot point. As a result, whereas a normal pendulum is naturally stable, an inverted pendulum is inherently unstable and has to be actively balanced in order to remain upright and resistant to a disturbance. A common strategy used to achieve the expected behavior is to move the pivot point as part of a closed-loop feedback system. This problem involves a cart which is able to horizontally move and a pendulum placed on the cart such that its arm can freely move (in the same plane than the cart). The only way to balance the inverted pendulum then consists in applying an external control force to the system. This is done thanks to a DC servo-motor which provides the control force to the cart through a belt drive system. A digital controller allows to control the pendulum, simply acting on the motor. A potentiometer measures the cart position, from its rotation, while another one measures the angle of the pendulum. Their derivatives can also be deduced. The goal of the control law is to move the cart to a given position without causing the pendulum to tip over. This can be divided into two steps: i) a strategy swings the pendulum up to its upright position and, then, ii) another one stabilizes the pendulum near its inverted position. The classical approach to realize the first part is based on using an energy function [START_REF] Åström | Hybrid control of inverted pendulums[END_REF][START_REF] Åström | Swinging up a pendulum by energy control[END_REF][START_REF] Yoshida | Swing-up control of an inverted pendulum by energy-based methods[END_REF][START_REF] Bradshaw | Swing-up control of inverted pendulum systems[END_REF], whereas a dynamical state-feedback control calculated on the linearized model of the system can behave the second step [START_REF] Stimac | Standup and stabilization of the inverted pendulum[END_REF][START_REF] Bugeja | Non-linear swing-up and stabilizing control of an inverted pendulum system[END_REF][START_REF] Lam | Control of an inverted pendulum[END_REF][START_REF] Campbell | Friction and the inverted pendulum stabilization problem[END_REF].

As long as the control of the inverted pendulum system is concerned, all proposed strategies were developed in a (classical) time-triggered and periodic fashion. Although periodicity simplifies the design and analysis, it results in a conservative usage of resources since the control law is computed and updated at the same rate regardless it is really required or not. In the present study case for instance, the controller actuates the cart during the swinging even while the energy of the pendulum naturally decreases, and yet, this is not useful. In the same idea, it is not necessary to actively control such an unstable system in order to remain upright in the stabilizing part. A discussion on these points follows in the sequel.

In the recent decades, some works addressed resourceaware implementations of the control law using event-based sampling, where the control law is event-driven. Such a paradigm calls for resources whenever they are indeed necessary, that is for instance when the dynamics of the controlled systems varies. Typical event detection mechanisms are functions of the state variation (or at least the output) of the system, like in [START_REF] Årzén | A simple event-based PID controller[END_REF][START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF][START_REF] Durand | Further results on event-based PID controller[END_REF][START_REF] Sánchez | Comparative study of event-based control strategies: An experimental approach on a simple tank[END_REF][START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF]. Although the event-triggered control is well-motivated and allows to relax the periodicity of computations, only few works report theoretical results about the stability, convergence and performance. In [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF] notably, it is proved that such an approach reduces the number of sampling instants for the same final performance. Some stability and robustness proprieties are exploited in [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF][START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF][START_REF] Lunze | A state-feedback approach to event-based control[END_REF][START_REF] Donkers | Outputbased event-triggered control with guaranteed l in fgain and improved event-triggering[END_REF][START_REF] Eqtami | Event-triggered control for discrete-time systems[END_REF]. An alternative approach consists in taking events related to the variation of a Lyapunov function -and consequently to the state too -between the current state and its value at the last sampling, like in [START_REF] Velasco | On Lyapunov sampling for event-driven controllers[END_REF], or in taking events related to the time derivative of the Lyapunov function, like in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF][START_REF] Anta | Self-triggered stabilization of homogeneous control systems[END_REF][START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. In the latter reference in particular, the updates ensure the strict decrease of the Lyapunov function, and so is asymptotically stable the closed-loop system.

In this paper, we propose to develop event-based strategies to control an inverted pendulum, for both swinging up and stabilizing its arm. Such approaches have never been addressed in the literature. More particularly, an eventbased scheme is especially designed for the swinging up part.

