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Abstract

We study a class of reflected backward stochastic differential equations with non-

positive jumps and upper barrier. Existence and uniqueness of a minimal solution is

proved by a double penalization approach under regularity assumptions on the obstacle.

In a suitable regime switching diffusion framework, we show the connection between

our class of BSDEs and fully nonlinear variational inequalities. Our BSDE representa-

tion provides in particular a Feynman-Kac type formula for PDEs associated to general

zero-sum stochastic differential controller-and-stopper games, where control affect both

drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we

state a dual game formula of this BSDE minimal solution involving equivalent change

of probability measures, and discount processes. This gives in particular a new repre-

sentation for zero-sum stochastic differential controller-and-stopper games.
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1 Introduction

Backward stochastic differential equations (BSDEs), introduced in the seminal paper by

Pardoux and Peng [23], have emerged over the last years as a major topic in probability,

especially through its deep connection with nonlinear PDEs and associated probabilistic

numerical methods, and stochastic control in mathematical finance. A solution to a stan-

dard BSDE on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) generated by an R
d-valued

Brownian motion W , is a pair of a progressively measurable process (Y,Z) satisfying:

Yt = ξ +

∫ T

t

F (s, Ys, Zs)ds−

∫ T

t

ZsdWs, 0 ≤ t ≤ T, (1.1)

where the generator F is a progressively measurable function, and the terminal data ξ is FT -

measurable. In the Markovian case where ξ(ω) = g(WT (ω)), F (t, ω, y, z) = f0(Wt(ω), y, z),

for some continuous functions g and f0 on R
d and R

d ×R×R
d, it is well-known from [24]

that BSDE (1.1) provides a Feynman-Kac formula to the semi-linear partial differential

equation (PDE):

∂v

∂t
+

1

2
tr(D2

xv) + f0(x, v,Dxv) = 0, on [0, T ) × R
d, (1.2)

with terminal condition v(T, ·) = g, through the relation: Yt = v(t,Wt), 0 ≤ t ≤ T . We

also notice that when the function f0 is in the form: f0(x, z) = supa∈A[f(x, a) + a.z],

for some function f on R
d × A, with A compact set of R

d, then the semi-linear PDE

(1.2) is the Hamilton-Jacobi-Bellman equation for a stochastic control problem, where the

controller can affect only the drift of the Brownian motion: Wt+
∫ t

0 αsds, by a progressively

measurable process α valued in A, and with a running gain function f . The extension of a

standard BSDE driven by a Brownian motion and an independent Poisson random measure

was considered in [30] and [2], and is shown to be related in a Markovian framework to

semi-linear integro-PDE.

The notion of reflected BSDE was introduced by El Karoui et al. [7], and consists in

the addition (resp. subtraction) of a nondecreasing process to the standard BSDE (1.1)

in order to keep the solution Y above (resp. below) a lower (resp. upper) obstacle, and

chosen in a minimal way via the so-called Skorohod condition. Existence and uniqueness

results for reflected BSDEs under general assumptions on the obstacle have been investi-

gated in several papers, among others [9], [18], [26]. We also mention works by [12] and [8]

for reflected BSDEs driven by Brownian motion and Poisson random measure. An impor-

tant application of reflected BSDE is its connection to optimal stopping problems and its

associated variational inequalities in the Markovian case.

The extension to fully nonlinear PDE, motivated in particular by uncertain volatility

model and more generally by stochastic control problem where control can affect both drift

and diffusion terms of the state process, generated important recent developments. Soner,

Touzi and Zhang [29] introduced the notion of second order BSDEs (2BSDEs), whose

basic idea is to require that the solution verifies the equation P
α a.s. for every probability

measure in a non dominated class of mutually singular measures. This theory is closely

related to the notion of nonlinear and G-expectation of Peng [27]. Alternatively, Kharroubi
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and Pham [16], following [17], introduced the notion of BSDE with nonpositive jumps. The

basic idea was to constrain the jumps-component solution to the BSDE driven by Brownian

motion and Poisson random measure, to remain nonpositive, by adding a nondecreasing

process in a minimal way. A key feature of this class of BSDEs is its formulation under

a single probability measure in contrast with 2BSDEs, thus avoiding technical issues in

quasi-sure analysis, and its connection with fully nonlinear HJB equation when considering

a Markovian framework with a simulatable regime switching diffusion process, defined as

a randomization of the controlled state process. This approach opens new perspectives for

probabilistic scheme for fully nonlinear PDEs as currently investigated in [15].

In this paper, we define a class of reflected BSDEs with nonpositive jumps and upper

obstacle. As in the case of doubly reflected BSDEs with lower and upper obstacles, related

to Dynkin games, our BSDE formulation involves the introduction of two nondecreasing

processes, one corresponding to the nonpositive jump constraint and added in a minimal

way, and the other associated to the upper reflection, satisfying the Skorohod condition,

and acting in the opposite direction. The first aim of this paper is to prove the existence

and uniqueness of a minimal solution to reflected BSDEs with nonpositive jumps and

upper obstacle. We use a double penalization approach, and the main issue is to obtain

uniform estimates on both penalized nondecreasing processes associated on one hand to the

nonpositive jumps constraint and on the other hand to the upper obstacle. This is achieved

under some regularity assumptions on the upper obstacle. It is worth mentioning that the

running order of the limits in the double penalization is crucial, in contrast with the case

of upper and lower reflection. Indeed, we do not have comparison results on the jump-

component solution of a BSDE, and so a priori rather few information on the sequence

of nondecreasing processes associated to the jump constraint, whereas one can exploit

comparison results on the Y -component of a BSDE in order to derive useful monotonicity

property for the sequence of nondecreasing processes associated to the upper obstacle. Once,

we get uniform estimates, we conclude by a monotonic convergence theorem for BSDEs.

We also prove a dual game representation formula for the minimal solution to our BSDE,

in terms of equivalent probability measures and discount processes.

The main motivation for considering such class of upper-reflected BSDEs with nonpos-

itive jumps arises from a zero-sum stochastic differential game between a controller and a

stopper: the controller can manipulate a state process Xα in R
d through the selection of

the control α valued in A, while the stopper has the right to choose the duration of the

game via a stopping time τ . The stopper would like to minimize his expected cost:

E

[

∫ τ

0
f(Xα

t , αt)dt+ g(Xα
τ )

]

, (1.3)

over all choices of τ , while the controller plays against him by maximizing (1.3) over all

choices of α. Controller-and-stopper game problem was studied in [13] when the state

process Xα is a one-dimensional diffusion, in [14] by a martingale approach and in [10]

by BSDE methods, but only when the drift is controlled. General existence results for

optimal actions and saddle point were recently obtained in [22] in a non Markovian and

non dominated framework by exploiting the theory of nonlinear expectations. We also

mention the recent papers [20], [21] where the authors considered 2BSDE with reflection,
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in connection with optimal stopping and Dynkin game under nonlinear expectation. In the

Markovian case where both drift b(Xα, α) and diffusion term σ(Xα, α) of the state process

Xα are controlled (hence in a non dominated framework), the recent paper [3] proved the

existence of the game value, by a comparison principle for the associated Hamilton-Jacobi-

Bellman Isaacs equation:

max
[

−
∂v

∂t
− sup

a∈A

(

b(x, a).Dxv +
1

2
tr(σσ⊺(x, a)D2

xv) + f(x, a)
)

; (1.4)

v − g
]

= 0, on [0, T )× R
d.

Our second main result is to connect the minimal solution to our reflected BSDE with

nonpositive jumps to a general Markovian controller-and-stopper game problem through

the HJB Isaacs equation (1.4). We follow the idea in [4] and [16] by a randomization of the

state process Xα, and thus consider a regime switching forward diffusion process X with

drift b(Xt, It) and diffusion coefficient σ(Xt, It), where It is a pure jump process associated

to the Poisson random measure driving the BSDE. The minimal solution Yt to the reflected

BSDE with nonpositive jumps, with terminal data ξ = g(XT ), upper obstacle Ut = u(t,Xt),

and generator f(Xt, It, Yt, Zt), is written in this Markovian framework as: Yt = v(t,Xt, It)

for some deterministic function v. It appears as in [16] that actually v does not depend on

a in the interior of A as a consequence of the non positivity jumps constraint, and we show

that v is a viscosity solution to the general HJB Isaacs equation (1.4) where the generator

f(x, a, v, σ⊺Dxv) may depend also on v and Dxv.

The rest of the paper is organized as follows. Section 2 gives a detailed formulation

of reflected BSDE with nonpositive jumps and upper obstacle. Section 3 is devoted to

the existence of a minimal solution to our BSDE by a double penalization approach. We

derive in Section 4 a dual game representation formula for the BSDE minimal solution.

Section 5 makes the connection of the minimal BSDE-solution to fully nonlinear variational

inequalities of HJB Isaacs type. We conclude in Section 6 by indicating some possible

extensions to our paper. Finally, in the appendix, we recall some useful comparison results

for BSDE with jumps, and state a monotonic convergence theorem, which extends to the

jump case the result in [26].

2 Reflected BSDE with nonpositive jumps

Let (Ω,F ,P) be a complete probability space on which are defined a d-dimensional Brown-

ian motion W = (Wt)t≥0 and a Poisson random measure µ on R+×A, where A is a compact

subset of Rq, endowed with its Borel σ-field B(A). We assume that W and µ are indepen-

dent, and µ has an intensity measure λ(da)dt for some finite measure λ on (A,B(A)). We

set µ̃(dt, da) = µ(dt, da) − λ(da)dt the compensated martingale measure associated to µ,

and denote by F = (Ft)t≥0 the completion of the natural filtration generated by W and µ.

We fix a finite time duration T < ∞ and we denote by P the σ-field of F-predictable

subsets of Ω× [0, T ]. Let us introduce some additional notations. We denote by:

• Lp(Ft), p ≥ 1, 0 ≤ t ≤ T , the set of Ft-measurable random variables X such that

E|X|p < ∞.
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• S2 the set of real-valued càdlàg adapted processes Y = (Yt)0≤t≤T such that

‖Y ‖2
S2

:= E

[

sup
0≤t≤T

|Yt|
2
]

< ∞.

• Lp(0,T), p ≥ 1, the set of real-valued adapted processes (φt)0≤t≤T such that

‖φ‖p
Lp(0,T)

:= E

[
∫ T

0
|φt|

pdt

]

< ∞.

• Lp(W), p ≥ 1, the set of Rd-valued P-measurable processes Z = (Zt)0≤t≤T such that

‖Z‖p
Lp(W)

:= E

[(
∫ T

0
|Zt|

2dt

)
p

2
]

< ∞.

• Lp(µ̃), p ≥ 1, the set of P ⊗B(A)-measurable maps L : Ω× [0, T ]×A → R such that

‖L‖p
Lp(µ̃)

:= E

[(
∫ T

0

∫

A

|Lt(a)|
2λ(da)dt

)
p
2
]

< ∞.

• L2(λ) the set of B(A)-measurable maps ℓ : A → R such that

|ℓ|2
L2(λ)

:=

∫

A

|ℓ(a)|2λ(da) < ∞.

• K2 the set of nondecreasing predictable processes K = (Kt)0≤t≤T ∈ S2 with K0 =

0, so that

‖K‖2
S2

= E|KT |
2.

We are then given three objects:

1. A terminal condition ξ ∈ L2(FT ).

2. A generator function F : Ω × [0, T ] × R × R
d × L2(λ) → R, which is a P ⊗ B(R) ⊗

B(Rd)⊗ B(L2(λ))-measurable map, satisfying:

(i) The square integrability condition:

E

[
∫ T

0
|F (t, 0, 0, 0)|2dt

]

< ∞.

(ii) The uniform Lipschitz condition:

|F (t, y, z, ℓ) − F (t, y′, z′, ℓ′)| ≤ CF

(

|y − y′|+ |z − z′|+ |ℓ− ℓ′|
L2(λ)

)

,

for all t ∈ [0, T ], y, y′ ∈ R, z, z′ ∈ R
d, and ℓ, ℓ′ ∈ L2(λ), where CF is some

positive constant.
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(iii) The monotonicity condition:

F (t, y, z, ℓ) − F (t, y, z, ℓ′) ≤

∫

A

(ℓ(a)− ℓ′(a))γ(t, y, z, ℓ, ℓ′, a)λ(da), (2.1)

for all t ∈ [0, T ], y ∈ R, z ∈ R
d, and ℓ, ℓ′ ∈ L2(λ), where γ : Ω× [0, T ]×R×R

d×

L2(λ)×L2(λ)×A → R is a P ⊗ B(R)⊗B(Rd)⊗B(L2(λ))⊗B(L2(λ))⊗B(A)-

measurable map satisfying: 0 ≤ γ(t, y, z, ℓ, ℓ′, a) ≤ Cγ , for all t ∈ [0, T ], y ∈ R,

z ∈ R
d, ℓ, ℓ′ ∈ L2(λ), and a ∈ A, for some positive constant Cγ .

3. An upper barrier U ∈ S2 satisfying UT ≥ ξ, almost surely.

Let us now consider our problem of reflected BSDE with nonpositive jumps. We say

that a quintuple (Y,Z,L,K+,K−) ∈ S2 × L2(W)× L2(µ̃)×K2 ×K2 is a solution to the

upper-reflected BSDE with nonpositive jumps with data (ξ, F, U) if the following relation

holds:

Yt = ξ +

∫ T

t

F (s, Ys, Zs, Ls)ds+K+
T −K+

t − (K−
T −K−

t ) (2.2)

−

∫ T

t

ZsdWs −

∫ T

t

∫

A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s.

together with the jump constraint

Lt(a) ≤ 0 , dP⊗ dt⊗ λ(da) a.e. (2.3)

and the upper constraint

Yt ≤ Ut , 0 ≤ t ≤ T, a.s. (2.4)
∫ T

0
(Ut− − Yt−)dK

−
t = 0 , a.s. (2.5)

We look for the minimal solution (Y,Z,L,K+,K−), in the sense that for any other

solution (Ỹ , Z̃, L̃, K̃+, K̃−) to the reflected BSDE with nonpositive jumps (2.2)-(2.3)-(2.4)-

(2.5), it must hold that Y ≤ Ỹ .

