
HAL Id: hal-00854057
https://hal.science/hal-00854057v1

Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual camera synthesis for soccer game replays
Nicolas Papadakis, Antonio Baeza, Aurélie Bugeau, Olivier d’Hondt, Pau

Gargallo I Piracés, Vicent Caselles, Xavier Armangué, Ignasi Rius, Sergi Sagàs

To cite this version:
Nicolas Papadakis, Antonio Baeza, Aurélie Bugeau, Olivier d’Hondt, Pau Gargallo I Piracés, et al..
Virtual camera synthesis for soccer game replays. Journal of Virtual Reality and Broadcasting, 2013,
9(2012), pp.5. �10.20385/1860-2037/9.2012.5�. �hal-00854057�

https://hal.science/hal-00854057v1
https://hal.archives-ouvertes.fr

Virtual camera synthesis for soccer game replays

N. Papadakis∗‖, A. Baeza†, A. Bugeau‡, O. D’Hondt†, P. Gargallo†, V. Caselles§,
X. Armangué¶, I. Rius¶, S. Sagàs¶

∗CNRS, Laboratoire Jean Kuntzmann, 51 rue des Mathématiques, 38041 Grenoble, France
email: nicolas.papadakis@imag.fr
‖Moise team (INRIA Rhône-Alpes/LJK)

†Fundació Barcelona Media, Avinguda Diagonal 177, 08018 Barcelona, Spain
email: {antonio.baeza,olivier.dhondt,pau.gargallo}@barcelonamedia.org

‡LABRI, 351 cours de la Libération F-33405 Talence, France
email: aurelie.bugeau@labri.fr

§Universitat Pompeu Fabra, Carrer de Roc Boronat 138, 08018 Barcelona, Spain
email: vicent.caselles@upf.edu

¶Mediapro, Avinguda Diagonal 177, 08018 Barcelona, Spain
email: {xarmangue,irius,ssagas}@mediapro.es

Abstract

In this paper, we present a set of tools developed during the creation of a
platform that allows the automatic generation of virtual views in a live soccer
game production. Observing the scene through a multi-camera system, a
3D approximation of the players is computed and used for the synthesis of
virtual views. The system is suitable both for static scenes, to create bullet
time effects, and for video applications, where the virtual camera moves as
the game plays.

Keywords: Novel view synthesis, soccer game, depth estimation, image
inpainting.

1 Introduction
The creation of virtual viewpoints in soccer games is an interesting problem for
two main reasons: first, for its large base audience and potential industrial impact
and second, for the many scientific challenges it presents. Hence, a collaboration
between industries and universities has lead us to investigate such an application.
This paper presents an overview of the system that has been developed during this
collaboration. The system is able to automatically produce videos taken from a
virtual, moving camera given the video streams of multiple real cameras.

Before going into the details of the system, let us first mention the motivation
for building such a system from an industrial and from a technical point of view.

1

Industrial applications Recent technological advances on multimedia content
coding, image processing and computer vision algorithms along with the higher
quality and lower cost of imaging hardware are having a large impact on the mul-
timedia and broadcast industry. Nowadays, this environment is rapidly changing
by the introduction of sophisticated tools for media creation, and the proliferation
of new and more compelling forms of media contents and platforms: high defi-
nition television (HDTV), fully digital cinema pipeline, rich multimedia Internet
sites, immersive online video games, spectacular visual effects and more recently
the explosion of 3D stereo content and exhibition systems.

Nevertheless, even though the 3D stereo content brings more realism to the
spectator, there is still a large gap with respect to the immersivity of the spectator
within the scene. For the future, industry aims at significantly reducing this gap
by introducing the concept of live free-viewpoint media content. It relies on the
development of the necessary technologies for capturing, processing and delivering
truly interactive photorealistic content to a variety of professional and home remote
users.

Towards this end, virtual camera synthesis technologies would allow to interact
and freely explore a live-action 3D scene, thus allowing the viewers to control the
focus of attention rather than being restricted to the views offered by a director,
or bringing the chance to directors to offer the action from novel and impossible
points of view where a physical camera can not be placed. For instance, one could
watch a soccer match from the point of view of a particular player or even following
the ball. In addition, replays could benefit from these technologies to highlight a
particular aspect of the game by choosing the best viewpoint for it. Summarizing,
the scene could be observed from novel, unique and compelling viewpoints, thus
engaging the spectator in a much richer and immersive experience.

The development of post-production tools facilitating the change of viewpoint
for sport scenes has received much attention in the last years. The Eyevision system
[KNR95, KOS+01] is probably the first practical attempt to give the possibility of
observing a dynamic sport scene from different angles. The viewpoint is changed
simply by selecting one of the multiple possible views that are recorded by a set
of cameras pointing to the same target and with homogenized properties (zoom,
focus, pan and tilt); no intermediate, novel views are generated. Some commercial
products with higher capabilities have been developed since then. Piero1 is limited
to a single camera input, thus restricting the position of the virtual camera. Libero-
Vision2 and SportsVision3 offer semi-automatic systems that let an expert user to
freely move a virtual camera, while only using the existing broadcast cameras as
input. The IMEC Virtual Camera4 is a fully automatic system, but requires closer
camera positions than the standard broadcasts set ups. Albeit the existence of these
commercial solutions, the generation of novel viewpoints is still an active field, as

1http://www.bbc.co.uk/rd/projects/virtual/piero
2http://www.liberovision.com
3http://www.sportsvision.org
4http://www2.imec.be

2

http://www.bbc.co.uk/rd/projects/virtual/piero
http://www.liberovision.com
http://www.sportsvision.org
http://www2.imec.be

demonstrates the amount of research projects devoted to the topic. We can men-
tion, for example, the European Projects FINE5 and FASCINATE6 and the iView
project leaded by BBC7.

The technical challenges The creation of virtual view for soccer games requires
to address numerous problems. Cameras are capturing outdoor environments, of-
ten in uncontrolled and changing lighting conditions. Also, they are located in a
wide-baseline disposition, and may be moving. Besides the calibration problems
in such environments, the different cameras may have a different color response
that has to be normalized, and the relatively low resolution and the complexity of
the scene are considerable. Indeed, two teams of 11 players dressed alike playing
in a very large arena outdoors and bumping into each other, added to several refer-
ees running freely in the field creates all kinds of occlusions. It is therefore not a
simple scenario.

Although all these problems have to be addressed in order to solve the prob-
lem of view synthesis for sport events, in particular for soccer games, we shall
assume that the camera calibration and color normalization have been solved and
we concentrate on the problem of depth computation, view synthesis and its post-
processing (filtering and inpainting) without forgetting the problem of background
subtraction.

Let us briefly review the main approaches to multi-view scene reconstruction.

Related work on multi-view scene reconstruction We focus essentially on tech-
niques that allow a 3D reconstruction of the scene since they are more adapted to
free view-point video rendering, which is our main interest in this paper.

The 3D reconstruction of a shape from its binary projected masks, or silhou-
ettes, in the different views is called shape from silhouette. The interest of this
technique lies in the fact that it provides a fast and simple 3D reconstruction, not as
accurate as the one obtained by multi-view stereo, but sufficient for some computer
vision applications such as human motion analysis or 3D localization. It may also
be useful as a first approximation to a more accurate reconstruction. Traditionally
[Bau74, Lau94], the shape is computed as the maximum volume consistent with
all the silhouettes, the Visual Hull. In real applications the visual hull may present
errors due to occlusions, moving background, illumination changes, color similar-
ities between foreground and background or calibration errors. Several methods
have been recently proposed in order to make the computation of the visual hull
robust to missing parts and to segmentation errors [FB05, SVZ00, LPC08, HP10].

Another useful approximation may be obtained by using photo-hulls [SD99,
KS00] defined as the maximal volume which is photo-consistent with the set of
input views. Although this technique may produce noisy reconstructions (specially

5http://www.projectfine.eu
6http://www.fascinate-project.com
7http://www.bbc.co.uk/rd/projects/iview

3

http://www.projectfine.eu
http://www.fascinate-project.com
http://www.bbc.co.uk/rd/projects/iview

when we do not have many images) the result obtained may be useful as a first
approximation to be refined with other methods that we will explain below.