The rest of the document is organized as follows. In section 1., the model of the inverted pendulum is given and the event-based formulation is introduced. The problem is also stated and the proposed control algorithms for both swinging up the pendulum and stabilizing its arm are intuitively presented. The main contributions are detailed in section 2.: subsection 2.1. and subsection 2.2. deal with stabilization and swing up problems respectively, and the switch from the one to the other is treated in subsection 2.3.. Some experimental results are presented in section 3. to highlight the capabilities of the proposed approaches and some discussions finally conclude the paper. The system of the present paper is depicted in Fig. 1, where an inverted pendulum is actuated via a cart, as explained in introduction. From this representation, the equation of motion of the pendulum is

PRELIMINARIES AND PROBLEM STATEMENT

I θ + k θ -mgl sin(θ ) -ml ṗ cos(θ ) = 0 (1)
and the equation of motion of the cart is

(M + m) p + f ṗ -ml θ cos(θ ) + ml θ 2 sin(θ ) = ρu (2)
where M is the mass of the cart, m is the mass of the pendulum and l is the distance from the pivot to the center of this mass, I = J + ml 2 where J is the moment of inertia with respect to the pivot point, g is the acceleration of gravity, f and k are the friction force and friction coefficient of the pendulum respectively. θ is the angle between the vertical and the pendulum, where θ is positive in the trigonometric direction and zero in the upright position, and u is a horizontal acceleration of the cart (the input), where u is positive if it is in the direction of the positive xaxis. Also, ρ is a parameter used to convert a voltage into a force applied on the cart. This model is notably based on assuming that the pendulum is a rigid body and there is no limitation on the velocity of the pivot. One could refer to [START_REF] Åström | Swinging up a pendulum by energy control[END_REF] for further information.

Reformulating (1) and ( 2) gives the dynamics of the complete system

p = λ 1 (θ ) κ 1 λ 3 (θ , θ , ṗ, u) + l cos(θ )λ 2 (θ , θ ) θ = λ 1 (θ ) l cos(θ )λ 3 (θ , θ , ṗ, u) + κ 2 λ 2 (θ , θ ) (3) 
with

κ 1 := I m κ 2 := M+m m and λ 1 (θ ) := 1 κ 2 I -ml 2 cos 2 (θ ) λ 2 (θ , θ ) := mgl sin(θ ) -k θ λ 3 (θ , θ , ṗ, u) := ρu -f ṗ -ml θ 2 sin(θ )
which is a four-state system, whose states are the position of the cart p and the angle of the pendulum θ , as well as the velocity of the cart ṗ and the angular speed θ . As a result, let

x := θ θ p ṗ T (4) 
be the state vector of the system.

Linearized model

Let consider the linear time-invariant dynamical system

ẋ = Ax + Bu (5) 
Such a linearized state-space representation of the pendulum close to the equilibrium point can be obtained from (3). In fact, two equilibriums exist, that are when the pendulum is in its stable position (i.e. θ = π) and when it is in the upright -and unstable -position (i.e. θ = 0). We consider the latter one. This yields the linearized matrices are defined by

A =      0 1 0 0 κ 2 mgl κ 3 -κ 2 k κ 3 0 -l f κ 3 0 0 0 1 mgl 2 κ 3 -lk κ 3 0 -κ 1 f κ 3      and B =     0 ρl κ 3 0 ρκ 1 κ 3     (6) 
with

κ 3 := κ 2 I -ml 2
This linearized model will be used in the sequel for the stabilizing part.

Event-based control

The model of the inverted pendulum (3) can be written as a nonlinear affine-in-control system

ẋ(t) = ξ x(t) + ψ x(t) u(t) (7) 
with x(0) = x 0 where ξ and ψ functions are smooth and ξ vanishes at the origin, x ∈ R 4 and u ∈ R in this particular case.

Definition 1..1 (Event-based feedback): By event-based feedback we mean a set of two functions, that are i) an event function ε : R 4 × R 4 → R that indicates if one needs (when ε ≤ 0) or not (when ε > 0) to recompute the control law, and ii) a feedback function γ : R 4 → R.

The solution of ( 7) with event-based feedback (ε, γ) starting in x 0 at t = 0 is then defined as the solution (when it exists) of the differential system

ẋ(t) = ξ x(t) + ψ x(t) γ x(t i ) ∀t ∈ [t i ,t i+1 [ (8) 
where the time instants t i , with i ∈ N (determined when the event function ε vanishes) are considered as events and

x i := x(t i ) (9) 
is the memory of the state value at the last event.