Remark 2.1 We have chosen to formulate the BSDE (2.2) directly in terms of the random

measure µ instead of the compensated random measure µ̃ since we dealt with finite intensity

measure λ(A) < ∞. Of course, one can formulate equivalently the BSDE (2.2) in terms of

µ̃ by changing the generator F to:

F̃ (t, y, z, ℓ) = F (t, y, z, ℓ) −

∫

A

ℓ(a)λ(da).

In this case, the monotonicity condition (2.1) for F̃ holds with a measurable map γ̃ satis-

fying: −1 ≤ γ̃(t, y, z, ℓ, ℓ′, a) ≤ Cγ̃ , for all t ∈ [0, T ], y ∈ R, z ∈ R
d, ℓ, ℓ′ ∈ L2(λ), and a ∈

A, for some positive constant Cγ̃ . 2
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Remark 2.2 Uniqueness of the minimal solution. Uniqueness of a minimal solution holds

in the following sense: if (Y,Z,L,K+,K−) and (Y, Z̃, L̃, K̃+, K̃−) are minimal solutions to

(2.2)-(2.3)-(2.4)-(2.5), then Y = Y ′, Z = Z ′, L = L′, and K+ − K− = K̃+ − K̃−. As a

matter of fact, the uniqueness of the Y component is clear by definition. Then, denoting

by K : = K+ −K−, and K̃ := K̃+ − K̃−, which are predictable finite variation processes,

we have
∫ t

0

[

F (s, Ys, Zs, Ls)− F (s, Ys, Z̃s, L̃s)
]

ds +Kt − K̃t

+

∫ t

0
(Z̃s − Zs)dWs +

∫ t

0

∫

A

(L̃s(a)− Ls(a))µ(ds, da) = 0,

for all t ∈ [0, T ], almost surely. The uniqueness of Z = Z̃ follows by identifying the Brownian

part and the finite variation part, while the uniqueness of (L,K) = (L̃, K̃) is obtained by

identifying the predictable part, and by recalling that the jumps of µ are totally inaccessible.

2

The main feature in this class of BSDEs is to consider a reflection constraint on Y in

addition to the nonpositive jump constraint as already studied in [17] and [16]. Moreover, we

deal with an upper barrier U associated to a nondecreasing process K−, which is subtracted

in (2.2) from the nondecreasing processK+ associated to the nonpositive constrained jumps.

In order to ensure that the problem of getting a minimal solution to (2.2)-(2.3)-(2.4)-(2.5) is

well-posed, and similarly as in [16], we make the assumption that there exists a supersolution

to the BSDE with nonpositive jumps, namely:

(H0) There exists (Ȳ , Z̄, L̄, K̄+) ∈ S2 × L2(W) × L2(µ̃) × K2 satisfying the BSDE

with nonpositive jumps:

Ȳt = ξ +

∫ T

t

F (s, Ȳs, Z̄s, L̄s)ds + K̄+
T − K̄+

t (2.6)

−

∫ T

t

Z̄sdWs −

∫ T

t

∫

A

L̄s(a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

and

L̄t(a) ≤ 0 , dP⊗ dt⊗ λ(da) a.e. (2.7)

We shall see later in the Markovian case (see Remark 5.2) how this condition (H0) is

directly satisfied.

3 Existence and approximation by double penalization

This section is devoted to the existence of the minimal solution to (2.2)-(2.3)-(2.4)-(2.5).

We use a penalization approach and introduce the doubly indexed sequence of BSDEs with

jumps:

Y n,m
t = ξ +

∫ T

t

F (s, Y n,m
s , Zn,m

s , Ln,m
s )ds+Kn,m,+

T −Kn,m,+
t − (Kn,m,−

T −Kn,m,−
t )
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−

∫ T

t

Zn,m
s dWs −

∫ T

t

∫

A

Ln,m
s (a)µ(ds, da), (3.1)

for n,m ∈ N, where Kn,m,+ and Kn,m,− are the nondecreasing continuous processes in K2

defined by

Kn,m,+
t = m

∫ t

0

∫

A

(Ln,m
s (a))+λ(da)ds, Kn,m,−

t = n

∫ t

0
(Us − Y n,m

s )−ds.

Here we use the notation f+ = max(f, 0) and f− = max(−f, 0) to denote the positive and

negative parts of f . Notice that this penalized BSDE can be written as

Y n,m
t = ξ +

∫ T

t

Fn,m(s, Y n,m
s , Zn,m

s , Ln,m
s )ds−

∫ T

t

Zn,m
s dWs −

∫ T

t

∫

A

Ln,m
s (a)µ(ds, da),

with a generator Fn,m given by

Fn,m(t, y, z, ℓ) = F (t, y, z, ℓ) +m

∫

A

(ℓ(a))+λ(da)− n(Ut − y)−, a.s.

for (t, y, z, ℓ) ∈ [0, T ] × R × R
d × L2(λ). Observe that the generator Fn,m satisfies the

assumptions of square integrability and uniform Lipschitzianity, which ensure by Lemma 2.4

in [30] the existence and uniqueness of a solution (Y n,m, Zn,m, Ln,m) ∈ S2×L2(W)×L2(µ̃)

to the BSDE with jumps (3.1). Notice also that Fn,m satisfies the monotonicity condition

(2.1), is increasing in m for any fixed n, and decreasing in n for any fixed m. Thus, by the

comparison Theorem A.1, we deduce that (Y n,m)n,m inherits the same property:

Y n+1,m ≤ Y n,m ≤ Y n,m+1, ∀n,m ∈ N. (3.2)

We shall first fix m, and let n to infinity, and then let m to infinity (the order of the limits is

important here, see Remark 3.2). The key point, as in the case of doubly reflected BSDEs

related to Dynkin games, is to deal with the difference of the nondecreasing processesKn,m+

and Kn,m,−, and the main difficulty is to prove their convergence towards respectively the

nondecreasing processes K+ and K−, which appear in the minimal solution to the reflected

BSDE with nonpositive jumps we are looking for. We have to impose some regularity

conditions on the upper barrier process that will be precised later.

For fixed m, let us now consider the reflected BSDE with jumps:

Y m
t = ξ +

∫ T

t

Fm(s, Y m
s , Zm

s , Lm
s )ds− (Km,−

T −Km,−
t ) (3.3)

−

∫ T

t

Zm
s dWs −

∫ T

t

∫

A

Lm
s (a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

and

Y m
t ≤ Ut , 0 ≤ t ≤ T, a.s. (3.4)

∫ T

0
(Ut− − Y m

t− )dK
m,−
t = 0 , a.s. (3.5)

8



where

Fm(t, y, z, ℓ) = F (t, y, z, ℓ) +m

∫

A

(ℓ(a))+λ(da) , a.s. (3.6)

for (t, y, z, ℓ) ∈ [0, T ]×R×R
d×L2(λ). We know from Theorem 4.2 in [12] that there exists

a unique solution (Y m, Zm, Lm,Km,−) ∈ S2×L2(W)×L2(µ̃)×K2 to the reflected BSDE

with jumps (3.3)-(3.4)-(3.5).

Remark 3.1 Note that in [12] the existence of (Y m, Zm, Lm,Km,−) is proved using a fixed

point argument and not through the penalized sequence (Y n,m, Zn,m, Ln,m), except for the

particular case where the generator Fn,m(t, ω) does not depend on y, z, ℓ, see Theorem

4.1 and Remark 4.1(i) in [12]. The reason is that in [12] the authors do not impose any

monotonicity condition on the generator F and therefore they do not have at disposal a com-

parison theorem for BSDEs with jumps. Nevertheless, under our monotonicity condition

(2.1) and by means of the comparison Theorem A.1, the existence of (Y m, Zm, Lm,Km,−)

can be proved via the penalized sequence (Y n,m, Zn,m, Ln,m). This program is carried out

in [8], Theorem 5.1, even though under the additional hypothesis that the barrier U is a P-

measurable process. More precisely, it can be shown that Y m is obtained as the decreasing

limit of Y n,m when n goes to infinity:

Y m
t = lim

n→∞
↓ Y n,m

t , 0 ≤ t ≤ T, a.s.

and this convergence also holds in L2(0,T). Furthermore, (Zn,m, Ln,m) converges weakly

to (Zm, Lm) in L2(W) × L2(µ̃), and we have the strong convergence

(Zn,m, Ln,m) → (Zm, Lm) in Lp(W) × Lp(µ̃), as n → ∞,

for any p ∈ [1, 2), while

Kn,m,−
t ⇀ Km,−

t weakly in L2(Ft), as n → ∞

for all 0 ≤ t ≤ T . 2

We first derive the following important property on the sequence of nondecreasing pro-

cesses (Km,−).

Lemma 3.1 The sequence of processes (Km,−)m satisfies:

Km,−
t −Km,−

s ≤ Km+1,−
t −Km+1,−

s , 0 ≤ s ≤ t ≤ T, a.s., ∀m ∈ N. (3.7)

Proof. By definition of Kn,m,−, and from (3.2), we clearly have for all n,m ∈ N:

Kn,m,−
t −Kn,m,−

s ≤ Kn,m+1,−
t −Kn,m+1,−

s , 0 ≤ s ≤ t ≤ T, a.s.

Thus, by passing to the (weak) limit as n goes to infinity, we get the required result. 2

By (3.2), we see that (Y m)m is a nondecreasing sequence: Y m ≤ Y m+1, and we denote:

Y t := Y 0
t , 0 ≤ t ≤ T,

9



which thus provides a lower bound for the sequences (Y m) and (Y n,m):

Y t ≤ Y m
t ≤ Y n,m

t , 0 ≤ t ≤ T, ∀n,m ∈ N. (3.8)

Moreover, under condition (H0), we observe that the quintuple (Ȳ , Z̄, L̄, K̄+, K̄−) satisfies
∫

A
(L̄t(a))+λ(da) = 0 dt⊗ dP a.e. so that

Fn,m(t, Ȳt, Z̄t, L̄t) ≤ F (Ȳt, Z̄t, L̄t), dt⊗ dP a.e.

By the comparison Theorem A.1, we then get an upper bound for the sequences (Y m) and

(Y n,m):

Y m
t ≤ Y n,m

t ≤ Ȳt, 0 ≤ t ≤ T,∀n,m ∈ N. (3.9)

By standard arguments, we now state some estimates on the doubly indexed sequence

(Y n,m, Zn,m, Ln,m,Kn,m,+) expressed in terms of (Kn,m,−).

Lemma 3.2 Let assumption (H0) hold. Then there exists a positive constant C, such that

for all n,m ∈ N,

‖Y n,m‖2
S2

+ ‖Zn,m‖2
L2(W)

+ ‖Ln,m‖2
L2(µ̃)

+ ‖Kn,m,+‖2
S2

≤ C

(

E|ξ|2 + E

∫ T

0
|F (s, 0, 0, 0)|2ds+

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2
+ ‖Kn,m,−‖2

S2

)

. (3.10)

Proof. In what follows we shall denote by C > 0 a generic positive constant depending only

on T , λ(A), and the Lipschitz constant of F , which may vary from line to line. Proceeding

as in the proof of Lemma 3.3 in [16], we apply Itô’s formula to |Y n,m
s |2 between t and T ,

and get after some rearrangement:

E|Y n,m
t |2 + ‖Zn,m1[t,T ]‖

2

L2(W)
+ ‖Ln,m1[t,T ]‖

2

L2(µ̃)

= E|ξ|2 + 2E

∫ T

t

Y n,m
s F (s, Y n,m

s , Zn,m
s , Ln,m

s )ds − 2E

∫ T

t

∫

A

Y n,m

s−
Ln,m
s (a)λ(da)ds

+ 2E

∫ T

t

Y n,m
s dKn,m,+

s − 2E

∫ T

t

Y n,m
s dKn,m,−

s . (3.11)

By the linear growth condition on F , the inequality ab ≤ a2/2 + b2/2, and recalling that

λ(A) < ∞, we get

2E

∫ T

t

Y n,m
s F (s, Y n,m

s , Zn,m
s , Ln,m

s )ds − 2E

∫ T

t

∫

A

Y n,m

s−
Ln,m
s (a)λ(da)ds (3.12)

≤CE

∫ T

t

|Y n,m
s |2ds+

1

2
E

∫ T

0
|F (s, 0, 0, 0)|2ds+

1

2
‖Zn,m1[t,T ]‖

2
L2(W)

+
1

2
‖Ln,m1[t,T ]‖

2
L2(µ̃)

.