The problem of free viewpoint visualization in the case of sport scenes presents
a set of characteristics that require the development of accurate and robust meth-
ods matching the quality required for retransmission. The wide baseline dispo-
sition of the cameras in an environment with non controlled illumination and the
distance to the players may generate occlusions and the violation of the ordering
constraint when viewing players from different cameras. Efficient numerical tech-
niques for multi-view stereo reconstruction that incorporate visibility constraints
are based on the use of graph cuts [BVZ98, BVZ01, KZ01, KZ02, KZ04] or belief
propagation [SZS03, TF03]. They permit to obtain state of the art results. Other
powerful methods are based on the computation of reliable correspondences using
correlation methods, forming a set of seed points that are later increased to neigh-
boring areas until they arrive to a dense reconstruction [HK07, FP10]. In [GCS06]
the authors follow a similar strategy by computing individual depth maps using a
window-based voting approach that returns only good matches, merging the depth
maps into a single mesh using a volumetric approach. Let us mention the work
[SH07] where the combination of stereo matching cues with visual hull informa-
tion in an energy based formulation permits to obtain good results in cases where
there is little texture or strong variation in appearance, as it may be the case when
the cameras are in a wide baseline disposition. We refer to [SCD+06] for a survey
of multi-view reconstruction methods.

Other strategies based on joint segmentation and depth estimation are also
adapted to the case of sport events, since it may be convenient not to explicitly
reconstruct the background, using instead a virtual one onto which real textures
are projected. The background is indeed difficult to compute it if its texture is
poor. In the case of soccer, images can then be separated into foreground layers
(corresponding to players) and a background one. This is the approach followed
in [GKH09, GH11] and [BBPP10]. This strategy was introduced in [KCB+06] for
background substitution, considering thus only two layers. Let us also mention
the work [ZKU+04] which pioneered the use of layered representations for dispar-
ity computation and used it for free-viewpoint video interpolation in the case of a
narrow baseline camera configuration. Similar recent systems produce very good
results in real-time [LLB+10, JNS10].

From the exhaustive list of works dealing specifically with sport scenes, we
can mention the ones using billboards that produce a flat 3D reconstruction of
a scene [GHK+06, GTH+07, GHS+07, KKO03, OKK+07]. In order to finally
obtain realistic volumetric reconstructions, more sophisticated tools based on vi-
sual hulls or photohulls have been proposed [GHK+06, GTH+07, GHS+07]. A
last class of works, closely related to the method we propose, concerns the use
of Graph-Cut to optimize an energy function combining multiple image cues with
strong priors. Such an approach has been successfully applied to depth compu-
tation [GHS+07] and joint segmentation and depth estimation [GKH09, GH11].
In all these works, the separation of the soccer field and the players has been is a

4

fundamental step in order to speed up and facilitate the computation of correspon-
dences [GHK+06, GTH+07, GHS+07, GKH09, GH11, IS02, IS03].

Thus, there are still several aspects of the problem that require improvements to
generate quality videos for retransmission. To get a correct parallax effect we need
to compute a (sufficiently) dense depth map of the players in the scene. The com-
plexity of the scenes then requires the use of depth computation or stereo recon-
struction methods that take into account the visibility constraints and the handling
of occlusions. In the case of video sequences synthesis, one also needs to compute
time coherent depths or at least to guarantee a time coherent synthesis. As there
may be still a lack of precision around boundaries of players, leading to holes in
the synthetic views, a post-processing step is therefore necessary. Such holes have
to be filled-in with inpainting methods and the eventual temporal artifacts should
be treated with a suitable video filtering.

5

Let us finally mention that from the works quoted [GKH09, GH11] are the
closer to our approach, the main difference being that those authors consider a
joint segmentation and depth estimation approach while we consider both stages
separately. On the other hand, our depth estimation energy takes into account oc-
clusion and visibility constraints.

Overview of the system

The system presented in this paper is composed of different steps from image cap-
ture to post-processing. Figure 1 summarizes the complete pipeline.

• The first step is to capture the images. We present the multicamera acquisi-
tion system used for the application in section 2. It currently uses four static,
synchronized cameras.

• Next, as a pre-process, the color of the images between the different cameras
is equalized, and the cameras geometrically calibrated.

• The core of the process, presented in section 3, consists in computing the
geometry of the players. The players are first segmented via background
subtraction. Then, their 3D geometry is estimated by computing the depth
of each pixel in the images via a Graph-Cut technique.

• With the computed depth maps, a novel view synthesis algorithm, presented
in section 4, creates the image that would have been seen from a virtual
camera viewpoint.

• Finally, two post-processing algorithms are used to improve the quality of
the synthesis (section 5). First, artifacts around depth discontinuities are
removed via an inpainting algorithm. Then, temporal coherence is enforced
by a temporal filter.

Details on the experimentations are given in section 6.

2 Data acquisition

A specific acquisition system has been built for this application. The system is
composed of 4 cameras and is capable of recording synchronized multiple-views
from the same scene in FullHD resolution. The cameras were placed on the stands
on one side of the field, at the same height, separated 10 meters from each other
and looking to one goal (see the top view in Figure 1). In the following we will
detail the hardware and software composing the system, its features and give an
overview about its operation and output.

The multiview capture system is composed of 4 JAI/PULNIX TMC 2030GE
color cameras. These cameras have a 1” CCD sensor which can produce 1920x1080
images at 32 fps. In addition, each pixel can be 8,10 or 12-bits valued. They can

6

Figure 1: Description of the overall process.

be controlled via the GigE Vision Ethernet interface which enables a cable length
of 100m per camera. Finally, all cameras can be synchronized at a shutter level via
an external sync cable.

Each pair of cameras is connected to a PC with the following specifications:

7

• Intel Core 2 Quad CPU Q6600@2.40 Ghz with 3.6 Gbytes of DDR2 RAM
memory.

• 2 x Giga Ethernet Intel Pro/1000 PT Dual card.

• 2 x SATA hard drive of 10000 rpm.

• Windows XP Professional Service Pack 3 OS.
Regarding the acquisition procedure, we first aim at setting the zoom level for each
camera. Subsequently, camera’s gain, shutter speed and aperture is configured on
each camera depending on the lighting conditions. The goal is to obtain uniformly
contrasted images, without motion blur artifacts at the possible lowest noise level.
Finally, the focus on each camera is adjusted to obtain sharp images.

Each camera produces a raw 8-bit 1920x1080 video stream at 25 fps, which
is stored unprocessed in a fast hard drive. This results in a data bandwidth of 50
Mbytes/sec. Next, the Adaptive Homogeneity-Directed (AHD) Bayer demosaicing
algorithm [HP05] is used to compute high quality color images from the raw data.
Then, output images are color corrected so color constancy is kept among different
views of the same object. Finally, each camera is calibrated optically by detecting
the soccer field lines and matching them against a known 3D model.

In the following, we describe with more detail the color correction and calibra-
tion methods. Figure 2 shows an example of an input image pair. We use the color

Figure 2: Pair of input images without color correction.

correspondences computed via sift matching [Low04] to fit a parametric model of
the color transformation between the images. We assume a simple, per channel
affine transformation of the form

R2 = aRR1 + bR

G2 = aGG1 + bG

B2 = aBB1 + bB,

where R2, G2, B2 correspond to the red, green and blue component of the color-
corrected images. The fitting is done using least squares method. Then, the color
transformation is applied to all the input images, whose result is depicted in Figure
3.

2.1 Camera calibration

Camera calibration is a crucial problem for further metric scene measurement. This
section presents an overview of the techniques we used to calibrate the multicamera

8

Figure 3: First image (left) corrected to match the colors of the second image, and
second image (right) used as reference.

setup on a soccer scene using a minimum number of visible field lines or circles
[AC09]. For related strategies we refer to [LL05] where the authors also exploit
the information contained in the central circle, the central line and lateral lines in
order to compute intrinsic and extrinsic parameters, to [YZ07] which needs five
views of the scene in order to compute this set of parameters, or to [SCG01] which
requires to view at least four lines near the goal area.

Strategies differ slightly depending on whether the camera can be previously
calibrated in the laboratory or not. In this work we use the simple pinhole camera
model, including radial lens distortion.

If the camera can be precalibrated beforehand in the laboratory, the calibration
procedure is as follows:

1. Use a calibration pattern to compute the lens distortion and all the camera
intrinsic parameters, including the focal length.

2. Bring the camera to the stadium and take pictures of the pitch (without
changing the zoom level).

3. Automatically estimate the position and rotation of the camera in space by
detecting white lines and the central circle [AC09].

4. If the zoom of the camera is varying, it can be recomputed leaving the other
intrinsic parameters constant.

9

Alternatively, if the camera can not be accessed beforehand in the laboratory the
calibration steps are:

1. Take an image of the soccer field with the camera system.

2. Default values for the intrinsic camera parameters are assumed, i.e. square
pixels and optical center at the center of the image, and calculate the distor-
tion model parameters.

3. Automatically estimate the position, rotation and focal length of the camera
in space by detecting white lines and the central circle [AC09].

In addition, in case we know that the cameras share some parameters, we run an
extra global optimization step to improve the calibration accuracy. The parameters
considered are: a common focal length, the height of all cameras, the lens distortion
model, the pixel aspect ratio and the optical center.