With this formalization, the control value is updated each time ε becomes negative. Usually, one tries to design an event-based feedback so that ε can not remain negative (and so is updated the control only punctually). In addition, one also wants that two events are separated with a non vanishing time interval avoiding the Zeno phenomenon. All these properties are encompassed with the Minimal inter-Sampling Interval (MSI) property introduced in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. Property 1..2: An event-driven feedback is said uniformly MSI if and only if there is some non zero minimal sampling interval for any initial condition x 0 .

A uniformly MSI event-based control is a piecewise constant control with non zero sampling intervals. In the same paper [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF], it is also proved that nonlinear systems affine in the control -like the one of the present study case in (7) -and admitting a Control Lyapunov Function (CLF) can be globally asymptotically stabilized by means of such an event-based feedback (this seminal result is derived from the Sontag's universal formula in [START_REF] Sontag | Mathematical Control Theory: Deterministic Finite Dimensional Systems[END_REF]). An linear version was also developed in [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF].

Intuitive presentation of the proposed control algorithms

In this paper, event-based strategies are developed for the control of the inverted pendulum and experimentally tested, for both swinging it up and stabilizing its arm near the upright position. In particular, the seminal results in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF][START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF] can be directly applied for the stabilization of the linearized expression ( 5)-( 6) of the inverted pendulum (see subsection 2.1.). As briefly explained before, in these works the event function is related to a given control Lyapunv function whose control law renders the closed-loop system globally asymptotically stable. We then extend such a principle for the swing up control where an energy function is used in such a way the pendulum achieves the inverted position. This extension is easily obtained since a Lyapunov function is an energy function too. Based on that, an event-based scheme is especially designed for the swinging up part (see subsection 2.2.) and the resulting algorithm is really low cost since the control law is only updated once the pendulum changes its direction of rotation in its balancing. Finally, the switch from balancing to stabilizing is study (see subsection 2.3.) and show that the transition is stable by construction of both control techniques.

CONTROL OF THE INVERTED PENDULUM

Event-based stabilization near the upright position

Since we are interested here in the stabilization of the pendulum near its equilibrium position, the event-based feedback developed in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] can be restricted to the stabilization of a linear system in this subsection. The adaptation of the previous work in such a particular case is trivial. Let consider the linear time-invariant dynamical system [START_REF] Stimac | Standup and stabilization of the inverted pendulum[END_REF]. A positive definite matrix P solution of the Riccati equation

PA + A T P -4PBB T P = -P (10) 
exists since (A, B) is a stabilizable pair. Then

V 1 (x) := x T Px (11) 
is a CFL for system (5) since for all x = 0, u = -2B T Px renders V1 strictly negative. It is then known that it is possible to design a feedback control that asymptotically stabilizes the system (5). The following theorem is a particular case of the event-based universal formula proposed in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] for linear systems: [START_REF] Durand | Further results on event-based PID controller[END_REF] for system [START_REF] Stimac | Standup and stabilization of the inverted pendulum[END_REF], where P is a positive definite matrix solution of the Riccati equation [START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF], then the event-based feedback (ε 1 , γ 1 ) defined by

Theorem 2..1 (Event-based stabilization of linear sys- tem): Taking the CLF V 1 in
γ 1 (x) := -2B T Px (12) ε 1 (x, x i ) := (σ -1)x T PA + A T P x -4x T PBB T P σ x -x i (13) 
where x i is defined in (9) and σ ∈]0, 1[, ε > 0 are some tunable parameters, is uniformly MSI and asymptotically stable.

Proof: The proof was given in [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] for nonlinear affine in the control systems. The particular case of linear systems is hence trivial.

The idea behind the construction of the event function [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF] is to compare the time derivative of the Lyapunov function [START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF] i) in the event-based case, that is applying x(t i ) in the feedback control law, like in [START_REF] Sánchez | Comparative study of event-based control strategies: An experimental approach on a simple tank[END_REF], and ii) in the classical case, that is applying x(t) instead of x(t i ). The event function is the weighted difference between both, where σ is the weighted value. By construction, an event is enforced when the event function vanishes to zero, that is hence when the stability of the event-based scheme does not behave as the one in the classical case. One can refer to [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] for further details. The control parameters impact is

• σ changes the frequency of events: the smaller σ is, faster is the convergence but more frequent are events in return ; • ε changes how fast is the control signal: the larger ε is, larger is the control signal and smaller is the output of the controlled system (this parameter was identify as an event-based LQR parameter in [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF]).