From the bounds (3.8)-(3.9) on Y n,m: Y ≤ Y n,m ≤ Ȳ , and thanks to the inequality 2ab ≤

a2/α + αb2 for any constant α > 0, we have

2E

∫ T

t

Y n,m
s dKn,m,+

s − 2E

∫ T

t

Y n,m
s dKn,m,−

s

10



≤
1

α

(

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2

)

+ αE|Kn,m,+
T −Kn,m,+

t |2 + αE|Kn,m,−
T −Kn,m,−

t |2

≤
1

α

(

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2

)

+ 3αE|Kn,m,−
T −Kn,m,−

t |2 + 2αE|Kn,m
T −Kn,m

t |2,

where we set Kn,m
t := Kn,m,+

t − Kn,m,−
t , so that E|Kn,m,+

T −Kn,m,+
t |2 ≤ 2E|Kn,m

T −Kn,m
t |2

+ 2E|Kn,m,−
T −Kn,m,−

t |2. Together with (3.12) and (3.11), this yields:

E|Y n,m
t |2 +

1

2
‖Zn,m1[t,T ]‖

2

L2(W)
+

1

2
‖Ln,m1[t,T ]‖

2

L2(µ̃)

≤ CE

∫ T

t

|Y n,m
s |2ds+ E|ξ|2 +

1

2
E

∫ T

0
|F (s, 0, 0, 0)|2ds+

1

α

(

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2

)

+ 3αE|Kn,m,−
T −Kn,m,−

t |2 + 2αE|Kn,m
T −Kn,m

t |2. (3.13)

Now, from the relation (3.1), we have

Kn,m
T −Kn,m

t = Y n,m
t − ξ −

∫ T

t

F (s, Y n,m
s , Zn,m

s , Ln,m
s )ds

+

∫ T

t

Zn,m
s dWs +

∫ T

t

∫

A

Ln,m
s (a)µ(ds, da),

so that by the linear growth condition on F :

E|Kn,m
T −Kn,m

t |2 ≤ C

(

E|ξ|2 + E

∫ T

0
|F (s, 0, 0, 0)|2ds+ E|Y n,m

t |2 (3.14)

+ E

∫ T

t

|Y n,m
s |2ds+ ‖Zn,m1[t,T ]‖

2
L2(W) + ‖Ln,m1[t,T ]‖

2
L2(µ̃)

)

.

By choosing α > 0 such that 2αC ≤ 1/4, and plugging this estimate of E|Kn,m
T −Kn,m

t |2

into (3.13), we get for all 0 ≤ t ≤ T :

3

4
E|Y n,m

t |2 +
1

4
‖Zn,m1[t,T ]‖

2
L2(W)

+
1

4
‖Ln,m1[t,T ]‖

2
L2(µ̃)

≤ CE

∫ T

t

|Y n,m
s |2ds+

5

4
E|ξ|2 +

3

4
E

∫ T

0
|F (s, 0, 0, 0)|2ds

+
1

α

(

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2

)

+ 3αE|Kn,m,−
T −Kn,m,−

t |2

≤ C

(

∥

∥Y
∥

∥

2

S2
+

∥

∥Ȳ
∥

∥

2

S2
+ E|ξ|2 + E

∫ T

0
|F (s, 0, 0, 0)|2ds

)

+ 12α‖Kn,m,−‖2S2 , (3.15)

where we used again the bounds Y ≤ Y n,m ≤ Ȳ and the inequality E|Kn,m,−
T −Kn,m,−

t |2

≤ 4E|Kn,m,−
T |2. This proves, taking t = 0 in (3.15), the required estimate (3.10) for

(Zn,m, Ln,m), and also for Kn,m,+ by (3.14), and recalling that E|Kn,m,+
T |2 ≤ 2E|Kn,m

T |2 +

2E|Kn,m,−
T |2. Finally, the estimate for ‖Y n,m‖

S2
in (3.10) follows as usual from the relation

(3.1), Burkholder-Davis-Gundy inequality, and the estimates for (Zn,m, Ln,m,Kn,m,+). 2

The key point is now to obtain a uniform estimate on Kn,m,−, and consequently uni-

form estimates on (Y n,m, Zn,m, Ln,m,Kn,m,+) in view of Lemma 3.2. Let us introduce the

following set of probability measures. For m ∈ N, let Vm be the set of P⊗B(A)-measurable
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processes valued in (0,m], V = ∪mVm, and given ν ∈ V, consider the probability measure

P
ν equivalent to P on (Ω,FT ) with Radon-Nikodym density:

dPν

dP

∣

∣

∣

∣

Ft

= ζνt := Et

(
∫ .

0

∫

A

(νs(a)− 1)µ̃(ds, da)

)

,

where Et(·) is the Doléans-Dade exponential. Indeed, since ν ∈ V is essentially bounded,

and λ(A) < ∞, it is known that ζν is a uniformly integrable martingale (see e.g. Lemma

4.1 in [16]), and so defines a probability measure P
ν . Moreover, ζνT ∈ Lp(FT ) for any

p ≥ 1. Notice that the Brownian motion W remains a Brownian motion W under P
ν ,

while the effect of the probability measure P
ν , by Girsanov’s theorem, is to change the

compensator λ(da)dt of µ under P to νt(a)λ(da)dt under P
ν. We then denote by µ̃ν(dt, da)

:= µ(dt, da)− νt(a)λ(da)dt the compensated martingale measure of µ under Pν.

Inspired by [11] (see also [5]), we make the following regularity assumption on the upper

barrier:

(H1) There exists a nonincreasing sequence of processes (Uk)k such that:

(i) limk→∞Uk
t = Ut, for all 0 ≤ t ≤ T , a.s..

(ii) For any k ∈ N, Uk is in the form:

Uk
t = Uk

0 +

∫ t

0
υksds+

∫ t

0
ϑk
sdWs, 0 ≤ t ≤ T, a.s.

where (υk)k ⊂ L2(0,T) and (ϑk)k ⊂ L2(W).

(iii) There exists some p > 2 such that:

sup
k∈N

∫ T

0
E

[

ess sup
ν∈V

E
ν
[

sup
t≤s≤T

(

|Uk
s |

p + |υks |
p + |ϑk

s |
p
)
∣

∣Ft

]

]

dt

+

∫ T

0
E

[

ess sup
ν∈V

E
ν
[

sup
t≤s≤T

∣

∣F (s, 0, 0, 0)
∣

∣

p∣
∣Ft

]

]

dt < ∞.

We shall see later in the Markovian framework how Assumption (H1) is automatically

satisfied, see Remark 5.3. The following key lemma states a uniform estimate for Kn,m,−

under condition (H1).

Lemma 3.3 Under condition (H1), we have

sup
n,m∈N

∥

∥Kn,m,−
∥

∥

S2
< ∞.

Proof. Let (Uk)k be in the form as in assumption (H1)(ii) and consider for positive

integers n,m, k, the difference Ȳ n,m,k := Y n,m − Uk, which is then expressed in backward

form as:

Ȳ n,m,k
t = ξ − Uk

T +

∫ T

t

(

F (s, Y n,m
s , Zn,m

s , Ln,m
s ) + υks

)

ds

12



+ m

∫ T

t

∫

A

(Ln,m
s (a))+λ(da)ds − n

∫ T

t

(Us − Uk
s − Ȳ n,m,k

s )−ds

−

∫ T

t

(

Zn,m
s − ϑk

s

)

dWs −

∫ T

t

∫

A

Ln,m
s (a)µ(ds, da). (3.16)

Now, by the Lipschitz condition of F in (y, z), and the monotonicity condition (2.1) of F

in ℓ, we have for all n,m ∈ N:

F (t, Y n,m
t , Zn,m

t , Ln,m
t ) = F (t, 0, 0, 0) + αn,m

t Y n,m
t + βn,m

t .Zn,m
t

+

∫

A

γn,mt (a)Ln,m
t (a)λ(da) − δn,mt ,

for some sequence of bounded predictable processes (αn,m) valued in R, (βn,m) valued

in R
d, uniformly bounded in n,m, a nonnegative sequence of predictable process (δn,m),

and a nonnegative sequence of bounded P ⊗ B(A)-measurable maps (γn,m), uniformly

bounded in n,m. Plug this decomposition of F into (3.16), and let us consider the process

{Γn,m
ts , t ≤ s ≤ T} of dynamics:

dΓn,m
ts = Γn,m

ts [(αn,m
s − n)ds+ βn,m

s dWs], t ≤ s ≤ T, Γn,m
tt = 1,

and given explicitly by:

Γn,m
ts = e−n(s−t)e

∫ s

t
α
n,m
u duMn,m

ts , Mn,m
ts =

Es
( ∫ .

0 β
n,m
u dWu

)

Et
( ∫ .

0 β
n,m
u dWu

) , t ≤ s ≤ T,

where Et(·) is the Doléans-Dade exponential. Since βn,m is a bounded process, we see that

{Mn,m
ts , t ≤ s ≤ T} is a uniformly integrable martingale, with Mn,m

tT ∈ Lp(FT ) for any p ≥

1. By applying Itô’s formula to the product {Γn,m
ts Ȳ n,m,k

s , t ≤ s ≤ T}, we then obtain:

Ȳ n,m,k
t = Γn,m

tT

(

ξ − Uk
T

)

+

∫ T

t

Γn,m
ts

(

F (s, 0, 0, 0) + αn,m
s Uk

s + βn,m
s ϑk

s + υks
)

ds

+

∫ T

t

Γn,m
ts

[

nȲ n,m,k
s − n(Us − Uk

s − Ȳ n,m,k
s )− − δn,ms

]

ds

+

∫ T

t

∫

A

Γn,m
ts

[

γn,ms (a)Ln,m
s (a) +m(Ln,m

s (a))+ − νs(a)L
n,m
s (a)

]

λ(da)ds

−

∫ T

t

Γn,m
ts

(

Zn,m
s − ϑk

s + Ȳ n,m,k
s βn,m

s

)

dWs −

∫ T

t

∫

A

Γn,m
ts Ln,m

s (a)µ̃ν(ds, da),

for any ν ∈ V, where we introduced the compensated measure µ̃ν of µ under Pν. By choosing

ν = νn,m,ε ∈ V defined by: νn,m,ε
t (a) = (γn,mt (a)+m)1{Ln,m

t (a)≥0}+(γn,mt (a)+ε)1{Ln,m
t (a)<0},

for some arbitrary ε > 0, we see that:

γn,mt (a)Ln,m
t (a) +m(Ln,m

t (a))+ − νn,mt (a)Ln,m
t (a) = −εLn,m

t (a)1{Ln,m
t (a)<0}.

Observe also that

nȲ n,m,k
t − n(Ut − Uk

t − Ȳ n,m,k
t )− − δn,ms ≤ 0, 0 ≤ t ≤ T, a.s.
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since U ≤ Uk, and δn,m ≥ 0. Recalling that ξ ≤ UT ≤ Uk
T , the explicit expression of Γn,m,

and the fact that (αn,m), (βn,m) are uniformly bounded in (t, ω, n,m), we then get the

existence of some positive constant C such that:

Ȳ n,m,k
t ≤ C

∫ T

t

e−n(s−t)Mn,m
ts

(

|F (s, 0, 0, 0)| + |Uk
s |+ |ϑk

s |+ |υks |
)

ds (3.17)

− ε

∫ T

t

∫

A

Γn,m
ts Ln,m

s (a)1{Ln,m
s (a)<0}λ(da)ds

−

∫ T

t

Γn,m
ts

(

Zn,m
s − ϑk

s + Ȳ n,m,k
s βn,m

s

)

dWs −

∫ T

t

∫

A

Γn,m
ts Ln,m

s (a)µ̃νn,m,ε

(ds, da),

for any n,m, k ∈ N\{0}, ε > 0. Denote by Sn,m,k
t =

∫ t

0 Γ
n,m
0s

(

Zn,m
s −ϑk

s + Ȳ n,m,k
s βn,m

s

)

dWs,

0 ≤ t ≤ T , which is a P
ν-local martingale, for any ν ∈ V, by recalling that W remains

a Brownian motion under P
ν . From Burkholder-Davis-Gundy, Bayes formula, Cauchy-

Schwarz, and Doob inequalities, we have

E
ν
[

sup
0≤t≤T

|Sn,m,k
t |

]

≤ CE
ν
[

√

< Sn,m,k >T

]

= CE
ν
[

√

∫ T

0
|Γn,m

0t |2|Zn,m
t − ϑk

t + Ȳ n,m,k
t βn,m

t |2dt
]

≤ CE

[

ζνT sup
0≤t≤T

Γn,m
0t

√

∫ T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t βn,m
t |2dt

]

≤ C
(

E
[

|ζνT |
4
]

E
[

sup
0≤t≤T

|Γn,m
0t |4

]

)
1
4

√

E
[

∫ T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t βn,m
t |2dt

]

≤ C
(

E
[

|ζνT |
4
]

E
[

|Mn,m
0T |4

]

)
1
4

√

E
[

∫ T

0
|Zn,m

t − ϑk
t + Ȳ n,m,k

t βn,m
t |2dt

]

< ∞, (3.18)

where we used the fact that αn,m, βn,m are bounded processes, Zn,m, ϑk lie in L2(W), and

Ȳ n,m,k in L2(0,T). Therefore, Sn,m,k is a uniformly P
ν-integrable martingale for any ν ∈

V, and similarly we show that
∫ t

0

∫

A
Γn,m
ts Ln,m

s (a)µ̃ν(ds, da) is a P
ν-martingale. Hence, by

taking conditional expectation with respect to P
νn,m,ε

into (3.17), we have for all n,m, k ∈

N \ {0}, ε > 0:

Ȳ n,m,k
t ≤

C

n
E
νn,m,ε

[

sup
t≤s≤T

Mn,m
ts

(

|F (s, 0, 0, 0)| + |Uk
s |+ |ϑk

s |+ |υks |
)∣

∣Ft

]

−ε Eνn,m,ε
[

∫ T

t

∫

A

Γn,m
ts Ln,m

s (a)1{Ln,m
s (a)<0}λ(da)ds

∣

∣Ft

]

≤
C

n
ess sup

ν∈V
E
ν
[

sup
t≤s≤T

Mn,m
ts

(

|F (s, 0, 0, 0)| + |Uk
s |+ |ϑk

s |+ |υks |
)
∣

∣Ft

]