The accuracy of a camera calibration using the lines and circles present in
a soccer field can be affected by various circumstances. We have observed that
inaccurate results can be obtained when the number of primitives visible in the
images is low, or when the lines are not well drawn in the field, or even because
they do not have the proportions and measures they should have officially. Also, the
curvature of the field is a source of errors. These failures are particularly relevant
in applications such as 3D reconstruction of the scene that require a high precision
calibration. Thus we introduced a final calibration enhancement step that uses
point matches between different images to improve calibration. The procedure is
as follows:

1. An initial calibration of the group of cameras is computed as described above
by detecting lines and circles on the soccer field.

2. Points of interest in the scene are automatically detected in each image of
the scene using the Harris algorithm [HS88].

3. Right matchings between the detected 2D points are selected and their 3D
point coordinates are reconstructed. The points should be visible in at least
two of the cameras and they usually correspond to typically visible points in
the scene such as the head of a player or the goals.

4. The information from these 3D points is incorporated in the calibration of the
cameras minimizing their reprojection error in the different camera views via
bundle adjustment [TMHF00].

3 3D representation of the players

From the multi-camera system, we get a set of M = 4 synchronized video se-
quences observing the scene from different point of views. We now describe how

10

these data are used to compute a 3D reconstruction of the players. Such an estima-
tion is obtained in two steps. First, we automatically segment the players from the
field in each camera. Then, we use a multi-view stereo algorithm to estimate the
depth of the pixels inside the segmentation masks.

3.1 Background learning and segmentation

In order to estimate the segmentation mask of the players, we rely on background
subtraction methods. Since we consider fixed cameras, the background, composed
by the field and the stadium, can be modeled independently for each camera. We
estimate a background image Bi for each camera i = 1, · · · ,M . To learn this
background image, even when the players are on the field, techniques such as run-
ning average, Gaussian mixtures [SG99] or Kernel density [EHD00] estimations
are used. Such approaches aim at modeling each pixel of the background using the
redundant temporal information of the sequence at its location, while discarding
the outliers (i.e. the players). An example of background modeling is shown in
Figure 4.

Frame 0 Frame 50

Frame 100 Estimated background

Figure 4: Background estimation. The background model is estimated from the different
images available for a single camera. We here show such images at frames 0, 50 and 100
of a real sequence.

From the estimation of the background, the segmentation mask of the players
Ωi, i = 1, · · · ,M , is finally obtained by thresholding the difference between the
current image and the reference background one. This difference is computed on
each pixel and completed with a spatial regularization of the masks.

Denoting as Bj
i the background image of camera i for the color channel j

and Iji the current image of camera i for the color channel j, we considered the
following data cost to segment players:

ci(x)=
∑
j

∣∣∣∣ Iji∑
k I

k
i

− Bj
i∑

k B
k
i

∣∣∣∣+β∑
j

Max(0, Iji (x)−B
j
i (x)).

11

β = 0 β = 1 β = 0 β = 1
γ = 0 γ = 0 γ = 0.1 γ = 0.1

N1/N0 3.8% 57.1% 4.6% 9.2%
N2/N0 24,1% 7,1% 14,5% 7,9%

Table 1: Rates of false positives N1 and pixels not detected N2 with respect to the
N0 ideal pixels segmented by hand on test examples.

In the first term, we considered normalized colors in order to take into account
the possible illumination changes that may occur along the game, namely with
weather variation, nightfall and spot lightning. The second term of the data cost,
weighted by the parameter β ≥ 0, allows considering the moving shadows in the
field. Indeed, in the players shadow areas, the grass color of the current image Ii
will be darker than the one of the reference background imageBi. With this model,
the data cost does not penalize such shadow areas.

The binary segmentation mask of players Ωi is finally obtained using a Graph-
Cut approach [BJ01]:

Ωi = arg min
S

∫
S(x)Max(α− ci(x), 0) + γ

∫
|∇S|, (1)

where the parameter α ≥ 0 is used for thresholding the data cost and γ ≥ 0 weights
the influence of the regularization term that allows discarding the small areas from
the segmentation. In order to justify this segmentation model, we realized some
comparisons with ideal segmentations made by hand. More precisely, we looked
atN1, the number of false positives, andN2, the number of pixels not detected. De-
noting as N0 the number of pixels contained in the manual segmentation, we have
computed the percentages of over- and sub-segmentations for different segmenta-
tion models (corresponding to different values of β and γ, for α = 0.1). In these
experiments, each of the 5 ideal segmentations tested contains aroundN0 = 50000
pixels to detect. The results, illustrated in Table 1 , show the good performance
of the proposed model. Indeed, we obtain small over-segmentation rates N1/N0,
which is interesting to have fast depth estimations. Moreover, we also have small
subsegmentation rates N2/N0 with the full model, so that it ensures good quality
of the estimations. Note that most of these last errors occur at player’s boundaries
and will not affect the final results thanks to the inpainting post-processing step.

In Figure 5, some illustrations of the obtained segmentation masks are given.

3.2 Depth estimation

Given the foreground segmentation masks of all cameras, the goal is now to com-
pute, for each frame t in the sequence, the depth of each pixel in the set Ωi(t). We

12

Frame 0 Frame 50 Frame100

Figure 5: Segmentation. Illustration of the mask of players obtained at frames 0, 50 and
100.

describe here the procedure we use to compute depths that are coherent between
the different cameras and between the different frames of the sequence.

The depth estimation problem is defined as a multi-label problem. We con-
sider a set of candidate depth planes, and associate one of these planes to each
pixel inside the segmentation masks. The pixel-to-plane association is realized by
minimizing a suitable energy function [KZ02, KZ04] via Graph-Cut.

We now describe the energy, for more details we refer to [PC10]. To fix our
notation, we assume that we haveM ≥ 2 cameras and we considerM color images
Ii : Ωi → R3, where Ωi ⊆ R2 denotes the domain of Ii, i = 1, · · · ,M . We
identify Ωi as the foreground player mask of image i. We denote by I = {(i, j) ∈
{1, · · · ,M}2, i 6= j} the set of pairs of images.

Recall that a plane of the 3D scene induces an homography between each pair
of images, and the projections of image points which lie on the plane are matched
by this homography. Thus, we may sweep the scene with a family of parallel
ordered planes Πλ, each one labeled by its depth λ > 0. The points of the scene
lying on Πλ will only be correctly matched in two images Ii and Ij , i 6= j with the
corresponding induced homography Hijλ (see [HZ03]). The homography Hijλ can
be written as Hijλ = (Hjλ)−1Hiλ where Hkλ is the homography between the image
k and the plane and Πλ. Obviously, the matching can only be done if the point is
visible in both cameras.

We want to find the depth, denoted by λ(p), associated to each p ∈ Ωi, i =
1, · · · ,M , and the sets of occluded pixels in each image. We note that these sets of
occluded pixels can be estimated from the knowledge of the depth. As the problem
will be solved in a discrete framework via a Graph-Cut approach, we assume that
λ(p) takes its values in a predefined discrete set of possible depths contained in the
range [λmin, λmax]. We assume that the family of sweeping planes is given with
respect to a reference camera. The planes representation is illustrated in figure 6.

Remember that the depth estimation must respect the visibility constraint. If
p ∈ Ωi and q = Hijλ(p)p, j 6= i, the visibility constraint is given by λ(q) ≤ λ(p).
This constraint means that a pixel p of an image i can be occluded by a pixel q in
image j if and only if the depth of q is smaller than the depth of p.

The pixel-to-plane association is realized by considering an energy function
containing five terms:

• a photoconsistency matching cost for couples of corresponding pixels in pairs of

13

Figure 6: Representation of the sweeping planes. The N planes used to represent
the depth are defined from the reference camera C2.

images:

Eph(λ) :=
∑

(i,j)∈I

∑
p∈Ωi

D(p,Hij
λ(p)p)T [λ(p) = λ(Hij

λ(p)p)],

where
T [x] =

{
1 if x is true
0 otherwise.