Finally, this theorem can be directly applied for the stabilization of the inverted pendulum near its upright position using its linearized state-space representation ( 5)-( 6). Indeed, choosing a positive definite matrix P satisfying [START_REF] Sandee | Event-driven control as an opportunity in the multidisciplinary development of embedded controllers[END_REF] for A and B defined in [START_REF] Bugeja | Non-linear swing-up and stabilizing control of an inverted pendulum system[END_REF] and applying the feedback control given in ( 12)-( 13) will render the inverted pendulum stable near its upright position.

Event-based swing up by energy control

Whereas the previous subsection details the stabilization of the inverted pendulum near its upright position, another control strategy is before required in order to swing the pendulum up to this equilibrium. This was notably presented in [START_REF] Åström | Swinging up a pendulum by energy control[END_REF] -using an energy function -for the classical (time-triggered) case that we propose to adapt here as an event-based strategy.

Classical strategy

Let us consider here only the equation of motion of the pendulum [START_REF] Åström | Hybrid control of inverted pendulums[END_REF] where the friction forces are neglected. This leads

I θ -mgl sin(θ ) -mlv cos(θ ) = 0 ( 14 
)
where v := ṗ is a horizontal acceleration of the pivot (the input in this particular case). Note that v is positive if it is in the direction of the positive x-axis. The uncontrolled pendulum state space can be represented as a cylinder (since the origin of the system is assumed to be fixed, because v = 0, and the pendulum of the study can only move in two dimensions). In this case, the system has two equilibria corresponding to θ = π, θ = 0 (stable position) and θ = 0, θ = 0 (unstable position). The energy of the uncontrolled pendulum is

E(θ , θ ) = 1 2 I θ 2 + mgl cos(θ ) -1 ( 15 
)
which is hence defined to be zero when the pendulum is stationary in the upright position. One way to swing the pendulum up to this upward position then consists in giving it an energy that corresponds to the upright position. However, this cannot be done in one swing due to limitation of the actuator. Actually, to perform energy control it is necessary to understand how the energy is influenced by the acceleration of the pivot. Computing the derivative of E with respect to time, and substituting θ from ( 14), we find

Ė = I θ θ -mgl θ sin(θ ) = mlv θ cos(θ ). (16) 
Controlling the energy is easy since the system is a simple integrator with varying gain, however the controllability is lost when the right-hand side of ( 16) vanishes. This occurs for θ = ± π / 2 or θ = 0, that is when the pendulum is horizontal or when it reverses its velocity. Also, to increase energy the acceleration of the pivot v should be positive when the quantity θ cos(θ ) is positive, and inversely. A control strategy can be found using the Lyapunov method, as proved in [START_REF] Åström | Swinging up a pendulum by energy control[END_REF].

Theorem 2..2 (Swing up a pendulum by energy control): Taking the Lyapunov function

V 2 (θ , θ ) := 1 2 E(θ , θ ) -ε 2 (17) 
for system [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF], where E is defined in [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] and ε is a given (desired) energy value, then the control law

v = -α E -ε θ cos(θ ) (18) 
with α ∈ R + where α is a tunable parameter, drives the energy towards its desired value ε.

Proof: Substituting (18) in ( 16), and substituting this result in the derivative of the Lyapunov function [START_REF] Donkers | Outputbased event-triggered control with guaranteed l in fgain and improved event-triggering[END_REF] with respect to time gives

V2 = Ė E -ε = -αml E -ε θ cos(θ ) 2 (19)
The Lyapunov function [START_REF] Donkers | Outputbased event-triggered control with guaranteed l in fgain and improved event-triggering[END_REF] hence decreases as long as θ = 0 and cos(θ ) = 0. Moreover, since the pendulum cannot maintain a stationary position with θ = ± π / 2 then the control law v drives the energy towards ε.