(3.19)

+ε E
[ζν

n,m,ε

T

ζν
n,m,ε

t

∫ T

t

∫

A

Γn,m
ts |Ln,m

s (a)|λ(da)ds
∣

∣Ft

]

, 0 ≤ t ≤ T,

from Bayes formula. Now, for ε ≤ m, we see that νn,m,ε ≤ ν̄n,m := γn,m +m, and so:

0 ≤
ζν

n,m,ε

T

ζν
n,m,ε

t

≤
ζ ν̄

n,m

T

ζ ν̄
n,m

t

exp

(
∫ T

t

∫

A

ν̄n,ms (a)λ(da)ds

)

. (3.20)
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This shows that

lim
ε→0

ε E
[ζν

n,m,ε

T

ζν
n,m,ε

t

∫ T

t

∫

A

Γn,m
ts |Ln,m

s (a)|λ(da)ds
∣

∣Ft

]

= 0, 0 ≤ t ≤ T, (3.21)

and so by sending ε to zero into (3.19):

(Uk
t − Y n,m

t )− = (Ȳ n,m,k
t )+

≤
C

n
ess sup

ν∈V
E
ν
[

sup
t≤s≤T

Mn,m
ts

(

|F (s, 0, 0, 0)| + |Uk
s |+ |ϑk

s |+ |υks |
)∣

∣Ft

]

≤
C

n
ess sup

ν∈V
E
ν
[

sup
t≤s≤T

|Mn,m
ts |

p

p−2 + sup
t≤s≤T

(

|F (s, 0, 0, 0)|
p

2 + |Uk
s |

p

2 + |ϑk
s |

p

2 + |υks |
p

2
)
∣

∣Ft

]

for all 0 ≤ t ≤ T , and p > 2, by Young inequality. Recall that W is a Brownian motion

under Pν , and so {Mn,m
ts , t ≤ s ≤ T} is a martingale under Pν , for any ν ∈ V. By Doob’s

inequality, we then have with q = p/(p− 2) > 1:

E
ν
[

sup
t≤s≤T

|Mn,m
ts |q

∣

∣Ft

]

≤
( q

q − 1

)q

E
ν
[

|Mn,m
tT |q

∣

∣Ft

]

≤
( q

q − 1

)q

exp
(

q(q − 1)‖β‖2∞(T − t)
)

,

where ‖β‖∞ is a uniform bound of (βn,m), hence independent of n,m and ν ∈ V. We then

deduce that

(Uk
t − Y n,m

t )−

≤
C

n

(

1 + ess sup
ν∈V

E
ν
[

sup
t≤s≤T

(

|F (s, 0, 0, 0)|
p

2 + |Uk
s |

p

2 + |ϑk
s |

p

2 + |υks |
p

2

)∣

∣Ft

])

for all 0 ≤ t ≤ T , n,m, k ∈ N \ {0}. By Cauchy-Schwarz inequality, we then obtain:

E

[

n

∫ T

0
(Uk

t − Y n,m
t )−dt

]2

≤ C

(

1 +

∫ T

0
E

[

ess sup
ν∈V

E
ν
[

sup
t≤s≤T

(

|F (s, 0, 0, 0)|p + |Uk
s |

p + |ϑk
s |

p + |υks |
p
)
∣

∣Ft

]

dt

)

.

By taking p > 2 as in Assumption (H1)(iii), and then sending k to infinity in the l.h.s. of

the above inequality, we get the required uniform estimate on Kn,m,−. 2

Corollary 3.1 Let assumptions (H0) and (H1) hold. Then, we have

sup
m∈N

(

‖Y m‖
S2

+ ‖Zm‖
L2(W)

+ ‖Lm‖
L2(µ̃)

+ ‖Km,+‖
S2

+ ‖Km,−‖
S2

)

< ∞,

where Km,+
t := m

∫ t

0

∫

A

(

Lm
s (a)

)

+
λ(da)ds.

Proof. From the bounds (3.8) and (3.9), we already have the uniform estimate for ‖Y m‖
S2
.

Moreover, by Lemmata 3.2 and 3.3, we have the uniform estimates:

sup
n,m∈N

(

‖Zn,m‖
L2(W)

+ ‖Ln,m‖
L2(µ̃)

+ ‖Kn,m,+‖
S2

+ ‖Kn,m,−‖
S2

)

< ∞,
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We deduce that the weak limits (Zm, Lm,Km,−) of (Zm,n, Lm,n,Kn,m,−) when n goes to

infinity, are also uniformly bounded in L2(W)×L2(µ̃)×S2. From the strong convergence

of Ln,m to Lm in Lp(µ̃), 1 ≤ p < 2, we see by definition of Kn,m,+ and Km,+ that Kn,m,+
T

converges strongly to Km,+
T in Lp(FT ), when n goes to infinity. Moreover, since (Kn,m,+

T )n
is uniformly bounded in L2(FT ), it also converges weakly to Km,+

T in L2(FT ). It follows

that (Km,+)m inherits from (Kn,m,+)n,m the uniform estimate in S2. 2

We can now state the main result of this section as a consequence of the monotonic con-

vergence theorem stated in Appendix B, which extends to the Brownian-Poisson filtration

framework the result of Peng and Xu [26].

Theorem 3.1 Let assumptions (H0) and (H1) hold. Then there exists a minimal solution

(Y,Z,L,K+,K−) ∈ S2×L2(W)×L2(µ̃)×K2×K2 to the reflected BSDE with nonpositive

jumps (2.2)-(2.3)-(2.4)-(2.5), where:

(i) Y is the increasing limit of (Y m)m.

(ii) (Z,L) is the strong (resp. weak) limit of (Zm, Lm)m in Lp(W)×Lp(µ̃), with p ∈ [1, 2),

(resp. in L2(W) × L2(µ̃)).

(iii) K+
t is the weak limit of (Km,+

t )m in L2(Ft), and K−
t is the strong limit of (Km,−

t )m
in L2(Ft), for any 0 ≤ t ≤ T .

Proof. We already know that (Y m)m is a nondecreasing sequence in S2, which converges

to some Y , which satisfies Y ≤ Y ≤ Ȳ from (3.8) and (3.9), and so lies in S2. By Lemma

3.1 and Corollary 3.1, we then see that the sequence (Y m, Zm, Lm,Km,+,Km,−)m solution

to the BSDE (3.3) satisfies all the conditions of the monotonic limit Theorem B.1. This

provides the existence of (Z,L,K+,K−) ∈ L2(W)×L2(µ̃)×K2 ×K2 as in the assertions

(ii) and (iii) of Theorem 3.1 such that the quintuple (Y,Z,L,K+,K−) solves (2.2).

From the strong convergence in L1(µ̃) of (Lm)m to L, and since λ(A) < ∞, we have

E

[

∫ T

0

∫

A

(

Lm
t (a)

)

+
λ(da)dt

]

−→ E

[

∫ T

0

∫

A

(

Lt(a)
)

+
λ(da)dt

]

,

as m goes to infinity. Moreover, since Km,+
T = m

∫ T

0 (Lt(a))+λ(da)dt is bounded in m in

L2(FT ), this implies that

E

[

∫ T

0

∫

A

(

Lt(a)
)

+
λ(da)dt

]

= 0,

which means that the constraint (2.3) is satisfied. The upper reflection (2.4) is obviously

satisfied from (3.4) and by sending m to infinity. Let us now check the Skorohod reflecting

condition (2.5). We recall from (3.5) that
∫ T

0 (Ut− − Y m
t−
)dKm,−

t = 0. Together with the

fact that Ut− − Y m
t−

≥ Ut− − Yt− ≥ 0, this yields
∫ T

0 (Ut− − Yt−)dK
m,−
t = 0. Since (Km,−)m

converges strongly to K− in S2, this implies that the measure dKm,− converges weakly to

dK−, and so
∫ T

0 (Ut− − Yt−)dK
−
t = 0 a.s.

It remains to prove the minimality condition. Let (Ỹ , Z̃, L̃, K̃+, K̃−) be another solution

to the reflected BSDE with nonpositive jumps (2.2)-(2.3)-(2.4)-(2.5). We then see that
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∫ t

0

∫

A
(L̃s(a))+λ(da)ds = 0, and thus F (t, Ỹt, Z̃t, L̃t) = Fm(t, Ỹt, Z̃t, L̃t), for 0 ≤ t ≤ T .

From the comparison Theorem A.2, we deduce that Y m
t ≤ Ỹt, 0 ≤ t ≤ T . Taking the limit

with respect to m, this proves the minimality condition: Yt ≤ Ỹt, 0 ≤ t ≤ T . 2

Remark 3.2 The order of the limits: first let n to infinity, and then let m to infinity,

is crucial in our approach. Indeed, by sending first n to infinity, we get a nondecreasing

sequence of processes (Km,−)m (see Lemma 3.1), which is a required property for applying

the monotonic convergence theorem in Theorem 3.1. On the other hand, if we would first

let m to infinity in the double sequence (Y n,m, Zn,m, Ln,m,Kn,m,+,Kn,m,−), then we would

obtain a minimal solution (Ŷ n, Ẑn, K̂n,+) to the BSDE with nonpositive jumps:

Ŷ n
t = ξ +

∫ T

t

F (s, Ŷ n
s , Ẑn

s , L̂
n
s )ds − n

∫ T

t

(Us − Ŷ n
s )−ds+ K̂n,+

T − K̂n,+
t

−

∫ T

t

Ẑn
s dWs −

∫ T

t

∫

A

L̂n
s (a)µ(ds, da), 0 ≤ t ≤ T, (3.22)

L̂n
t (a) ≤ 0, dP⊗ dt⊗ λ(da) a.e.

and (Ŷ n)n is a nonincreasing sequence, converging to some Ŷ ≥ Y by (3.2). But neither

Kn,+, which is the weak limit ofKn,m,+, asm goes to infinity, norKn,−
t := n

∫ t

0 (Us−Ŷ n
s )−ds,

satisfy monotonicity properties in n, which prevents to apply the monotonic convergence

theorem to the sequence (Ŷ n, Ẑn, K̂n,+, K̂n,−)n, and thus to identify Ŷ = Y as the minimal

solution to the reflected BSDE with nonpositive jumps. This differs from the case of doubly

reflected BSDEs where one can send indifferently first m or n to infinity. 2

4 Dual game representation

In this section, we consider the case where the generator F (t, ω) does not depend on y, z, ℓ,

and we provide a dual game representation of the minimal solution to the reflected BSDE

with nonpositive jumps in terms of a family of equivalent probability measures and discount

factors. In addition to the set of probability measures P
ν, ν ∈ V = ∪mVm defined in the

previous section, let us introduce for any n ∈ N, the set Θn of F-progressively measurable

processes valued in [0, n], and set Θ = ∪nΘn, which shall represent the set of discount

processes. Inspired by Proposition 6.2 in [5] and the dual representation in Section 4 of

[16], we prove an explicit representation formula for the minimal solution to the reflected

BSDE with nonpositive jumps.

Proposition 4.1 (i) For any n ∈ N and m ∈ N \ {0}, the solution to the penalized BSDE

(3.1) admits the following dual representation formula:

Y n,m
t = ess sup

ν∈Vm

ess inf
θ∈Θn

Gt(ν, θ) = ess inf
θ∈Θn

ess sup
ν∈Vm

Gt(ν, θ),

for all 0 ≤ t ≤ T , where

Gt(ν, θ) := E
ν
[

e−
∫ T

t
θsdsξ +

∫ T

t

e−
∫ s

t
θrdr

(

F (s) + θsUs

)

ds
∣

∣ Ft

]

.
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(ii) Under assumptions (H0) and (H1), the minimal solution to the reflected BSDE with

nonpositive jumps (2.2)-(2.3)-(2.4)-(2.5) is explicitly represented as:

Yt = ess sup
ν∈V

ess inf
θ∈Θ

Gt(ν, θ), 0 ≤ t ≤ T. (4.1)

Proof. (i) Fix n ∈ N and m ∈ N \ {0}. For θ ∈ Θ, by applying Itô’s rule to the product

of the processes e−
∫ ·
0 θsds and Y n,m in (3.1), and by introducing the compensated measure

µ̃ν(dt, da) under Pν for ν ∈ V, we obtain:

Y n,m
t = e−

∫ T

t
θsdsξ +

∫ T

t

e−
∫ s

t
θrdr

(

F (s) + θsUs

)

ds

+

∫ T

t

∫

A

e−
∫ s

t
θrdr

(

m(Ln,m
s (a))+ − νs(a)L

n,m
s (a)

)

λ(da)ds

−

∫ T

t

e−
∫ s

t
θrdr

(

n(Us − Y n,m
s )− + θs(Us − Y n,m

s )
)

ds

−

∫ T

t

e−
∫ s

t
θrdrZn,m

s dWs −

∫ T

t

∫

A

e−
∫ s

t
θrdrLn,m

s (a)µ̃ν(ds, da).