This energy concerns the scene points Hiλ(p)p, with p ∈ Ωi , that are visible in
both images Ii and Ij . The matching costD(p, q) measures the difference between
the colors Ii(p) and Ij(q) of the pixels p ∈ Ωi and q ∈ Ωj (see [PC10]).
• a penalty on the occluded pixels that prevents all pixels to become occluded:

Eocc(λ) := γ
∑

(i,j)∈I

∑
p∈Ωi

T [λ(p) > λ(Hij
λ(p)p)],

Following the visibility constraint, if λ(q) < λ(p), then the scene point Xp =

Hiλ(p)p is occluded by the scene pointXq = Hjλ(q)q in the image Ij . The occlusion
parameter γ > 0 penalizes these occlusions. If λ(q) = λ(p), then the 3D point
Hiλ(p)p is visible in both images and the photoconsistency matching cost is taken
into account.
• a term that enforces the visibility constraint to ensure the coherence between the
depth maps of the different cameras:

Evis(λ) := U
∑

(i,j)∈I

∑
p∈Ωi

T [λ(p) < λ(Hij
λ(p)p)],

where U → ∞ is a large scalar that prevents the solution to violate the visibility
constraint.
• a visual hull constraint that forces the reprojection of the reconstructed points to
lie inside the foreground masks of the other images:

Evh(λ) := β
∑

(i,j)∈I

∑
pi∈Ωi

T [Hij
λ(p)p ∈ Ωj],

14

where β > 0.
• a regularization term that forces the neighboring pixels with similar intensity
level or color to have similar depth labels:

Ereg(λ) := α

N∑
i=1

∑
pi∈Ωi

∑
qi∈Npi

F (Ii, pi, qi)|λ(pi)− λ(qi)|,

where α > 0 is the regularization parameter, and Npi is 8-neighborhood of pi.
The function F (Ii, pi, qi) has the form F̃ (|Ii(pi)− Ii(qi)|, |pi− qi|). It weights the
discontinuities of the labeling by taking into account the image gradient, encour-
aging depth discontinuities to coincide with edges. The function F̃ is big when
its first argument |Ii(pi)− Ii(qi)| is small. The second argument |pi − qi| enables
weighting the influence the neighbor qi of pixel pi, with respect to their Euclidean
distance. The larger |pi − qi|, the smaller F̃ .

The term |λ(pi) − λ(qi)| can be replaced by the Potts model min(|λ(pi) −
λ(qi)|, 1) = T (λ(pi) 6= λ(qi)), which does not weight the amplitude of the depth
discontinuities. The total energy E is defined as:

E(λ) := Eph(λ) + Eocc(λ) + Evis(λ) + Evh(λ) + Ereg(λ). (2)

In any of the previously described cases the whole energy is regular [KZ04],
and it can be efficiently minimized in anα-expansion move using Graph-Cut [KZ02,
PC10].

Figures 7 and 8 show examples of the depth maps estimated by this procedure
in a laboratory and a real scene.

Since the computational cost of the Graph-Cut labeling method increases with
the number of candidate depth planes, it is important to properly choose these
candidates. They have to be close to where the players are, in order not to waste
candidates where there are no players. In the toy example of Figure 7, the 3 players
are spatially close, and we can use a dense depth discretization. Unfortunately, for
real examples as the one presented in Figure 8, the players are sparsely distributed
around the field. In this case, we consider the visual hull of all the players together
in order to define a bounding box that includes all the players. The candidate depth
planes are then chosen to be distributed inside this bounding box.

This is clearly not optimal, since it would be better to create a bounding box
for each player. Nevertheless, it is good enough, and yields results where each
player is represented by more than one depth plane. This can be seen from the
depth discontinuities observable in column (c) of Figure 13. Compared to simpler
approaches that represent each player via a single depth plane, our method is able
to produce the parallax between different parts of the player, and not only between
different players.

15

Camera 1 Camera 2 Camera 3

Figure 7: Depth estimation on a toy example. The original images are presented in the
first row for three cameras. The corresponding segmentations and the depth estimations
are then shown in the second and third rows. The depth colors correspond to the depth
planes: the lighter color, the closer to the cameras. These images are courtesy of Luis
Álvarez (AMI group, University of Las Palmas of Gran Canaria) and MEDIAPRO.

Camera 2 Camera 3

Figure 8: Depth estimation at frame 50. The original images are presented in the first
row for the central real cameras 2 and 3. The corresponding segmentations and the depth
estimations are then shown in the second and third rows. The depth colors correspond to
the depth planes: the lighter color, the closer to the cameras.

3.3 Discussion on velocity and accuracy

In term of computational cost, our process provides results in almost 1 minute for
a set of 20 depth planes and about 50000 pixels in each of the four masks Ωi.

16

To speed things up, during the development of the method proposed above, we
also considered computing the depth of each image independently (i.e, without
including visibility constraints between the different estimations) through a plane-
sweep approach [Col96]. This leads to fast algorithms that can be parallelized
efficiently on GPU and almost reaching real time estimation. However, with such
approaches, the consistency between the different estimations is lost and an addi-
tional volumetric approximation of the different depth estimations must be done
[ZPB07] to prevent from decreasing the accuracy of the results. This volumetric
approximation can also be parallelized. However, we observed that this nearly real
time reconstruction does not give accurate results with our 4−camera setup. The
visibility constraints are then necessary to ensure good depth estimations with a
small number of cameras.

Note that the accuracy of our depth estimation method can be checked on the
Middlebury reference benchmark website8. Our method is ranked in the first third
of the the evaluated methods, obtaining a mean pixel error rate of 6%. This means
that 6% of the estimated pixels have a disparity error superior or equal to 1 pixel.
As a comparison, one can check that the best methods provide a mean pixel error
rate of 4%, whereas the median error rate of the evaluated approaches is about 8%.

3.4 Temporal consistency

For dynamic scenes, in order to enforce the temporal consistency of the segmen-
tation and the depth estimation between successive frames, we add an additional
constraint. The idea is to force the estimation at frame t + 1 to be related to the
estimation at frame t. We use the optical flow vti [PBGC10] between the cap-
tured images of camera i, to transfer the estimations computed at frame t to the
location of the players at frame t + 1. Then, we add a constraint that forces the
estimations at t + 1 to be close to these predictions. For the segmentation step at
time t + 1, it implies to first compute Ω̃t+1

i (x + vti(x)) = Ωt
i(x) and then add a

new constraint
∫
|S − Ω̃t+1

i | to the segmentation energy (1). In the depth estima-

tion step, it leads to computing the predicted depth map λ̃
t+1

= {λ̃t+1
i } where

λ̃t+1
i (x+ vti(x)) = λti(x) for each camera i = 1, · · · ,M and considering the new

energy term

Epred(λt+1) =

M∑
i=1

∑
x∈Ωt+1

i

|λ̃t+1 − λt+1|,

which is added to the energy E(λt+1) introduced in expression (2).
This last temporal depth constraint is in practice enhanced through the scene

flow computation from the optical flows estimated on each camera [VBR+05]. For
a fixed frame t, the scene flow F t : R3 → R3 is a vector field that models the
3D displacements of the objects in a scene during one frame. The corresponding
optical flow seen by a camera is simply the projection of the scene flow on the

8http://vision.middlebury.edu/stereo/eval/

17

http://vision.middlebury.edu/stereo/eval/

camera plane. Therefore, in contrast to the optical flow, the scene flow considers
the object movement in the direction perpendicular to the camera plane, which
yields a more exact temporal constraint. In this case the depth prediction λ̃

t+1
can

be computed as follows. Let X be the position of a 3D point at time t and let
F t(X) be its estimated scene flow, so that its position at time t+ 1 is X +F t(X).
If Pi denotes the projection matrix of camera i we compute

λ̃t+1
i (Pi(X + F t(X))) = dist(X + F t(X), Ci),

where dist(X + F t(X), Ci) is the Euclidean distance between the 3D point X +
F t(X) and the center of camera i.

4 Virtual view synthesis

Given the depth estimation of the real cameras, we now want to generate the view
of a virtual camera observing the scene from a novel point of view. In this section,
we describe the process allowing to create such virtual views. This step requires
the trajectory of the virtual camera as an input given by the user.

4.1 Virtual calibrations

To synthesize a virtual camera, it is necessary to define its calibration: its position
and orientation with respect to the 3D world coordinates. These informations thus
need to be given by a user. In practice, we have proposed to automatically generate
virtual mappings between real cameras. More precisely, we have addressed two
applications. The first one consists in creating a virtual camera that warps the real
cameras at a fixed frame. This leads to a time frozen sequence equivalent to the
matrix effect. The second application considers a virtual camera moving along
frames, observing the dynamic scene from different points of view. Assuming that
the calibration of a virtual cameraCv is known, we then want to estimate the virtual
image Iv seen from this new camera. To that end, we first need to determine λv,
the depth of this virtual image.

4.2 Virtual depth synthesis

Once the calibration of the virtual camera has been defined, we use this information
and the computed depth maps to synthesize the corresponding virtual image. To
this end, we use a two-step method related to the one presented in [SGHS98]. It
is based on the estimation of the depth map of the virtual camera and a further
estimation of the colors of the virtual image. This process is independent of the
numberN of considered depth planes so that it leads to fast parallelizable synthesis
algorithm.