One could note that once the energy of the pendulum is close "enough" to the desired value ε, the control switch to the strategy depicted in subsection 2.1. in order to stabilize the inverted pendulum near the upright position. This will be discussed in subsection 2.3.. Nevertheless, the value of ε can be defined by the designer from [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] for a given angle and rate of change of the angle, afterwards denoted θ ε and θε .

Event-based proposal

In this paper we propose to adapt the classical control strategy in order to prove that the pendulum can swing up to its upright position when applying an event-based feedback. As explained in subsection 2.1., an event-based strategy means to keep constant the control signal between two events, as follows

v = γ 2 (θ i , θi ) ∀t ∈ [t i ,t i+1 [ (20) 
where

θ i := θ (t i ) θi := θ (t i ) (21) 
making the analogy with the principle detailed in [START_REF] Årzén | A simple event-based PID controller[END_REF], and γ 2 is the feedback function defined next. Let analyze in detail how varies the Lyapunov function ( 17) used to swing the pendulum up to its inverted position. As already explained in the proof of Theorem 2..2, the Lyapunov function decreases as long as θ = 0 and cos(θ ) = 0. Therefore, why not to enforce events when these conditions are met (since one does not really need to update the control law while one of these two conditions is achieved). This is the main idea of our proposal. Making the assumption that only the one or the other changes at a given time, an event can hence be simply detected when changes the function sgn θ cos(θ ) [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF] with sgn(z) :=

   1 if z > 0 0 if z = 0 -1 if z < 0
Based on this idea and on Theorem 2..1, we propose the following theorem: Theorem 2..3 (Event-based swing up of the inverted pendulum): Making the assumption that only θ or cos(θ ) changes at a given time and taking the Lyapunov function V 2 in (17) for system [START_REF] Åström | Comparison of Riemann and Lebesque sampling for first order stochastic systems[END_REF], where E in [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] describes the energy of the system, then the event-based feedback (ε 2 , γ 2 ) defined by

γ 2 (θ , θ ) := -α E -ε sgn θ cos(θ ) ( 23 
)
ε 2 (θ , θ , θ i , θi ) := | sgn θ cos(θ ) -sgn θi cos(θ i ) | (24)
where θ i , θi and α are defined in ( 21) and ( 18) respectively, is uniformly MSI and drives the energy towards its desired value ε.

Proof: The proof for the energy driving is trivial and based on proof of Theorem 2..2. Substituting [START_REF] Sontag | Mathematical Control Theory: Deterministic Finite Dimensional Systems[END_REF] in [START_REF] Lunze | A state-feedback approach to event-based control[END_REF] and then in the time derivative of the Lyapunov function [START_REF] Donkers | Outputbased event-triggered control with guaranteed l in fgain and improved event-triggering[END_REF] gives

V2 = -αml E -ε θ cos(θ ) E i -ε sgn θi cos(θ i ) (25)
where E i := E(θ i , θi ). The Lyapunov function [START_REF] Donkers | Outputbased event-triggered control with guaranteed l in fgain and improved event-triggering[END_REF] decreases as long as θ = 0, cos(θ ) = 0, sgn θ cos(θ ) = sgn θi cos(θ i ) and sgn Eε = sgn E iε . As before, the pendulum cannot maintain a horizontal position, which solves the problem for the two first conditions. Also, the problem of the third one is solved thanks to the event function ε 2 since an event is enforced when it occurs. As regards the latter one, Eε < 0 could only occur when the energy is towards the upright position (if ε was defined with respect to the switching condition, this is discussed latter in subsection 2.3.), and so is switched the control strategy for the stabilization of the pendulum. As a consequence, the event-based feedback proposed in ( 23)-( 24) drives the energy towards its desired value ε.

As regards the uniformly MSI property of the eventbased feedback ( 23)- [START_REF] Téllez-Guzmán | Event-based LQR control for attitude stabilization of a quadrotor[END_REF], one knows that an event is enforced when the pendulum reverses its velocity by construction and, consequently, two events cannot successively occur due to inertia. This ends the proof.

Finally, note that the event-based swing up control strategies can also be easily adapted to take into account the maximum acceleration of the pivot, as detailed in [START_REF] Åström | Swinging up a pendulum by energy control[END_REF] for the classical scheme.