By same arguments as in (3.18) (see also Lemma 4.2 in [16]), we can check that the Pν local

martingales {
∫ s

t
e−

∫ u

t
θrdrZn,m

u dWu, t ≤ s ≤ T} and {
∫ s

t

∫

A
e−

∫ u

t
θrdrLn,m

u (a)µ̃ν(du, da), t ≤

s ≤ T} are actually uniformly integrable P
ν-martingales, so that by taking conditional

expectation under Pν :

Y n,m
t = Gt(ν, θ) + E

ν
[

∫ T

t

∫

A

e−
∫ s

t
θrdr

(

m(Ln,m
s (a))+ − νs(a)L

n,m
s (a)

)

λ(da)ds

−

∫ T

t

e−
∫ s

t
θrdr

(

n(Us − Y n,m
s )− + θs(Us − Y n,m

s )
)

ds
∣

∣Ft

]

, (4.2)

and this relation holds for any ν ∈ V, and θ ∈ Θ. Now, observe that for any ν ∈ Vm, hence

valued in (0,m], we have

m(Ln,m
t (a))+ − νt(a)L

n,m
t (a) ≥ 0, 0 ≤ t ≤ T, a ∈ A, a.s.

and for ν = νε ∈ Vm defined by: νεt (a) = m1{Ln,m
t (a)≥0} + ε1{Ln,m

t (a)<0}, for arbitrary ε ∈

(0,m], we have

m(Ln,m
t (a))+ − νεt (a)L

n,m
t (a) = −εLn,m

t (a)1{Ln,m
t (a)<0}, 0 ≤ t ≤ T, a ∈ A, a.s.

Similarly, for any θ ∈ Θn, hence valued in [0, n], we have

n(Ut − Y n,m
t )− + θt(Ut − Y n,m

t ) ≥ 0, 0 ≤ t ≤ T, a.s.

and for θ∗ ∈ Θn defined by: θ∗t = n1{Y n,m
t ≥Ut}, we have

n(Ut − Y n,m
t )− + θ∗t (Ut − Y n,m

t ) = 0, 0 ≤ t ≤ T, a.s.

Therefore, by (4.2), we get

Gt(ν, θ
∗) ≤ Y n,m

t = Gt(ν
ε, θ∗) + εRn,m,ε

t (θ∗), ∀ν ∈ Vm, (4.3)
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≤ Gt(ν
ε, θ) + εRn,m,ε

t (θ),

≤ Gt(ν
ε, θ) + εRn,m,ε

t (0), ∀θ ∈ Θn, (4.4)

for all ε ∈ (0,m], where we set:

Rn,m,ε
t (θ) := E

νε
[

∫ T

t

∫

A

e−
∫ s

t
θrdr|Ln,m

s (a)|λ(da)ds
∣

∣Ft

]

.

For fixedm, and by viewing the BSDE (3.1) as a penalized BSDE in n for the upper-reflected

BSDE with generator Fm in (3.6), we have by standard arguments based on Itô’s lemma,

uniform estimates in n for (Y n,m, Zn,m, Ln,m) in S2 ×L2(W)×L2(µ̃) (see Theorem 4.2 in

[8]). Actually, these arguments show that for all 0 ≤ t ≤ T , there exists some real-valued

Ft-measurable random variable Cm
t such that

sup
n∈N

E

[

∫ T

t

∫

A

|Ln,m
s (a)|2λ(da)ds|Ft

]

≤ Cm
t . (4.5)

Moreover, since νε ≤ m, we see as in (3.20) that ζν
ε

T /ζν
ε

t ≤ em(T−t)λ(A)ζmT /ζmt , where ζm

is the Radon-Nikodym density of dPν/dP for ν = m. Thus, by Cauchy-Schwarz inequality,

there exists some real-valued Ft-measurable random variable C̃m
t such that

sup
n∈N

Rn,m,ε
t (0) ≤ C̃m

t , (4.6)

for all ε ∈ (0,m]. Now, by (4.3), we have: ess inf
θ∈Θn

ess sup
ν∈Vm

Gt(ν, θ) ≤ Y n,m
t , and by (4.4), we

get:

Y n,m
t ≤ ess sup

ν∈Vm

ess inf
θ∈Θn

Gt(ν, θ) + εRn,m,ε
t (0).

By (4.6), we see in particular that εRn,m,ε
t (0) → 0 a.s. as ε goes to zero. Since we always

have ess sup
ν∈Vm

ess inf
θ∈Θn

Gt(ν, θ) ≤ ess inf
θ∈Θn

ess sup
ν∈Vm

Gt(ν, θ), this shows that

Y n,m
t = lim

ε→0
Gt(ν

ε, θ∗) = ess sup
ν∈Vm

ess inf
θ∈Θn

Gt(ν, θ)

= ess inf
θ∈Θn

ess sup
ν∈Vm

Gt(ν, θ), (4.7)

i.e. (νε, θ∗) ∈ Vm ×Θn is an ε-saddle point for Gt(ν, θ).

(ii) By sending m to infinity into (4.7), and recalling that Y m = limn Y
n,m, we get:

Y m
t = ess inf

θ∈Θ
ess sup
ν∈Vm

Gt(ν, θ) ≥ ess sup
ν∈Vm

ess inf
θ∈Θ

Gt(ν, θ). (4.8)

On the other hand, for arbitrary n0 ∈ N, we see that for any θ ∈ Θn0 and any n ≥ n0:

n(Ut − Y n,m
t )− + θt(Ut − Y n,m

t ) ≥ 0, 0 ≤ t ≤ T, a.s.,

which implies, from (4.2),

Y n,m
t ≤ Gt(ν, θ) (4.9)

19



+ E
ν
[

∫ T

t

∫

A

e−
∫ s

t
θrdr

(

m(Ln,m
s (a))+ − νs(a)L

n,m
s (a)

)

λ(da)ds
∣

∣Ft

]

,

for any ν ∈ V, θ ∈ Θn0 , and n ≥ n0. Now note that, since Ln,m → Lm strongly in Lp(µ̃),

p ∈ [1, 2), then, up to a subsequence, Ln,m → Lm dP ⊗ dt ⊗ λ(da) almost everywhere.

Moreover, as already recalled in step (i) of the proof, we have uniform estimates in n for

(Ln,m) ∈ L2(µ̃), namely, from (4.5) with t = 0,

sup
n∈N

E

[

∫ T

0

∫

A

|Ln,m
s (a)|2λ(da)ds

]

≤ Cm
0 , (4.10)

for some positive constant Cm
0 . Then, sending n to infinity in (4.9) we obtain, from

Lebesgue’s dominated convergence theorem,

Y m
t ≤ Gt(ν, θ) (4.11)

+ E
ν
[

∫ T

t

∫

A

e−
∫ s

t
θrdr

(

m(Lm
s (a))+ − νs(a)L

m
s (a)

)

λ(da)ds
∣

∣Ft

]

,

for any ν ∈ V, θ ∈ Θn0 . Since Θ = ∪nΘn, from the arbitrariness of n0 we conclude that (4.11)

remains true for all θ ∈ Θ. Take ν̃ε ∈ Vm defined by: ν̃εt (a) = m1{Lm
t (a)≥0} + ε1{Lm

t (a)<0},

for arbitrary ε ∈ (0,m], so that

m(Lm
t (a))+ − νεt (a)L

m
t (a) = −εLm

t (a)1{Lm
t (a)<0}, 0 ≤ t ≤ T, a ∈ A, a.s.,

and thus by (4.11):

Y m
t ≤ Gt(ν̃

ε, θ) + εR̃m,ε
t (θ) ≤ Gt(ν̃

ε, θ) + εR̃m,ε
t (0), ∀θ ∈ Θ, (4.12)

for all ε ∈ (0,m], where we set:

R̃m,ε
t (θ) := E

ν̃ε
[

∫ T

t

∫

A

e−
∫ s

t
θrdr|Lm

s (a)|λ(da)ds
∣

∣Ft

]

.

Using again the uniform estimate (4.10) and the fact that, up to a subsequence, Ln,m → Lm

dP⊗dt⊗λ(da) a.e., we obtain, from (4.5) and Lebesgue’s dominated convergence theorem,

E

[

∫ T

t

∫

A

|Lm
s (a)|2λ(da)ds|Ft

]

≤ Cm
t .

Moreover, as in step (i) of the proof, since ν̃ε ≤ m we see that ζ ν̃
ε

T /ζ ν̃
ε

t ≤ em(T−t)λ(A)ζmT /ζmt .

Thus, by Cauchy-Schwarz inequality, it follows that, for all ε ∈ (0,m],

R̃m,ε
t (0) ≤ C̃m

t ,

with the same real-valued Ft-measurable random variable C̃m
t as in (4.6). Then, from (4.12)

we get

Y m
t ≤ ess sup

ν∈Vm

ess inf
θ∈Θ

Gt(ν, θ) + εC̃m
t ,
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for all ε ∈ (0,m]. By sending ε to zero, and combining with (4.8), we obtain:

Y m
t = ess inf

θ∈Θ
ess sup
ν∈Vm

Gt(ν, θ)

= ess sup
ν∈Vm

ess inf
θ∈Θ

Gt(ν, θ). (4.13)

Finally, by sending m to infinity into (4.13), we obtain the dual relation (4.1) for Y =

limm Y m. 2

Remark 4.1 We don’t know in general if one can switch in (4.1) the essential infimum and

supremum. Actually, by considering Ŷ n = limm Y n,m the minimal solution to the BSDE

with nonnegative jumps (3.22), one could show by similar arguments as in the second part

(ii) of Proposition 4.1 that:

Ŷ n
t = ess inf

θ∈Θn

ess sup
ν∈V

Gt(ν, θ) = ess sup
ν∈V

ess inf
θ∈Θn

Gt(ν, θ),

so that Ŷ := limn Ŷ
n satisfies:

Ŷt = ess inf
θ∈Θ

ess sup
ν∈V

Gt(ν, θ).

However, as pointed out in Remark 3.2, we cannot conclude whether Ŷt is equal or strictly

greater than Yt. 2

5 Connection with HJB Isaacs equation for controller-and-

stopper games

In this section, we show how the minimal solution to our class of reflected BSDEs with

nonpositive jumps provides a probabilistic representation (hence a Feynman-Kac formula)

to fully nonlinear variational inequalities of Hamilton-Jacobi-Bellman (HJB) Isaacs type

arising in a controller/stopper game, when considering a suitable Markovian framework.

5.1 The Markovian framework

We are given two measurable functions b : Rd × R
q → R

d and σ : Rd × R
q → R

d×d and we

introduce the forward Markov regime-switching process (X, I) in R
d × R

q governed by:

dXt = b(Xt, It)dt+ σ(Xt, It)dWt (5.1)

dIt =

∫

A

(a− It−)µ(dt, da). (5.2)

Therefore, the coefficients b and σ, appearing in the dynamics of the diffusion process X,

change according to the pure jump process I, which is associated to the Poisson random

measure µ on R+ ×A. We make the following standard assumption on the forward coeffi-

cients b and σ:
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(HFC) There exists a constant C such that

|b(x, a)− b(x′, a′)|+ |σ(x, a) − σ(x′, a′)| ≤ C
(

|x− x′|+ |a− a′|
)

,

for all x, x′ ∈ R
d and a, a′ ∈ R

q.

It is well-known that under hypothesis (HFC) there exists a unique solution (Xt,x,a, It,a)

= (Xt,x,a
s , It,as )t≤s≤T to (5.1)-(5.2) starting from (x, a) ∈ R

d × R
q at time s = t ∈ [0, T ].

Furthermore, we have the standard estimates: for all p ≥ 2, there exists some constant Cp

such that

E

[

sup
t≤s≤T

(

|Xt,x,a
s |p + |It,as |p

)

]

≤ Cp

(

1 + |x|p + |a|p
)

, (5.3)

for all (t, x, a) ∈ [0, T ] × R
d × R

q.

Remark 5.1 Notice that the constant Cp in (5.3) depends only on p, T , and the growth

linear condition of b, σ in (HFC). Since the dynamics (5.1) of X is not changed by the

change of probability measure P
ν , ν ∈ V (recall that W remains a Brownian motion under

P
ν), we then see that for all p ≥ 2:

E
ν
[

sup
s≤r≤T

(

|Xt,x,a
r |p + |It,ar |p

)

|Fs

]

≤ Cp

(

1 + |Xt,x,a
s |p + |It,as |p), t ≤ s ≤ T,

for all ν ∈ V, and thus:

∫ T

t

E

[

ess sup
ν∈V

E
ν
[

sup
s≤r≤T

(

|Xt,x,a
r |p + |It,ar |p

)
∣

∣Fs

]

]

ds ≤ Cp(1 + |x|p + |a|p), (5.4)

for all (t, x, a) ∈ [0, T ] × R
d × R

q. 2

Regarding the reflected BSDE with nonpositive jumps, the terminal condition, the

generator function, and the barrier are given respectively by some continuous functions

g : Rd → R, f : Rd × R
q × R × R

d → R, and u : [0, T ] × R
d → R. We make the following

assumptions on the BSDE coefficients:

(HBC)

(i) The functions g, f(·, ·, 0, 0) and u satisfy a polynomial growth condition:

sup
x∈Rd,a∈Rq

|f(x, a, 0, 0)|

1 + |x|h + |a|h
+ sup

t∈[0,T ],x∈Rd

|g(x)| + |u(t, x)|

1 + |x|h
< ∞,

for some h ≥ 0.

(ii) There exists some constant C such that:

|f(x, a, y, z) − f(x, a, y′, z′)| ≤ C
(

|y − y′|+ |z − z′|
)

,

for all x ∈ R
d, a ∈ R

q, y, y′ ∈ R, z, z′ ∈ R
d.
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(iii) u(T, x) ≥ g(x), for all x ∈ R
d, and there exists a nonincreasing sequence of functions

(uk)k lying in C1,2([0, T ]×R
d), and converging pointwisely to u such that the following

polynomial growth condition holds

sup
k∈N

sup
t∈[0,T ],x∈Rd

∣

∣

∣

∂uk

∂t
(t, x)

∣

∣

∣
+ |Dxu

k(t, x)|+ |D2
xu

k(t, x)|

1 + |x|h
< ∞,

for some h ≥ 0.