We here focus on the virtual depth map of players, since a specific process
for the background synthesis will be detailed afterwards. The virtual player depth

18

map creation is obtained by mapping the player depth map of each real camera
to the virtual camera. If several pixels (of the same or of different cameras) are
transferred in the same location in the virtual image, the closest one is kept.

Hence, we aim at estimating Ωv the virtual player mask and λv, its correspond-
ing depth map. Using the previously defined notations, the depth of each pixel
λi(x) inside the foreground area Ωi is projected into the virtual depth map λv. To
compute these projections, we must first define the homographies H iv

λ going from
the real image Ii to the virtual image Iv with respect to the plane Πλi(x). These ho-
mographies give x′ = H iv

λi(x)x, the pixel of image Iv that corresponds to the pixel
x of the real image Ii along the plane Πλi(x). An initial estimation Ωv of the virtual
player mask Ωv is computed as the intersection of the transfer of the segmentation
masks Ωi to the virtual image via the homographies H iv

λi
. For each pixel x′ of the

virtual segmentation mask Ωv, we select, from all the depth planes ”coherent” with
the input data, the one Πλv(x) that is closest to the virtual camera (see Figure 6).
The final depth estimation process is summarized in algorithm 4.1.

Algorithm 4.1 Virtual depth estimation

• Initialize λv(x) = +∞, Ωv(x) = 0, ∀x ∈ Iv.

• For i = 1, · · · ,M

– For all x ∈ Ωi

∗ x′ = [H iv
λi(x)x]

∗ Ωv(x
′) = 1

∗ if λv(x′) > λi(x), λv(x′) = λi(x)

Note that we considered the integer approximation [.] to obtain the pixel po-
sition x′ in the previous algorithm. As a consequence, with this direct transfer of
depth, the virtual mask Ωv can contain holes. To circumvent this limitation, we
realize the transfer of depth in a small 3 × 3 neighborhood of the pixel x′. This
step allows filling the holes but also dilates the segmentation mask of players Ωv.
These small errors on the players boundaries will nevertheless be handled by the
color synthesis and inpainting steps.

We finally realize a last step of mask refinement in order to remove the small ar-
eas of Ωv that are due to depth estimation errors. To that end, we simply regularize
the binary mask Ωv by solving:

MinimizeXP (X) + α|X − Ωv|, (3)

where P (X) denotes the perimeter of X , α > 0, and the minimization is taken
with respect to all sets of finite perimeter in the image domain (hence, all sets in
the discrete case). Let χX be the indicator function of the set X , i.e. χX(x) = 1 if

19

x ∈ X and = 0 otherwise. Recall that P (X) coincides with the total variation of
χX . To solve (3) we solve the relaxed problem [NEC06]

Sv = arg min
S

∫
|∇S|+ α

∫
|S − Ωv|

and find a solution S taking values in [0, 1]. Any level set {S ≥ γ}, γ > 0 then
gives a solution of (3) (in practice we take γ = 1

2). We define the final virtual
mask as Ωv := Ωv ∩ {S ≥ 1

2}, since we want the final mask to be included in
the transferred mask Ωv to remove the small artifacts. This step allows obtaining a
good compromise between the transferred depth areas and their size. An example
of such transfer is presented in Figure 9.

(a) Real Camera 2 (b) Real Camera 3

(c) Virtual Camera 1 (d) Virtual Camera 2

Figure 9: Creation of the virtual depth at frame 50. The depth estimated on the real
cameras (a-b) are transferred into two virtual cameras (c-d).

Remark Note that better approximations of the virtual depth map can be ob-
tained with a backward transfer of depths. This can be done by testing all the pos-
sible depth planes for all the pixels of the virtual image. Such an approach could be
formalized by an energy function (and eventually be completed by a depth spatial
regularization term). However, the computational cost of this backward transfer
depends on the number of considered depth planes N and is therefore prohibitive
with respect to the small gain of quality in the results.

4.3 Player synthesis

In the second step, the colors of the virtual image are computed through a backward
mapping of the pixels from the virtual camera to the real ones with respect to their
depth. The mean of the colors obtained from the different real cameras is used in
order to smooth the virtual image and avoid artifacts coming from potential depth
estimation errors.

We do not directly transfer the colors from the real cameras to the virtual one.
Indeed, such a direct approach would generate non integer coordinates and require
heavy interpolations to provide a good synthesis. In general, the synthesis gives

20

better results when dealing with back-transfer of colors (see for instance the inverse
trifocal tensor of [LH06]).

In practice, once the depth map λv has been estimated, we can recover the
color of the virtual image Iv, using homographies. Thus for all x ∈ Ωv, we look
in all the other images for the values of Ii(Hvi

λv(x)x), i = 1, · · · ,M , to construct
the image value Iv(x). We also use this step to refine the virtual player mask Ωv.
Indeed, if the pixel x ∈ Ωv is not seen from the other cameras (this may happen
since we used a direct transfer to estimate Ωv), we will have Ωi(H

vi
λv(x)x) = 0,

i = 1, · · · ,M so that the pixel x is part of the background. This synthesis process
is summed up in the algorithm 4.2.

Algorithm 4.2 Player synthesis
Initialize p(x) = 0, Iv(x) = 0, ∀x ∈ Ωv.

For all x such that Ωv(x) = 1

• For i = 1, · · · ,M

– xi = Hvi
λv(x)x

– if Ωi(xi) = 1

∗ c = exp(−|λi(xi)− λv(x)|)
∗ Iv(x) = Iv(x) + cIi(xi) ,
∗ p(x) = p(x) + c.

• if p(x) > 0, Iv(x) = Iv(x)/p(x)
else Ωv(x) = 0

The weight p(x) is used to represent the influence of the different image data.
Note also that the values λi(Hvi

λv(x)x) are interpolated.

4.4 Playground and stadium synthesis

The two previous algorithms are used to generate the virtual players. However,
the playground and the stadium are not treated with such an approach. Hence, the
pixels outside the virtual players are processed using three particular depth planes,
as illustrated in Figure 10.

More precisely, we use a first plane to model the ground. We assume the
groundfield to be flat, which is not true in reality and is the cause of some blur-
ring effects that appear in the non flat parts of the groundfield of the virtual view.
Two additional planes model the goal and the stands. These form a very rough ap-
proximation of the real geometry. The real images backprojected into these planes
clearly do not match. To palliate the visual artifacts of this approximation, we
considered the following processes.

21

Figure 10: Background model. Three specific planes are considered for background
synthesis: the groundfield, the goal and the stands.

For the stand and goal synthesis, we use view dependent texture mapping
[DYB98] so that only the camera that is closer to the virtual camera is used to
produce the texture of the goal and stand planes. When moving from one real
camera to another, a short transition zone is used, and the images produced by both
cameras are blended to avoid a sudden change in the texture. Using this process, we
are able to create a virtual background image, for a given calibration corresponding
to a virtual camera. This virtual background image can also be decomposed into
three areas corresponding to the stands, the goal and the groundfield.

The groundfield colorization is realized in a different way. As we want the
moving shadows of the players to be synthesized, we can not use a reference texture
of the field. From the three planes stadium model, we know the binary mask Fv
corresponding to the field in the virtual image Iv. The area to be synthesized is
then defined by Dv(x) = 1 if Fv(x) = 1 and Ωv(x) = 0, i.e. if it is ground field
and if there are no players. The same areas Di can be defined for each real camera
i. The backward color transfer is then used between the virtual image and the real
images with respect to the field plane homographiesHvi

F corresponding to the field
plane ΠF . If the ground field at pixel x ∈ Dv is occluded in all the real cameras
(i.e. Di(H

vi
F x) = 0, i = 1, · · · ,M), then the pixel x is added to the mask Mv

of pixels to be inpainted in the filling-in post-processing step. The virtual ground
field synthesis is shown in Algorithm 4.3.

Algorithm 4.3 Playground synthesis
Initialize p(x) = Iv(x) = Mv(x) = 0, ∀x ∈ Dv.

For all x such that Dv(x) = 1

• For i = 1, · · · ,M

– xi = Hvi
F x

– if Di(xi) = 1

∗ Iv(x) = Iv(x) + Ii(xi),
∗ p(x) = p(x) + 1.

• if p(x) > 0, Iv(x) = Iv(x)/p(x)
else Mv(x) = 1

22

Remark: Finally note that if, for a pixel x of image Iv, the virtual plane obtained
by Algorithm 4.1 is behind the three planes stadium model, we then remove the
pixel x from the virtual players segmentation mask by setting Ωv(x) = 0.

An example of synthesis including the goal and the stands is shown in Figure
11. We also present in Figure 12 some synthesized virtual images.

Figure 11: Virtual views from a moving camera observing the dynamic scene. The goal
and the stands have been synthesized using the specific planes illustrated by the Figure 10.