Switch from balancing to stabilizing

In previous subsections, we detailed how to i) swing the inverted pendulum up to its upright position and then ii) stabilize it near this unstable position. The switch between both is done when the angle is in a given region, which can be summarized by

(ε, γ) = (ε 1 , γ 1 ) if |θ | ≤ Θ (ε 2 , γ 2 ) elsewhere ( 26 
)
where Θ is a tunable parameter. Actually, its value as to be defined with respect to the value of θ ε used to define the energy to achieve during the swing up strategy, i.e. ε obtained by [START_REF] Heemels | Analysis of event-driven controllers for linear systems[END_REF] for a given θ ε and θε . Such a solution is to choose θε = 0 and θ ε as the desired angle for switching. However, the switch could not occur when Θ = θ ε , due to frictions and some other perturbations. Also, if Θ is lower than θ ε then the balancing will not swing the pendulum up to this angle and so never will occur the switch. As a result, Θ has to be higher than and close "enough" to θ ε , since with a high Θ the strategy would switch whereas the rate of the angle of the pendulum is still important. In order to facilitate the switch between balancing and stabilizing strategies, the designer has to guarantee that the rate of change of the angle is small enough and so is kept the pendulum in this region when using the stabilizing control strategy. In other words, whereas stabilizing feedback control proposed in ( 12)-( 13) renders the time derivative of the Lyapunov function [START_REF] Durand | Further results on event-based PID controller[END_REF] strictly negative -and so is decreasing the energy of the whole system -is also ensured the decrease of the pendulum only ?

Let define

x θ := θ θ T and x p := p ṗ T (27) Using this notation, the linearized system of the inverted pendulum becomes (when neglecting the friction forces)

d dt x θ x p = A 1 0 A 3 A 2 x θ x p + B 1 B 2 w ( 28 
)
with

A 1 = 0 1 a 1 0 , A 2 = 0 1 0 0 , A 3 = 0 0 a 3 0 and B 1 = 0 b 1 , B 2 = 0 b 2
where w is the new control input and a i , b i > 0 can be found back from ( 5)-( 6). for the linearized system (28), where x θ and x p are defined in ( 27), where P θ and P p are some positive definite matrices solution of the Riccati equations defined as follows

P θ A 1 + A T 1 P θ -4P θ B 1 B T 1 P θ = -P θ P p A 2 + A T 2 P p -4P p B 2 B T 2 P p = -P p (30) 
and taking the control law defined by

w := - a 3 b 2 θ + u (31)
where the control law for u is given in [START_REF] Sánchez | Comparative study of event-based control strategies: An experimental approach on a simple tank[END_REF], then the switch from event-based balancing defined in Theorem 2..3 to event-based stabilizing defined in Theorem 2..1, using the switching condition (26), is stable.

Proof: The derivative of the Lyapunov function (29) with respect to time is

V3 = x T θ P θ A 1 x θ + B 1 w + x T p P p A 2 x p + A 3 x θ + B 2 w Substituting (31) yields V3 = x T θ P θ (A 1 -b 1 / b 2 A 3 )x θ + B 1 u +x T p P p A 2 x p + B 2 u (32)
This means that the decrease of V3 implies the decrease of the energy of the pendulum. Also, the stability of the event-based feedback ( 12)-( 13) using (31) for system (28) is still ensured.

The principle intuitively remains true taking into account the friction forces f and k since they can only slow down the motion of the pendulum. Furthermore, one could note that the only condition to ensure the stability of the switch in Theorem 2..4 consists in taking the Lyapunov function in [START_REF] Durand | Further results on event-based PID controller[END_REF] as defined by