In this Markovian framework, the reflected BSDE with nonpositive jumps (2.2)-(2.3)-

(2.4)-(2.5) takes the form:

Yt = g(XT ) +

∫ T

t

f(Xs, Is, Ys, Zs)ds+K+
T −K+

t − (K−
T −K−

t ) (5.5)

−

∫ T

t

ZsdWs −

∫ T

t

∫

A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s.

with

Lt(a) ≤ 0 , dP⊗ dt⊗ λ(da) a.e. (5.6)

and

Yt ≤ u(t,Xt) , 0 ≤ t ≤ T, a.s. (5.7)
∫ T

0
(u(t,Xt)− Yt−)dK

−
t = 0 , a.s. (5.8)

Notice that under (HFC) and (HBC) the terminal condition ξ(ω) = g(XT (ω)), the

generator F (t, ω, y, z, ℓ) = f(Xt(ω), It−(ω), y, z), and the barrier Ut(ω) = u(t,Xt(ω)) clearly

satisfy the standing assumptions 1-4 in Section 2. Let us now discuss about conditions (H0)

and (H1) in the two following remarks.

Remark 5.2 Condition (H0) is satisfied in our Markovian framework. Actually, it is

shown in Lemma 5.1 in [16] that under (HFC) and (HBC)(i), (ii), there exists for any

initial condition (t, x, a) ∈ [0, T ] × R
d × R

q, a solution {(Ȳ t,x,a
s , Z̄t,x,a

s , L̄t,x,a
s , K̄t,x,a,+

s ), t ≤

s ≤ T} to the BSDE with nonpositive jumps (2.6)-(2.7) when (X, I) = {(Xt,x,a
s , It,as ), t ≤

s ≤ T}, with Ȳ t,x,a
s = v̄(s,Xt,x,a

s ) for some deterministic function v̄ on [0, T ]×R
d satisfying

the polynomial growth condition:

sup
(t,x)∈[0,T ]×Rd

|v̄(t, x)|

1 + |x|r
< ∞

for some r ≥ 2. Such solution is constructed by Itô’s lemma from a smooth supersolution

to

−
∂v̄

∂t
− sup

a∈A
[Lav̄ + f(·, a, v̄, σ⊺(·, a)Dxv̄)] ≥ 0, on [0, T )× R

d
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v̄(T, x) ≥ g(x), x ∈ R
d,

where

Laϕ = b(x, a).Dxϕ+
1

2
tr(σσ⊺(x, a)D2

xϕ),

which can be chosen equal to v̄(t, x) = C̄eρ(T−t)(1 + |x|r), with r = max(2, h), for C̄ and ρ

positive large enough. 2

Remark 5.3 We also observe that assumption (H1) is satisfied in the present framework.

More precisely, given an initial condition (t, x, a) ∈ [0, T ] × R
d × R

q, let us consider the

process Uk, k ∈ N, defined by:

Uk
s := uk(s,Xt,x,a

s ), t ≤ s ≤ T.

By Itô’s formula, Uk is in the form of condition (H1)(ii), with

υks =
∂uk

∂t
(s,Xt,x,a

s ) + b(Xt,x,a
s , It,as ).Dxu

k(s,Xt,x,a
s )

+
1

2
tr
(

σσ⊺(Xt,x,a
s , It,as )D2

xu
k(s,Xt,x,a

s )
)

,

ϑk
s = Dxu

k(s,Xt,x,a
s )⊺σ(Xt,x,a

s , It,as ),

for all t ≤ s ≤ T , a.s., and we clearly see from (HFC), (HBC)(iii), and (5.3) that

E

[

∫ T

t

|υks |
2ds

]

+ E

[

∫ T

t

|ϑk
s |

2ds
]

< ∞.

Moreover, by using (5.4), and again from the polynomial growth conditions on b, σ, F and

uk in (HFC), (HBC), there exists some p > 2 such that

sup
k∈N

∫ T

t

E

[

ess sup
ν∈V

E
ν
[

sup
s≤r≤T

(

|Uk
r |

p + |υkr |
p + |ϑk

r |
p
)∣

∣Fs

]

]

ds

+

∫ T

t

E

[

ess sup
ν∈V

E
ν
[

sup
s≤r≤T

∣

∣f(Xt,x,a
r , It,ar , 0, 0)

∣

∣

p∣
∣Fs

]]

ds ≤ Cp(1 + |x|p + |a|p).

for all (t, x, a) ∈ [0, T ] × R
d × R

q. 2

From Theorem 3.1, we get, for any initial condition (t, x, a) ∈ [0, T ] × R
d × R

q, the

existence of a minimal solution {(Y t,x,a
s , Zt,x,a

s , Lt,x,a
s ,Kt,x,a,+

s ,Kt,x,a,−
s ), t ≤ s ≤ T} to the

Markovian reflected BSDE with nonpositive jumps (5.5)-(5.6)-(5.7)-(5.8) when (X, I) =

{(Xt,x,a
s , It,as ), t ≤ s ≤ T}. Moreover, as we shall see in the next paragraph, this minimal

solution is written in this Markovian context as: Y t,x,a
s = v(s,Xt,x,a

s , It,as ), where v is a

real-valued deterministic function defined on [0, T ] × R
d × R

q by

v(t, x, a) := Y t,x,a
t , (t, x, a) ∈ [0, T ] ×R

d × R
q. (5.9)
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We aim at proving that this function v does not depend actually on the argument a in the

interior of A, and is connected to the fully nonlinear variational inequality of HJB Isaacs

type:

max
[

−
∂v

∂t
− sup

a∈A

(

Lav + f(·, a, v, σ⊺(·, a)Dxv)
)

; v − u
]

= 0, on [0, T )× R
d (5.10)

v(T, x) = g(x), x ∈ R
d. (5.11)

5.2 Viscosity property of the penalized BSDE

Let us consider the Markovian penalized BSDE associated to (5.5)-(5.6)-(5.7)-(5.8)

Y n,m
t = g(XT ) +

∫ T

t

f(Xs, Is, Y
n,m
s , Zn,m

s )ds (5.12)

+ m

∫ T

t

∫

A

(

Ln,m
s (a)

)

+
λ(da)ds − n

∫ T

t

(

u(s,Xs)− Y n,m
s

)

−
ds

−

∫ T

t

Zn,m
s dWs −

∫ T

t

∫

A

Ln,m
s (a)µ(ds, da), 0 ≤ t ≤ T,

and denote by {(Y n,m,t,x,a
s , Zn,m,t,x,a

s , Ln,m,t,x,a
s ), t ≤ s ≤ T} the unique solution to (5.12)

when (X, I) = {(Xt,x,a
s , It,as ), t ≤ s ≤ T} for any initial condition (t, x, a) ∈ [0, T ]×R

d×R
q.

From the Markov property of the jump-diffusion process (X, I), we recall from [2] that

Y n,m,t,x,a
s = vn,m(s,Xt,x,a

s , It,as ), t ≤ s ≤ T , for some deterministic function vn,m defined on

[0, T ] × R
d × R

q by

vn,m(t, x, a) := Y n,m,t,x,a
t , (t, x, a) ∈ [0, T ]× R

d × R
q. (5.13)

Next, for fixed m, let us consider the limiting BSDE of (5.12) as n goes to infinity, that is

the reflected BSDE:

Y m
t = g(XT ) +

∫ T

t

f(Xs, Is, Y
m
s , Zm

s )ds + m

∫ T

t

∫

A

(

Lm
s (a)

)

+
λ(da)ds (5.14)

− (Km,−
T −Km,−

t )−

∫ T

t

Zm
s dWs −

∫ T

t

∫

A

Lm
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s.

and

Y m
t ≤ u(t,Xt), 0 ≤ t ≤ T, a.s. (5.15)

∫ T

0
(u(t,Xt)− Y m

t− )dK
m,−
t = 0, a.s. (5.16)

and denote by {(Y m,t,x,a
s , Zm,t,x,a

s , Lm,t,x,a
s ,Km,t,x,a,+

s ), t ≤ s ≤ T} the unique solution to

(5.14)-(5.15)-(5.16) when (X, I) = {(Xt,x,a
s , It,as ), t ≤ s ≤ T} for any initial condition

(t, x, a) ∈ [0, T ] × R
d × R

q. Since Y n,m,t,x,a converges to Y m,t,x,a as n goes to infinity,

we see from (5.13) that Y m,t,x,a may be written as Y m,t,x,a
s = vm(s,Xt,x,a

s , It,as ), t ≤ s ≤ T ,

where vm is the deterministic function defined on [0, T ]× R
d × R

q by:

vm(t, x, a) := lim
n→∞

vn,m(t, x, a) = Y m,t,x,a
t , (t, x, a) ∈ [0, T ] ×R

d × R
q. (5.17)

25



From the convergence of Y m,t,x,a to the minimal solution Y t,x,a, when m goes to infinity, as

stated in Theorem 3.1, we deduce that Y t,x,a has indeed the form Y t,x,a
s = v(s,Xt,x,a

s , It,as ),

with a deterministic function v defined as the pointwise (nondecreasing) limit of (vm)m:

v(t, x, a) := lim
m→∞

vm(t, x, a) = Y t,x,a
t , (t, x, a) ∈ [0, T ] × R

d × R
q. (5.18)

From the bounds (3.8)-(3.9), we have for all m ∈ N: v(t, x, a) ≤ vm(t, x, a) ≤ v̄(t, x),

(t, x, a) ∈ [0, T ]×R
d×R

q, where v := v0 is associated to the reflected BSDE Y m for m = 0,

and v̄ is the supersolution as defined in Remark 5.2. By the polynomial growth condition on

v̄, and also on v (see e.g. Lemma 3.2 in [6]), we deduce that vm, and thus also v by passing

to the limit, satisfy a polynomial growth condition: there exist some positive constant C

and some p ≥ 2, such that, for all m ∈ N:

|vm(t, x, a)| + |v(t, x, a)| ≤ C(1 + |x|p + |a|p), (5.19)

for all (t, x, a) ∈ [0, T ] × R
d × R

q. As expected, for fixed m, the function vm associated to

the reflected BSDE with jumps (5.14)-(5.15)-(5.16) is connected to the integro-differential

variational inequality:

max
[

−
∂vm

∂t
(t, x, a) − Lavm(t, x, a) − f(x, a, vm(t, x, a), σ⊺Dxv

m(t, x, a)) (5.20)

− m

∫

A

(

vm(t, x, a′)− vm(t, x, a)
)

+
λ(da′) ;

vm(t, x, a)− u(t, x)
]

= 0,

for (t, x, a) ∈ [0, T )× R
d × R

q, together with the terminal condition:

vm(T, x, a) = g(x), (x, a) ∈ R
d × R

q. (5.21)

More precisely, we have the following result, which may be proved by extending to the

multidimensional case Lemma 3.1 and Theorem 3.4 of [6], and by using Theorem A.1 as

comparison theorem for BSDEs with jumps.

Proposition 5.1 Let assumptions (HFC) and (HBC) hold. The function vm in (5.17)

is a continuous viscosity solution to (5.20)-(5.21), i.e., it is continuous on [0, T ]×R
d×R

q,

a viscosity supersolution (resp. subsolution) to (5.21), i.e.

vm(T, x, a) ≥ (resp. ≤) g(x, a)

for any (x, a) ∈ R
d × R

q, and a viscosity supersolution (resp. subsolution) to (5.20), i.e.

max
[

−
∂ϕ

∂t
(t, x, a) − Laϕ(t, x, a) − f(x, a, vm(t, x, a), σ⊺(x, a)Dxϕ(t, x, a)) (5.22)

−m

∫

A

(

ϕ(t, x, a′)− ϕ(t, x, a)
)

+
λ(da′);

vm(t, x, a) − u(t, x)
]

≥ (resp. ≤) 0

for any (t, x, a) ∈ [0, T ) × R
d × R

q and any ϕ ∈ C1,2([0, T ] × (Rd ×R
q)) such that

(vm − ϕ)(t, x, a) = min
[0,T ]×Rd×Rq

(vm − ϕ) (resp. max
[0,T ]×Rd×Rq

(vm − ϕ)). (5.23)
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Remark 5.4 Notice that

vm(t, x, a) ≤ u(t, x), for all (t, x, a) ∈ [0, T ]× R
d ×R

q. (5.24)

Indeed, for any (t, x, a) ∈ [0, T ] × R
d × R

q, since Y m,t,x,a
s = vm(s,Xt,x,a

s , It,as ), t ≤ s ≤ T ,

we deduce, from (5.15) that

E

[

1

s− t

∫ s

t

(

vm(r,Xt,x,a
r , It,ar )− u(r,Xt,x,a

r )
)

dr

]

≤ 0

for all t < s ≤ T . Since (Xt,x,a, It,a) is càdlàg, in particular it is right-continuous at time t.

Therefore, (5.24) follows from the continuity of vm and u. 2

5.3 HJB Isaacs equation

This paragraph is devoted to the derivation of the equation satisfied in the viscosity sense

by the function v in (5.18), by passing to the limit, as m goes to infinity, in the equation

satisfied by vm. The first step is to prove that v does not depend on a, which is basically

a consequence of the nonpositive jump constraint:

Lt,x,a
s (a′) = v(s,Xt,x,a

s , a′)− v(s,Xt,x,a
s , It,x,a

s−
) ≤ 0, dP⊗ ds⊗ λ(da′) a.e.

providing that the function v is continuous. However, as we do not know a priori that the

function v is continuous, we shall rely on (discontinuous) viscosity solutions arguments as

in [16], and make the following conditions on the set A and the intensity measure λ:

(HA) The interior set Å of A is connex, and A = Adh(Å), the closure of its interior.

(Hλ)

(i) The measure λ supports the whole set Å: for any a ∈ Å and any open neighborhood

O of a in R
q we have λ(O ∩ Å) > 0.