(a) Real Camera 2 (b) Real Camera 3

(c) Virtual Camera 1 (d) Virtual Camera 2

Figure 12: Synthesis of the virtual images at frame 50. The color information of the real
cameras (a-b) is transferred into two virtual cameras (c-d).

5 Post-processing

The synthesized virtual images can contain some visual artifacts due to depth es-
timation errors, occluded parts of the field or temporal inconsistency. In order to
correct them, we propose to use two post-processing tools: a spatial correction
of the image artifacts through image inpainting and a temporal filtering of the in-
painted images along the trajectories of the points of the scene, using the optical
flow of the virtual inpainted sequence.

23

5.1 Image inpainting

Image inpainting methods aim at repairing the missing or erroneous areas of an
image. Such processes are thus suitable to correct eventual visual artifacts in the
virtual synthetic images generated by the procedure described in previous section.

Indeed, we observed some visual artifacts on the boundaries of depth discon-
tinuities, where the errors of depth estimation are more frequent. Moreover, the
areas of the field that are occluded by the players lead to missing parts on the syn-
thetic images. Fortunately, from the estimated synthetic depth maps, we are able to
define with enough accuracy the areas of the synthetic images we want to correct
(i.e. areas around the depth discontinuities).

We first recall that Mv, the mask of pixels to inpaint, has been initialized with
the occluded part of the groundfield in Algorithm 4.3. The mask is then completed
by adding the pixels located at the discontinuities of the virtual depth map λv.
Without loss of generality, we consider that the depth of the pixels belonging to
the groundfield, stands and goal areas are respectively represented by the planes
λv = N , N + 1 and N + 2. Hence, for each pixel x of the virtual image, if
∃y ∈ N (x), such that λv(y) 6= λv(x) and x ∈ Ωv or y ∈ Ωv, then Mv(x) = 1.
The neighborhood N (x) here represents a 3 × 3 patch around the pixel x. The
mask contains pixels inside the players but also the pixels at players boundaries
with the groundfield, stands and goal areas.

Examples of such areas are shown in Figure 13.

(a) (b) (c)

Figure 13: Creation of the inpainting masks. (a) Synthetic images. (b) Virtual depth
maps. (c) Areas to inpaint.

The correction is performed with an image inpainting algorithm [BBCS10]
based on image color patches comparison and copy, although a more simple method
[CPT04] is sufficient in the present case. Let us detail the basic ideas behind
exemplar-based inpainting methods [EL99, CPT04].

A database of Np candidate color patches Pk, k = 1, · · · , Np, is first cre-
ated using the color information available in the real images Ii(t), i = 1, · · · ,M ,
around the segmentation masks Ωt

i at all the time t of the sequence. Then, for
each pixel of the current inpainting mask x ∈Mv(t), the process searches into the
database the patch that is the most similar to the color patch of the virtual image
Iv(t) centered at x. This search is realized through the computation of a similarity
measure. Let h be the parameter defining the patch size, we then consider patches

24

of size (2h + 1) × (2h + 1). The similarity measure between the current patch
centered on pixel x = (i, j) and a candidate patch Pk is then defined as:

s(x, k) =

h∑
m=−h

h∑
n=−h

‖Iv(i+m, j + n)− Pk(h+m,h+ n)‖.

For the sake of clarity, we omit the sum on the color channels on the last expression.
The measure ‖.‖ contains three terms, one of texture synthesis, one for diffusion
and one for the spatial consistency (see [BBCS10] for details). We select the patch
Pk∗ that minimizes this measure by taking k∗ = arg mink s(x, k). The color of all
the pixels y of the patch centered on x that belong also into the inpainting mask
Mv is then replaced by the corresponding color of the selected patch Pk∗ and, once
processed, these pixels y are removed from the inpainting mask.

In practice, as we considered h = 4, we have to deal with color patches of size
3× 92 = 243. The dimension of the data base is also very large, since the number
of candidate patches Np becomes superior to 105 by considering only 10 frames.
A dimension reduction is realized in the patch space through Principal Component
Analysis (PCA) and only the most significant 10% of information is kept for the
further searches. Our search method also relies on search trees (kd-trees), in order
to speed up the search of similar patches. Then, each patch P centered on x is
projected on the PCA basis and its nearest neighbor patch is found on the tree.

In Figure 14, we present examples of inpainting correction.

(a) (b) (c)

Figure 14: Image inpainting. (a) The synthetic images. (b) The corresponding areas
to inpaint composed by the union of the missing part of the field (in gray) and the virtual
depth discontinuities areas (in white). (c) Final inpainted images.

25

5.2 Temporal filtering

The inpainted images are finally filtered temporally. To this end, we realize a
weighted mean of the colors along pixel trajectories. Trajectories are first obtained
through the computation of the optical flow [PBGC10] on the inpainted sequence.
Hence, the value of the color of a pixel is filtered by considering a temporal window
along its trajectory.

More precisely, let us consider the virtual image sequence Iv(x, t), x ∈ D
(where D denotes the virtual image domain) and t0 ≤ t ≤ tf . We first compute
the forward vt+ and backward vt− optical flows on this virtual sequence. In order to
filter Iv(x, t), the color of the pixel x of the virtual image at time t, we select all the
colors of the pixels on the trajectory of x on the temporal window [t − T, t + T].
Denoting as xk = x, this trajectory is obtained as xk+1 = xk+vk+ for t ≤ k ≤ t+T
and xk−1 = xk + vk− for t ≥ k ≥ t − T . The interpolated colors of the virtual
images at points Iv(xk, k), t− T ≤ k ≤ t+ T] are then used to estimate the final
color of Iv(x, t). One direct way to filter this set of colors is to take their mean
or median value. Such an approach is nevertheless very sensitive to the quality
of the optical flow estimations. On the boundary of players with grass, we do not
want to merge player and grass colors and have to deal with this problem carefully.
Namely, we have observed that taking the mean value of colors leads to significant
blurring effects when the players move quickly, as the amplitude of the optical
flow vectors and the corresponding errors are larger. As a consequence, we choose
a weighted mean of the colors Iv(xk, k) given by:

Iv(x, t) =

∑t+T
k=t−T w(k)Iv(xk, k)∑t+T

k=t−T w(k)
,

the weight w(k) being given by the corresponding optical flow amplitude at time
k:

w(k) =

 exp(−||vk+1
− ||2/σ2) if k < t

1 if k = t,

exp(−||vk−1
+ ||2/σ2) if k > t

where σ weights the optical flow amplitude. The color values are then weighted
with respect to the inverse of the norm of the optical flows. Indeed, when a pixel is
moving fast, there is no need to filter its color value since it will not imply temporal
artifacts. On the contrary, when a pixel corresponds to a nearly static 3D point of
the scene, the color value must be filtered in order to smooth the synthesis and
obtain temporal consistency.

A sketch of the temporal filtering process is presented in Figure 15. As illus-
trated by Figure 16, this process allows to smooth the inpainted images in order to
attenuate the potential temporal artifacts.

26

Figure 15: Temporal filtering. The inpainted image are filtered temporally using optical
flow trajectories to impose consistency and provide virtual sequences without temporal
artifacts.

6 Experimentation details

In this section, we give some details on the experimentations we realized. We pro-
vide two videos 9 corresponding to two different sequences. The first one presents
a time frozen virtual camera warping two real cameras. The second video shows
a dynamic virtual camera observing the moving game. The videos have been ob-
tained automatically without user interaction or parameter tuning, some illustration
are presented in Figures 17 and 18.

These results have been obtained using a standard desktop computer, running
Linux, with an Intel Core2 Quad CPU, and a NVIDIA GTX280 graphics card. The
process required between 5 and 10 minutes of a single core per frame depending
on the size of the players. Most of this time was spend computing the depth maps.

Indeed, half of the auxiliary processes are real time: segmentation, synthe-
sis and filtering. In our current implementation, these programs spend more time
for input reading and output writing than the processes themselves. However, the
depth estimation, optical flow and inpainting steps have a huge computational cost,
especially considering the size of the processed data that are FullHD images with
a size of 1920x1080 pixels.

Let us discuss these three algorithms in more detail. Concerning the depth
estimation, as we impose visibility constraints between the different cameras in a
graph representation, the graph includes some complex connections. Moreover, as
mentioned in subsection 3.2, the definition of the set of possible depth planes is not
optimized. Considering a reduced and accurate set of depth planes would improve
the estimation and reduce the computational time of the process. When estimating
the depth independently for each camera, the process is real time, but the results
presents a poor quality. A merging of the different depths is necessary to filter these
noisy estimations.