P := P θ 0 0 P p (33)
This condition benefits by doing more simple the computing -reducing by four the number of products in the Lyapunov function -and, consequently, the event function [START_REF] Sánchez | On the application of different event-based sampling strategies to the control of a simple industrial process[END_REF]. The one for balancing in [START_REF] Sontag | Mathematical Control Theory: Deterministic Finite Dimensional Systems[END_REF] requires small computing too. As a consequence, the whole event-based proposal can be said low cost. In this last section, we implement and test our proposal on a practical inverted pendulum, depicted in Fig. 2. The system runs in real-time in the Matlab/Simulink environment. As already explained, two steps are required: i) a first controller swings the pendulum up to its upright position (the control strategy is based on an energy function, as explained in section 2.2.) and, then, ii) another strategy stabilizes the pendulum near this unstable equilibrium (state-feedback control, see section 2.1.). Actually, the complete identification of the system and the classical (time-triggered) control strategies were already done for the present inverted pendulum study case (one could refer to [START_REF] Fortiz | Estabilización de un péndulo invertido sobre base móvil a partir del equilibrio estable mediante control híbrido (in Spanish)[END_REF] for further details). The different parameters of the model are M = 2.57 kg, m = 1.47 kg, l = 0.028 m, J = 0.024 kg.m 2 , g = 9.8 m.s -2 , f = k = 10 -4 kg.m 2 .s -1 and ρ = 3, leading to the linearized system

EXPERIMENTAL RESULTS

A =     0 1 0 0 16.3 -6 • 10 -3 0 -4 • 10 -5 0 0 0 1 0.2 -4 • 10 -5 0 -2.5 • 10 -5     , B =     0 1.24 0 0.76    
The simulation results of both parts are represented in Fig. 3 when using classical (time-triggered) control laws. The four top plots show the dynamics of the system states, that are the position and the velocity of the cart, the angle and the angular velocity of the pendulum. The bottom plot shows the control signal. Note that the number of samples required to perform the bench is also indicated. Note that the periodic sampling period is 10 ms here. The two parts be be clearly identified in Fig. 3. Thus, i) from 0 to about 20 s the angle of the pendulum oscillates -moving the cart (as one can see looking at the position) -until achieving the upright position, that is θ = 2 jπ, j ∈ N. Then, ii) once the equilibrium point is achieved (or almost achieved), the control switches in order to now stabilize the inverted pendulum in this position and, finally, the cart has to move to a given position without causing the pendulum to tip over.

The event-based proposals are then tested. The simulation results are depicted in Fig. 4, where one can see that the pendulum is stabilized in about the same time while the number of updates is divided by 2.5. The two steps are next more detailed.

Event-based balancing

On one hand, the system runs with the event-driven proposal detailed in Theorem 2..3, that is for the swinging of the inverted pendulum. The control parameters were calculated for

P =     0.12 0 0 0 0 0.87 0 0 0 0 3.63 0 0 0 0 186.86    
The results are shown in Fig. 5(a), where an extra plot represents the sign of the function ( 22) used for enforcing events. One could notice that an important reduction of the number of samples is achieved (about 98 % less) with similar performance since the pendulum achieves its inverted position in almost the same time.

Event-based stabilization On another one, the system runs with the event-driven proposal presented in Theorem 2..1, that is for the stabilization of the pendulum close to its inverted position. The control parameters are α = 0.8 and ε = 0.12 J. In particular, a zoom is performed between 45 and 55 s. The experimental results are shown in Fig. 5(b), where an extra plot represents the system energy (that is the Lyapunov function). An important reduction of the number of samples is also achieved (about 55 % less) with similar performance since the cart achieves a given position (p = 0) in almost the same time. Moreover, whereas the control is kept constant during two events (which can be several times the time-triggered sampling period) -like at time 46.5 s -an unstable system can be stabilized anyway.

Switch

The switch between balancing and stabilization is done for Θ = 0.2 rad. It can be seen in Fig. 4 at about 18 s when the angle arises about 2π and so changes the control strategies.

CONCLUSIONS AND FUTURE WORKS

The main contribution of this paper is to propose eventbased control strategies for a highly nonlinear and unstable system, that is the inverted pendulum. The principle consists in only updating the control signal when required from a stability point of view. Some strategies were thus presented to control both the swing of the pendulum up to its upright position and its stabilization near this unstable equilibrium. The first setup is based on an energy function which allows to drive the pendulum towards the upright position, the second is an event-based state feedback whose event function is built from a Lyapunov function. The switch between both strategies is also studied. The proposals are tested on a real-time testbed, where the number of samples is clearly reduced (about 98 % and 50 % less than in the classical scheme when respectively swinging and stabilizing the pendulum) with similar final performance. As a result, the encouraging results strongly confirm the interest for developing event-based control strategies. Next step is to develop nonlinear event-based control strategies in the spirit of [START_REF] Marchand | A general formula for the stabilization of event-based controlled systems[END_REF]. 
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