(ii) The boundary of A: ∂A = A\Å, is negligible with respect to λ, i.e., λ(∂A) = 0.

Proposition 5.2 Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then the

function v does not depend on the variable a on [0, T ) × R
d × Å:

v(t, x, a) = v(t, x, a′), a, a′ ∈ Å, (5.25)

for all (t, x) ∈ [0, T ) × R
d.

Proof. The proof borrows most arguments from section 5.3 in [16], and we only report

here the main steps and the points to be modified. First, we see from (5.24), and sending

m to infinity that:

v ≤ u on [0, T ]× R
d × R

q. (5.26)

We next show that the function v is a viscosity supersolution to:

−|Dav(t, x, a)| = 0, (t, x, a) ∈ [0, T )× R
d × Å, (5.27)
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i.e., for any (t, x, a) ∈ [0, T ) × R
d × Å and any function ϕ ∈ C1,2([0, T ] × (Rd × R

q)) such

that (v − ϕ)(t, x, a) = min[0,T ]×Rd×Rq(v − ϕ), we have

−
∣

∣Daϕ(t, x, a)
∣

∣ ≥ 0, i.e. Daϕ(t, x, a) = 0.

Indeed, let (t, x, a) ∈ [0, T ) × R
d × Å and ϕ ∈ C1,2([0, T ] × (Rd × R

q)) such that (v −

ϕ)(t, x, a) = min[0,T ]×Rd×Rq (v−ϕ). We may assume, without loss of generality, that v(t, x, a)

= ϕ(t, x, a), (t, x, a) is a strict minimum point, and we distinguish two cases: (i) v(t, x, a) ≥

u(t, x). From (5.26), we have

ϕ(t, x, a′) ≤ v(t, x, a′) ≤ u(t, x), ∀ a′ ∈ R
q

and ϕ(t, x, a) = v(t, x, a) = u(t, x). It follows that ϕ(t, x, a) = maxa′∈Rq ϕ(t, x, a′), which

yields: Daϕ(t, x, a) = 0, since a ∈ Å. (ii) v(t, x, a) < u(t, x). Then, for m large enough,

we also have vm(t, x, a) < u(t, x), and (t, x, a) is a local minimum point of vm − ϕ. By the

viscosity supersolution property of vm to (5.22), this implies:

−
∂ϕ

∂t
(t, x, a) − Laϕ(t, x, a) − f(x, a, vm(t, x, a), σ⊺(x, a)Dxϕ(t, x, a))

−m

∫

A

(

ϕ(t, x, a′)− ϕ(t, x, a)
)

+
λ(da′) ≥ 0.

By sendingm to infinity, we conclude as in the proof of Lemma 5.3 in [16] that:
∫

A

(

ϕ(t, x, a′)

− ϕ(t, x, a)
)

+
λ(da′) = 0, which means under (Hλ) that ϕ(t, x, a) = maxa′∈Rq ϕ(t, x, a′),

i.e., Daϕ(t, x, a) = 0.

Finally, by arguing exactly as in Lemma 5.4 and Proposition 5.2 of [16], we obtain

under the additional condition (HA) the non dependence of v on a ∈ Å from the viscosity

supersolution property to (5.27). 2

From Proposition 5.2, we can define by misuse of notation the function v on [0, T )×R
d

by:

v(t, x) = v(t, x, a), (t, x) ∈ [0, T )× R
d,

for any a ∈ Å, and we see that v satisfies a polynomial growth condition when x goes

to infinity by (5.19). We finally state the viscosity property of v to the HJB Isaacs type

equation (5.10)-(5.11). Recall the definition of lower semicontinuous envelope v∗, and upper

semicontinuous envelope v∗:

v∗(t, x) = lim inf
(t′,x′)→(t,x)

t′<T

v(t′, x′) and v∗(t, x) = lim sup
(t′,x′)→(t,x)

t′<T

v(t′, x′),

for all (t, x) ∈ [0, T ]× R
d.

Theorem 5.1 Let assumptions (HFC), (HBC), (HA), and (Hλ) hold. Then v is a

viscosity solution to (5.10)-(5.11) in the sense that it verifies:

(i) Viscosity supersolution property:

v∗(T, x) ≥ g(x), (5.28)
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for any x ∈ R
d, and

max
[

−
∂ϕ

∂t
(t, x)− sup

a∈A

(

Laϕ(t, x) + f
(

x, a, v∗(t, x), σ
⊺(x, a)Dxϕ(t, x)

)

)

; (5.29)

v∗(t, x)− u(t, x)
]

≥ 0

for any (t, x) ∈ [0, T ) × R
d and any ϕ ∈ C1,2([0, T ] × R

d) such that (v∗ − ϕ)(t, x) =

min[0,T ]×Rd(v∗ − ϕ)

(ii) Viscosity subsolution property:

v∗(T, x) ≤ g(x), (5.30)

for any x ∈ R
d, and

max
[

−
∂ϕ

∂t
(t, x)− sup

a∈A

(

Laϕ(t, x) + f
(

x, a, v∗(t, x), σ⊺(x, a)Dxϕ(t, x)
)

)

; (5.31)

v∗(t, x)− u(t, x)
]

≤ 0

for any (t, x) ∈ [0, T ) × R
d and any ϕ ∈ C1,2([0, T ] × R

d) such that (v∗ − ϕ)(t, x) =

max[0,T ]×Rd(v∗ − ϕ).

Proof. The proof is quite similar to the proof detailed in Section 5.4 of [16], and we report

only the main arguments and the points to be modified with respect to the proof in [16].

• Viscosity supersolution property (5.29): Since v is the pointwise limit of the nondecreasing

sequence of continuous functions (vm), and recalling (5.25), we know (see e.g. [1]) that v

is lower semicontinuous and so:

v(t, x) = v∗(t, x) = lim
m→∞

vm(t, x, a), ∀(t, x, a) ∈ [0, T ]× R
d × Å.

Fix now (t, x) ∈ [0, T ) × R
d, and let ϕ ∈ C1,2([0, T ] × R

d) such that (v∗ − ϕ)(t, x) =

min[0,T ]×Rd(v∗ − ϕ), with a strict minimum without loss of generality. We already know

from (5.26) that v∗ ≤ u, and so distinguish two cases: (1) if v∗(t, x) = u(t, x), then the

viscosity supersolution property of v at (t, x) is obviously satisfied. (2) Otherwise, if v∗(t, x)

< u(t, x), then for any arbitrary fixed a ∈ Å, we have vm(t, x, a) < u(t, x), and (t, x, a) is

a local minimum point of vm − ϕ, for m large enough. From the viscosity supersolution

property (5.22) of vm at (t, x, a) with the test function ϕ, we then get:

−
∂ϕ

∂t
(t, x)− Laϕ(t, x) − f(x, a, vm(t, x, a), σ⊺(x, a)Dxϕ(t, x)) ≥ 0.

By sending m to infinity, and since a is arbitrary in Å, together with the continuity of the

coefficients b, σ, and f in the variable a, we obtain the required viscosity supersolution

inequality:

−
∂ϕ

∂t
(t, x)− sup

a∈A

(

Laϕ(t, x) + f(x, a, v∗(t, x), σ
⊺(x, a)Dxϕ(t, x))

)

≥ 0.

• Viscosity subsolution property (5.31): By (5.26), we have: v∗ ≤ u on [0, T ) × R
d, and so

it remains to show the viscosity subsolution property of v to:

−
∂v

∂t
− sup

a∈A

(

Lav(t, x) + f
(

x, a, v(t, x), σ⊺(x, a)Dxv(t, x)
)

)

≤ 0.
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This follows by same arguments as in [16] from the viscosity subsolution property of vm to:

−
∂vm

∂t
(t, x, a) −Lavm(t, x, a)− f(x, a, vm(t, x, a), σ⊺(x, a)Dxv

m(t, x, a))

−m

∫

A

(

vm(t, x, a′)− vm(t, x, a)
)

+
λ(da′) ≤ 0,

and by sending m to infinity under (Hλ)(ii).

• Finally, the viscosity supersolution and subsolution inequalities (5.28), (5.30) are proved

by same arguments as in [16]. 2

Remark 5.5 Zero-sum controller/stopper game

Let us consider the particular and important case where the generator f(x, a) does not

depend on (y, z), and u(t, x) = g(x). In this case, the nonlinear variational inequality

(5.10)-(5.11) is the HJB Isaacs equation associated to the following zero-sum controller-

and-stopper game: let us introduce the controlled diffusion process in R
d

dXα
s = b(Xα

s , αs)ds + σ(Xα
s , αs)dWs, (5.32)

where the control α ∈ A is an F
W -progressively measurable process, valued in A, affecting

both drift and diffusion coefficient, possibly degenerate. Here F
W denotes the natural

filtration generated by the Brownian motion W . Notice that the laws P
α of Xα under P,

for α varying in A, belong to a non dominated set of probability measures. Given (t, x) ∈

[0, T ] × R
d, and α ∈ A, we denote by {Xt,x,α

s , t ≤ s ≤ T} the solution to (5.32) starting

from x at s = t. Let us also define Tt,T as the set of all FW -stopping times valued in [t, T ]

for 0 ≤ t ≤ T , and consider Πt,T the set of stopping strategies π : A 7→ Tt,T satisfying a

non-anticipative condition as defined in [3]. The upper and lower value functions of the

controller/stopper game are given by:

V (t, x) := inf
π∈Πt,T

sup
α∈A

E

[

∫ π[α]

t

f(Xt,x,α
s , αs)ds + g(Xt,x,α

π[α] )
]

,

V (t, x) := sup
α∈A

inf
τ∈Tt,T

E

[

∫ τ

t

f(Xt,x,α
s , αs)ds+ g(Xt,x,α

τ )
]

, (t, x) ∈ [0, T ]× R
d.

It is shown in [3] that this game has a value, i.e., V = V = V , and that V is the unique

viscosity solution to (5.10)-(5.11) satisfying a polynomial growth condition. By combining

this result with Theorem 5.1, this shows that v = V . In other words, we have provided

a representation of HJB Isaacs equation, arising in zero-sum controller/stopper game, in-

cluding control on possibly degenerate diffusion coefficient, in terms of minimal solution to

reflected BSDE with nonpositive jumps. Furthermore, by combining with the dual game

representation in Proposition 4.1, we obtain an original representation for the value function

of the controller-and-stopper game:

inf
π∈Π0,T

sup
α∈A

E

[

∫ π[α]

0
f(Xα

t , αt)dt+ g(Xα
π[α])

]

= sup
α∈A

inf
τ∈T0,T

E

[

∫ τ

0
f(Xα

t , αt)dt+ g(Xα
τ )

]

= sup
ν∈V

inf
θ∈Θ

E
ν
[

∫ T

0
e−

∫ t

0
θsds

(

f(Xt, It) + θtg(Xt)
)

dt+ e−
∫ T

0
θtdtg(XT )

]

.

2
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6 Conclusion

We introduced in this paper a class of reflected BSDEs with nonpositive jumps and upper

obstacle, and showed in the Markov case its connection with fully nonlinear variational

inequalities arising typically in controller-and-stopper games with control both on drift and

diffusion term. Such representation suggests an original approach for probabilistic numeri-

cal schemes of HJB Isaacs equations by discretization and simulation of this reflected BSDE

with nonpositive jumps. From a theoretical point of view, an open problem is to relate this

class of BSDEs to general controller-and-stopper games in the non Markovian case. A

variation of our class of BSDEs would be to consider reflected BSDEs with nonpositive

jumps and lower obstacle, which is related to sup sup problem over control and stopping

time, and in other words to optimal stopping under nonlinear expectation. Actually, the

proof of existence of a minimal solution by a double penalization approach is simpler since it

would involve the sum (instead of the difference) of two nondecreasing processes. Another

possible extension is the class of doubly reflected BSDEs with nonpositive jumps motivated

by Dynkin games under nonlinear expectation (see [21]).

Appendices

A. Comparison theorems for sub and supersolutions to BSDEs with

jumps

We provide in this section two comparison theorems for BSDEs with jumps. We first recall

a comparison theorem for sub and supersolutions to BSDEs driven by the Brownian motion

W and the Poisson random measure µ, see [28] and [16].

Theorem A.1 Let ξ1, ξ2 ∈ L2(FT ) be two terminal conditions and let F 1, F 2 : Ω× [0, T ]×

R × R
d × L2(λ) → R be two generators satisfying the assumptions 2.(i)-(iii) of Section 2.

Let (Y 1, Z1, L1,K1,−) ∈ S2 × L2(W)× L2(µ̃)×K2 satisfying

Y 1
t = ξ1 +

∫ T

t

F 1(s, Y 1
s , Z

1
s , L

1
s)ds− (K1,−

T −K1,−
t ) (A.1)

−

∫ T

t

Z1
sdWs −

∫ T

t

∫

A

L1
s(a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

and (Y 2, Z2, L2,K2,+) ∈ S2 × L2(W)× L2(µ̃)×K2 satisfying

Y 2
t = ξ2 +

∫ T

t

F 2(s, Y 2
s , Z

2
s , L

2
s)ds+K2,+

T −K2,+
t (A.2)

−

∫ T

t

Z2
sdWs −

∫ T

t

∫

A

L2
s(a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

If F 1(t, Y 1
t , Z

1
t , L

1
t ) ≤ F 2(t, Y 1

t , Z
1
t , L

1
t ) (resp. F

1(t, Y 2
t , Z

2
t , L

2
t ) ≤ F 2(t, Y 2

t , Z
2
t , L

2
t )), dP⊗dt

a.e., and ξ1 ≤ ξ2 a.s., then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T, a.s.
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We now state a comparison theorem between a Skorohod solution and a Skorohod

supersolution, both driven by the Brownian motion W and the Poisson random measure

µ. This slightly extends Theorem 5.2 in [8].