9available on http://sites.google.com/site/nicolaspapadakis/videos_
cvmp

27

http://sites.google.com/site/nicolaspapadakis/videos_cvmp
http://sites.google.com/site/nicolaspapadakis/videos_cvmp

(a) Virtual frame t (b) Virtual frame t+ 1

Figure 16: Temporal filtering. A crop of the result is shown for two consecutive virtual
frame time t (column a) and t + 1 (column b). The original synthesized images are pre-
sented in the first row. The inpainting results are shown in the second row. The third row
illustrates the final filtered images.

Even if nearly-real time optical flow estimators exist in the literature, we in-
vestigated a different approach. The optical flow computation is done through a
parallelized implementation of a convexified energy [PBGC10]. Such a process is
potentially real time, but our current implementation takes up to 30 seconds in our
NVIDIA graphic card.

Finally, the last time consuming process is the inpainting step. Originally, we
used a simple patch-based approach, looking for similar patches in the original
images. This first method presented a very high computational cost due to the
size of the images (a huge number of patches have to be tested for each pixel to
inpaint). Hence, the use of kd-trees allowed us to speed-up the search process and
reduce the inpainting running time. The time consuming part now comes from the

28

construction of the tree of possible candidate patches, which is done on each frame
instant independently. Defining a common global tree from a database of possible
patches would allow to reduce drastically the computational cost of the inpainting
step. We are also currently investigating the implementation of search trees in GPU
in order to speed-up even more the search part of the process.

Figure 17: Static synthesis. The four images have been synthesized from a time frozen
virtual camera warping two real cameras.

7 Conclusion
In this paper, we have presented a framework for the automatic synthesis of virtual
views in the case of soccer games observed by a system of cameras (we used 4
in our experiments). We have presented experiments showing the quality of the
generated sequences. There are however limitations in the current prototype that
need to be addressed in the future.

In terms of robustness, the systems relies heavily in the correct extraction of
the players silhouette, which might be difficult to obtain automatically depending
on the lighting conditions. Also, the current implementation generates views that
are in between the real cameras; the quality of the synthesis degrades as the virtual
camera moves away from the real ones. Therefore, up to 10 cameras would be
required to cover the whole field from one side. Finally, the system takes to much
time to generate novel views for being used in live events.

In a future work, the different steps of the process will be optimized, mainly
in terms of computational cost. In particular, we will develop a GPU implemen-
tation of depth and optical flow computation following the algorithm proposed in
[BCGP10]. Let us also mention another important point which concerns the field,

29

Figure 18: Dynamic synthesis. The four images have been synthesized from a dynamic
virtual camera observing the moving game.

which is assumed to be flat. A better approximation taking into account the field
curvature should be considered in order to improve the calibration and the syn-
thesis steps. Note also that the present work only used the information contained
in the acquired images. To improve the visual quality of the synthesized results,
we plan to couple the synthesis of players with a predefined virtual model of the
stadium and the goal.

Acknowledgements
This work was partially funded by Mediapro through the Spanish project CENIT-
2007-1012 i3media and by the Centro para el Desarrollo Tecnológico Industrial
(CDTI), within the Ingenio 2010 initiative. We also acknowledge partial sup-
port by the FP7-ICT-2009-4 project ”Free-viewpoint Immersive Networked Ex-
perience” (FINE) financed by EC. Pau Gargallo acknowledge support from the
Torres Quevedo program of the Ministerio de Educación y Ciencia in Spain. Vi-
cent Caselles also acknowledges partial support by MICINN project, reference
MTM2009-08171, by GRC reference 2009 SGR 773 and by ”ICREA Acadèmia”
prize for excellence in research, the last two funded by the Generalitat de Catalunya.

30

References

[AC09] L. Álvarez and V. Caselles. Procedimiento para la calibración de una
cámara de video y tv. Spanish Patent No. EP-0140. Patent Pending.,
2009.

[Bau74] B.G. Baumgart. Geometric Modeling for Computer Vision. Technical
report, Department of Computer Science, Stanford University, Cali-
fornia, 1974.

[BBCS10] A. Bugeau, M. Bertalmı́o, V. Caselles, and G. Sapiro. A comprehen-
sive framework for image inpainting. IEEE Trans. on Image Process-
ing, 19(10):2634–2645, 2010. ISSN 1057-7149.

[BBPP10] L. Ballan, G.J. Brostow, J. Puwein, and M. Pollefeys. Unstructured
video-based rendering: interactive exploration of casually captured
videos. In ACM SIGGRAPH 2010 papers, SIGGRAPH ’10, pages
87:1–87:11. ACM, New York, NY, USA, 2010. ISBN 978-1-4503-
0210-4.

[BCGP10] A. Baeza, V. Caselles, P. Gargallo, and N. Papadakis. A narrow band
method for the convex formulation of discrete multilabel problems.
SIAM Journal on Multiscale Modeling & Simulation, 8:2048–2078,
2010. ISSN 1540-3459.

[BJ01] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal bound-
ary & region segmentation of objects in n-d images. In Proc. IEEE
International Conference on Computer Vision (ICCV’01), volume 1,
pages 105–112, 2001. ISBN 0-7695-1143-0c.

[BVZ98] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with effi-
cient approximations. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR’98), pages 648–655, 1998. ISBN 0-
8186-8497-6. ISSN 1063-6919.

[BVZ01] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-
imization via graph cuts. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 23(11):1222–1239, 2001. ISSN 0162-8828.

[Col96] R.T. Collins. A space-sweep approach to true multi-image matching.
In Proc. IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR ’96), pages 358–363, 1996.

[CPT04] A. Criminisi, P. Pérez, and K. Toyama. Region filling and object re-
moval by exemplar-based image inpainting. IEEE Transactions on
Image Processing, 13(9):1200–1212, 2004. ISSN 1057-7149.

31

[DYB98] P. Debevec, Y. Yu, and G. Boshokov. Efficient view-dependent image-
based rendering with projective texture-mapping. Technical report,
University of California at Berkeley, 1998.

[EHD00] A.M. Elgammal, D. Harwood, and L.S. Davis. Non-parametric model
for background subtraction. In Proc. European Conference on Com-
puter Vision (ECCV’00), volume 2, pages 751–767, 2000. ISSN 0302-
9743.

[EL99] A.A. Efros and T.K. Leung. Texture synthesis by non-parametric sam-
pling. In Proc. IEEE International Conference on Computer Vision
(ICCV’98), pages 1033–1038, 1999. ISBN 0-7695-0164-8.

[FB05] J.S. Franco and E. Boyer. Fusion of multiview silhouette cues using
a space occupancy grid. In Proc. IEEE International Conference on
Computer Vision (ICCV’05), volume 2, pages 1747–1753, 2005. ISBN
0-7695-2334-X.

[FP10] Y. Furukawa and J. Ponce. Accurate, dense, and robust multiview
stereopsis. IEEE transactions on pattern analysis and machine intel-
ligence, 38(8):1362–1376, 2010. ISSN 0162-8828.

[GCS06] M. Goesele, B. Curless, and S.M. Seitz. Multi-view stereo revisited. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2402–2409, 2006. ISBN 0-7695-2597-0.

[GH11] J.Y. Guillemaut and A Hilton. Joint multi-layer segmentation and re-
construction for free-viewpoint video applications. International Jour-
nal of Computer Vision, 93(1):73–100, 2011. ISSN 1573-1405.

[GHK+06] O. Grau, A. Hilton, J. Kilner, G. Miller, T. Sargeant, and J. Starck. A
free-viewpoint video system for visualisation of sport scenes publica-
tion details. In Proc. International Broadcasting Convention, 2006.

[GHS+07] J.Y. Guillemaut, A. Hilton, J. Starck, J. Kilner, and O. Grau. A
bayesian framework for simultaneous matting and 3d reconstruction.
In Proc. International Conference on 3-D Digital Imaging and Mod-
eling (3DIM’07), pages 167–176, 2007. ISSN 1550-6185.

[GKH09] J.Y. Guillemaut, J. Kilner, and A. Hilton. Robust graph-cut scene seg-
mentation and reconstruction for free-viewpoint video of complex dy-
namic scenes. In Proc. IEEE Internationla Conference on Computer
Vision (ICCV’09), pages 809–816, 2009. ISBN 978-1-4244-4420-5.

[GTH+07] O. Grau, GA Thomas, A. Hilton, J. Kilner, and J. Starck. A Robust
Free-Viewpoint Video System for Sport Scenes. In Proc. 3DTV Con-
ference, 2007, pages 1–4, 2007. ISBN 978-1-4244-0721-7.

32

[HK07] M. Habbecke and L. Kobbelt. A surface-growing approach to multi-
view stereo reconstruction. In Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’07), pages 1–8, 2007. ISBN
1-4244-1179-3.

[HP05] K. Hirakawa and T.W. Parks. Adaptive homogeneity-directed demo-
saicing algorithm. IEEE Trans. on Image Processing, 14(3):360–369,
2005. ISSN 1057-7149.

[HP10] G. Haro and M. Pardàs. Shape from incomplete silhouettes based
on the reprojection error. Image and Vision Computing, 28(9):1354–
1368, 2010. ISSN 0262-8856.

[HS88] C. Harris and M. Stephens. A combined corner and edge detection. In
Proc. of The Fourth Alvey Vis. Conf., pages 147–151, 1988.

[HZ03] R. Hartley and A. Zisserman. Multiple view geometry in computer
vision 2. Cambridge University Press New York, NY, USA, 2003.
ISBN 0521540518.

[IS02] N. Inamoto and H. Saito. Fly through view video generation of soccer
scene. In Proc. Entertainment computing: technologies and applica-
tions, page 109. Springer, 2002. ISBN 9781402073601.

[IS03] N. Inamoto and H. Saito. Immersive observation of virtualized soccer
match at real stadium model. In Proc. International Symposium on
Mixed and Augmented Reality (ISMAR03), pages 188–197. Citeseer,
2003. ISBN 0-7695-2006-5.

[JNS10] S. Jarusirisawad, V. Nozick, and H. Saito. Real-time video-based ren-
dering from uncalibrated cameras using plane-sweep algorithm. Jour-
nal of Visual Communication and Image Representation, 21:577–585,
July 2010. ISSN 1047-3203.

[KCB+06] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and C. Rother. Prob-
abilistic fusion of stereo with color and contrast for bilayer segmen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 28(9):1480–1492, 2006. ISSN 0162-8828.

[KKO03] T. Koyama, I. Kitahara, and Y. Ohta. Live mixed-reality 3d video
in soccer stadium. In Proc. International Symposium on Mixed and
Augmented Reality, pages 178–186, 2003. ISBN 0-7695-2006-5.

[KNR95] T. Kanade, P.J. Narayanan, and P.W. Rander. Virtualised reality: con-
cepts and early results. In Proc. of IEEE Workshop on Representation
of Visual Scenes, pages 69–76, 1995. ISBN 0-8186-7122-X.

33

[KOS+01] I. Kitahara, Y. Ohta, H. Saito, S. Akimichi, T. Ono, and T. Kanade.
Recording multiple videos in a large-scale space for large-scale
virtualized reality. In Proc. of International Display Workshops
(AD/IDW01), pages 1377–1380, 2001.

[KS00] K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving.
International Journal of Computer Vision, 38(3):199–218, 2000. ISSN
0920-5691.

[KZ01] V. Kolmogorov and R. Zabih. Computing Visual Correspondence
with Occlusions via Graph Cuts. In Proc. IEEE International Confer-
ence on Computer Vision (ICCV’01), volume 2, pages 508–515, 2001.
ISBN 0-7695-1143-0.

[KZ02] V. Kolmogorov and R. Zabih. Multicamera scene reconstruction
via graph cuts. In Proc. European Conference on Computer Vision
(ECCV’02), pages 82–96, 2002. ISBN 3-540/-43746-0.

[KZ04] V. Kolmogorov and R. Zabih. What Energy Functions Can Be Min-
imized via Graph Cuts? IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(2):147–159, 2004. ISSN 0162-8828.

[Lau94] A. Laurentini. The visual hull concept for silhouette-based image un-
derstanding. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 16(2):150–162, 1994. ISSN 0162-8828.

[LH06] H. Li and R. Hartley. Inverse tensor transfer with applications to novel
view synthesis and multi-baseline stereo. Signal Processing: Image
Communication, 21(9):724 – 738, 2006. ISSN 0923-5965.

[LL05] Q. Li and Y. Luo. Automatic camera calibration for images of soccer
match. World Academy of Science, Engineering and Technology, 1:
170–173, 2005.

[LLB+10] C. Lipski, C. Linz, K. Berger, A. Sellent, and M. Magnor. Virtual
video camera: Image-based viewpoint navigation through space and
time. Computer Graphics Forum, 29(8):2555–2568, December 2010.
ISSN 1467-8659.

[Low04] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60:91–110, 2004. ISSN
0920-5691.

[LPC08] J.L. Landabaso, M. Pardás, and J.R. Casas. Shape from inconsistent
silhouette. Computer Vision and Image Understanding, 112(2):210–
224, 2008. ISSN 1077-3142.

34

[NEC06] M. Nikolova, S. Esedoglu, and T.F. Chan. Algorithms for find-
ing global minimizers of image segmentation and denoising models.
SIAM Journal on Applied Mathematics, 66(5):1632–1648, 2006. ISSN
0036-1399.

[OKK+07] Y. Ohta, I. Kitahara, Y. Kameda, H. Ishikawa, and T. Koyama. Live 3D
video in soccer stadium. International Journal of Computer Vision, 75
(1):173–187, 2007. ISSN 0920-5691.

[PBGC10] N. Papadakis, A. Baeza, P. Gargallo, and V. Caselles. Polyconvexifi-
cation of the multi-label optical flow problem. In Proc. IEEE Inter-
national Conference on Image Processing (ICIP’10), pages 765–768,
2010. ISSN 1522-4880.

[PC10] N. Papadakis and V. Caselles. Multi-label depth estimation for graph
cuts stereo problems. Journal of Mathematical Imaging and Vision,
38(1):70–82, 2010. ISSN 0924-9907.

[SCD+06] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A
comparison and evaluation of multi-view stereo reconstruction algo-
rithms. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 1, pages 519–528, 2006. ISBN 0-
7695-2597-0. ISSN 1063-6919.

[SCG01] F. Szenberg, P. Carvalho, and M. Gattass. Automatic camera calibra-
tion for image sequences of a football match. In Proc. Advances in
Pattern Recognition (ICAPR’01), volume 2013, pages 303–312, 2001.
ISSN 0302-9743.

[SD99] S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by voxel
coloring. International Journal of Computer Vision, 35(2):151–173,
1999. ISBN 0-8186-7822-4.

[SG99] C. Stauffer and W.E.L. Grimson. Adaptive background mixture mod-
els for real-time tracking. In Proc. IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR ’99), volume 2, pages 252–258,
1999. ISSN 1063-6919.

[SGHS98] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth images.
In Proc. ACM Transactions on Graphics (SIGGRAPH’98), pages 231–
242, 1998. ISBN 0-89791-999-8.

[SH07] J. Starck and A. Hilton. Surface capture for performance-based anima-
tion. IEEE Computer Graphics and Applications, 27(3):21–31, 2007.
ISSN 0272-1716.

35

[SVZ00] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with graph
cuts. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’00), volume 1, pages 345–352, 2000. ISBN 0-
7695-0662-3.

[SZS03] J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief
propagation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 25(7):787–800, 2003. ISSN 0162-8828.

[TF03] M.F. Tappen and W.T. Freeman. Comparison of graph cuts with belief
propagation for stereo, using identical MRF parameters. In Proc. IEEE
International Conference on Computer Vision (ICCV’03), volume 2,
pages 900–906, 2003. ISBN 0-7695-1950-4.

[TMHF00] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle ad-
justment – a modern synthesis. In Vision Algorithms: Theory and
Practice, volume 1883 of Lecture Notes in Computer Science, pages
298–372, 2000. ISBN 978-3-540-67973-8.

[VBR+05] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-
dimensional scene flow. IEEE Trans. Pattern Anal. Mach. Intell., 27
(3):475–480, 2005. ISSN 0162-8828.

[YZ07] X. Ying and H. Zha. Camera calibration from a circle and a coplanar
point at infinity with applications to sports scenes analyses. In Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’07), pages 220–225, 2007. ISBN 978-1-4244-0912-9.

[ZKU+04] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski.
High-quality video view interpolation using a layered representation.
In Proc. ACM Transactions on Graphics (SIGGRAPH’04), volume 23,
issue 3, pages 600–608, 2004. ISSN 0730-0301.

[ZPB07] C. Zach, T. Pock, and H. Bischof. A globally optimal algorithm for
robust tv-l1 range image integration. In Proc. IEEE International Con-
ference on Computer Vision (ICCV’07), pages 1–8, 2007. ISBN 978-
1-4244-1631-8.

36

	Introduction
	Data acquisition
	Camera calibration

	3D representation of the players
	Background learning and segmentation
	Depth estimation
	Discussion on velocity and accuracy
	Temporal consistency

	Virtual view synthesis
	Virtual calibrations
	Virtual depth synthesis
	Player synthesis
	Playground and stadium synthesis

	Post-processing
	Image inpainting
	Temporal filtering

	Experimentation details
	Conclusion