Theorem A.2 Let ξ1, ξ2 ∈ L2(FT ) be two terminal conditions and let F 1, F 2 : Ω× [0, T ]×

R × R
d × L2(λ) → R be two generators satisfying assumptions 2.(i)-(iii) of Section 2. Let

(Y 1, Z1, L1,K1,−) ∈ S2 × L2(W) × L2(µ̃)×K2 satisfying

Y 1
t = ξ1 +

∫ T

t

F 1(s, Y 1
s , Z

1
s , L

1
s)ds− (K1,−

T −K1,−
t ) (A.3)

−

∫ T

t

Z1
sdWs −

∫ T

t

∫

A

L1
s(a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

and

Y 1
t ≤ Ut , 0 ≤ t ≤ T, a.s.

∫ T

0
(Ut− − Y 1

t−)dK
1,−
t = 0 , a.s.

Furthermore, let (Y 2, Z2, L2,K2,+,K2,−) ∈ S2 × L2(W)× L2(µ̃)×K2 ×K2 satisfying

Y 2
t = ξ2 +

∫ T

t

F 2(s, Y 2
s , Z

2
s , L

2
s)ds +K2,+

T −K2,+
t − (K2,−

T −K2,−
t ) (A.4)

−

∫ T

t

Z2
sdWs −

∫ T

t

∫

A

L2
s(a)µ(ds, da) , 0 ≤ t ≤ T, a.s.

and

Y 2
t ≤ Ut , 0 ≤ t ≤ T, a.s.

∫ T

0
(Ut− − Y 2

t−)dK
2,−
t = 0 , a.s.

If ξ1 ≤ ξ2 a.s. and F 1(t, Y 1
t , Z

1
t , L

1
t ) ≤ F 2(t, Y 1

t , Z
1
t , L

1
t ), dP⊗ dt a.e., then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T, a.s.

Proof. Consider the following penalized BSDEs:

Y n,1
t = ξ1 +

∫ T

t

F 1(s, Y n,1
s , Zn,1

s , Ln,1
s )ds − n

∫ T

t

(Us − Y n,1
s )−ds

−

∫ T

t

Zn,1
s dWs −

∫ T

t

∫

A

Ln,1
s (a)µ(ds, da)

and

Y n,2
t = ξ2 +

∫ T

t

F 2(s, Y n,2
s , Zn,2

s , Ln,2
s )ds+K2,+

T −K2,+
t − n

∫ T

t

(Us − Y n,2
s )−ds

−

∫ T

t

Zn,2
s dWs −

∫ T

t

∫

A

Ln,2
s (a)µ(ds, da),
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for all 0 ≤ t ≤ T , almost surely. By comparison Theorem A.1 we get Y n,1
t ≤ Y n,2

t , for all

n ∈ N. Recalling Remark 3.1, we have that Y n,1
t converges to Y 1

t . It remains to prove the

convergence of Y n,2
t towards Y 2

t .

Set Ỹ n,2 := Y n,2+K2,+, Ũ := U +K2,+, ξ̃2 := ξ2+K2,+
T , and F̃ 2(t, y, z, ℓ) := F 2(t, y−

K2,+
t , z, ℓ), for all 0 ≤ t ≤ T , y ∈ R, z ∈ R

d, ℓ ∈ L2(λ), almost surely. Then

Ỹ n,2
t = ξ̃2 +

∫ T

t

F̃ 2(s, Ỹ n,2
s , Zn,2

s , Ln,2
s )ds − n

∫ T

t

(Ũs − Ỹ n,2
s )−ds

−

∫ T

t

Zn,2
s dWs −

∫ T

t

∫

A

Ln,2
s (a)µ(ds, da),

for all 0 ≤ t ≤ T , almost surely. Note that ξ̃2 verifies the square integrability condition and

F̃ 2 satisfies assumptions 2.(i)-(iii) of Section 2. Moreover, ŨT ∈ S2 and ŨT ≥ ξ̃2, almost

surely. Now, again from Remark 3.1, we have that Ỹ n,2 converges to Ỹ 2 = Y 2 +K2,+, and

hence Y n,2 converges to Y 2. 2

B. Monotonic limit theorem for BSDEs with jumps

We state a monotonic limit theorem for BSDEs driven by the Brownian motion W and the

Poisson random measure µ. This extends the monotonic limit Theorem 3.1 in [26] to the

jump case.

Theorem B.1 Let (Y m, Zm, Lm,Km,+,Km,−)m be a sequence in S2 × L2(W)× L2(µ̃)×

K2 ×K2, with Km,+ continuous, solution to:

Y m
t = ξ +

∫ T

t

F (s, Y m
s , Zm

s , Lm
s )ds+Km,+

T −Km,+
t − (Km,−

T −Km,−
t ) (B.1)

−

∫ T

t

Zm
s dWs −

∫ T

t

∫

A

Lm
s (a)µ(ds, da), 0 ≤ t ≤ T, a.s.

such that

sup
m∈N

(

∥

∥Y m
∥

∥

S2
+

∥

∥Zm
∥

∥

L2(W)
+
∥

∥Lm
∥

∥

L2(µ̃)
+
∥

∥Km,+
∥

∥

S2
+

∥

∥Km,−
∥

∥

S2

)

< ∞, (B.2)

and (Y m)m converges increasingly to Y ∈ S2. Suppose also that the sequence (Km,−)m
satisfies:

Km,−
t −Km,−

s ≤ Km+1,−
t −Km+1,−

s , 0 ≤ s ≤ t ≤ T, a.s. (B.3)

for all m ∈ N. Then there exists (Z,L,K+,K−) ∈ L2(W)× L2(µ̃)×K2 ×K2 such that

Yt = ξ +

∫ T

t

F (s, Ys, Zs, Ls)ds+K+
T −K+

t − (K−
T −K−

t ) (B.4)

−

∫ T

t

ZsdWs −

∫ T

t

∫

A

Ls(a)µ(ds, da), 0 ≤ t ≤ T, a.s.

Here (Z,L) is the strong (resp. weak) limit of (Zm, Lm)m in Lp(W)×Lp(µ̃), with p ∈ [1, 2),

(resp. in L2(W)×L2(µ̃)). Furthermore, K+
t is the weak limit of (Km,+

t )m in L2(Ft), and

(Km,−
t )m converges strongly up to K−

t in L2(Ft), for any 0 ≤ t ≤ T .
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Proof. Step 1. Limit BSDE. From the boundedness condition (B.2) and the Hilbert struc-

ture of L2(W) × L2(µ̃)× L2(0,T), there exists a subsequence, (Zmk , Lmk , F (·, Y mk , Zmk ,

Lmk))k which converges weakly to some (Z,L,G) ∈ L2(W)× L2(µ̃)× L2(0,T). Thus, for

each stopping time τ ≤ T , the following weak convergences hold in L2(Fτ ) as k → ∞:
∫ τ

0
F (s, Y mk

s , Zmk
s , Lmk

s )ds ⇀

∫ τ

0
G(s)ds,

∫ τ

0
Zmk
s dWs ⇀

∫ τ

0
ZsdWs,

∫ τ

0

∫

A

Lmk
s (a)µ(ds, da) ⇀

∫ τ

0

∫

A

Ls(a)µ(ds, da).

From (B.3), there exists K− ∈ K2, such that K−
t is the strong limit of (Kmk,−

t )k in L2(Ft)

for all 0 ≤ t ≤ T . In particular, Kmk,−
τ ⇀ K−

τ . Moreover, since

Kmk ,+
τ = Y mk

0 − Y mk
τ +Kmk,−

τ −

∫ τ

0
F (s, Y mk

s , Zmk
s , Lmk

s )ds

+

∫ τ

0
Zmk
s dWs +

∫ τ

0

∫

A

Lmk
s (a)µ(ds, da).

we also have the weak convergence in L2(Fτ )

Kmk,+
τ ⇀ K+

τ := Y0 − Yτ +K−
τ −

∫ τ

0
G(s)ds

+

∫ τ

0
ZsdWs +

∫ τ

0

∫

A

Ls(a)µ(ds, da),

as k → ∞. Note that E[(K+
T )2] < ∞ and for any two stopping times 0 ≤ σ ≤ τ ≤ T , we

have K+
σ ≤ K+

τ since Km,+
σ ≤ Km,+

τ . From this it follows that K+ is an increasing process.

Observe now that we have obtained the following decomposition for Y :

Yt = Y0 −

∫ τ

0
G(s)ds −K+

t +K−
t +

∫ t

0
ZsdWs +

∫ t

0

∫

A

Ls(a)µ(ds, da). (B.5)

Since the processes Kmk,+ and Kmk ,− are predictable, we deduce that K+ and K− are also

predictable. Besides, by Lemmas 3.1 and 3.2 of [26], K+, K− and Y are càdlàg processes.

Thus, in the above decomposition of Y in (B.5), the components Z and L are unique. As

a matter of fact, the uniqueness of Z follows by identifying the Brownian parts and finite

variation parts. The uniqueness of L is then obtained by identifying the predictable parts

and by recalling that the jumps of µ are totally inaccessible. From the uniqueness of (Z,L),

it follows that the whole sequence (Zm, Lm)m converges weakly to (Z,L) in L2(W)×L2(µ̃).

Step 2. Properties of the process K+. We establish that the contribution of the jumps of

K+ is mainly concentrated within a finite number of intervals with sufficiently small total

length. More precisely, we apply Lemma 2.3 in [25] to K+. Consequently, as in Lemma

2.3 in [25], for any δ, ε > 0, there exists a finite number of pairs of stopping times (σk, τk),

k = 0, . . . , N , with 0 < σk ≤ τk ≤ T , such that all the intervals (σk, τk] are disjoint and

E

N
∑

k=0

(τk − σk) ≥ T −
ε

2
, E

N
∑

k=0

∑

σk<t≤τk

|∆K+
t |2 ≤

εδ

3
. (B.6)
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We should note that in [25] the filtration is Brownian, therefore it is continuous, and hence

each stopping time σk can be approximated by a sequence of announceable stopping times.

In our case the stopping times σk’s are constructed as the successive times of jumps of the

predictable process K+ with size bigger than some given positive level, therefore each σk is

a predictable stopping time and the approximation of σk by announceable stopping times

is again possible. We can thus argue exactly the same way as in Lemma 2.3 in [25] to derive

both estimates in (B.6).

Step 3. Strong convergence. By applying Itô’s formula to |Y m
t −Yt|

2 on a subinterval (σ, τ ],

with 0 ≤ σ ≤ τ ≤ T , two stopping times, and recalling that Km,+ is continuous, we obtain:

E
∣

∣Y m
τ − Yτ

∣

∣

2
= E

∣

∣Y m
σ − Yσ

∣

∣

2
+ E

∫ τ

σ

|Zm
s − Zs|

2ds+ E

∫ τ

σ

∫

A

|Lm
s (a)− Ls(a)|

2λ(da)ds

+ 2E

∫ τ

σ

(Y m
s − Ys)

(

G(s)−F (s, Y m
s , Zm

s , Lm
s )

)

ds

+ E

∑

t∈(σ,τ ]

|∆K+
t −∆K−

t +∆Km,−
t |2

+ 2E

∫

(σ,τ ]
(Y m

s− − Ys−)dK
+
s − 2E

∫

(σ,τ ]
(Y m

s− − Ys−)dK
−
s

− 2E

∫

(σ,τ ]
(Y m

s − Ys)dK
m,+
s + 2E

∫

(σ,τ ]
(Y m

s− − Ys−)dK
m,−
s

+ 2E

∫

(σ,τ ]

∫

A

(

Y m
s − Ys)(L

m
s (a)− Ls(a))λ(da)ds. (B.7)

Now, let us write
∫

(σ,τ ]
(Y m

s− − Ys−)dK
+
s =

∫

(σ,τ ]

(

Y m
s− +∆Km,−

s − Ys− +∆K+
s −∆K−

s

)

dK+
s

−
∑

t∈(σ,τ ]

(∆K+
t )

2 +
∑

t∈(σ,τ ]

∆K+
t ∆(K−

s −Km,−
s ),

and observe that
∫

(σ,τ ]
(Y m

s− − Ys−)d(K
−
s −Km,−

s ) ≤ 0, and

∫

(σ,τ ]
(Y m

s − Ys)dK
m,+
s ≤ 0.

Therefore, by using the inequality 2ab ≥ −2b2 − a2/2, we obtain from (B.7)

E

∫ τ

σ

|Zm
s − Zs|

2ds+
1

2
E

∫ τ

σ

∫

A

|Lm
s (a)− Ls(a)|

2λ(da)ds

≤ E
∣

∣Y m
τ − Yτ

∣

∣

2
+ 2λ(A)E

∫ τ

σ

∣

∣Y m
s − Ys

∣

∣

2
ds

+ 2E

∫ τ

σ

∣

∣Y m
s − Ys

∣

∣

∣

∣G(s)− F (s, Y m
s , Zm

s , Lm
s )

∣

∣ds

−2E

∫

(σ,τ ]

(

Y m
s− +∆Km,−

s − Ys− +∆K+
s −∆K−

s

)

dK+
s + 2E

∑

t∈(σ,τ ]

|∆K+
t |2

−2E
∑

t∈(σ,τ ]

∆K+
t ∆(K−

s −Km,−
s )− E

∑

t∈(σ,τ ]

|∆K+
t −∆K−

t +∆Km,−
t |2,
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≤ E
∣

∣Y m
τ − Yτ

∣

∣

2
+ 2λ(A)E

∫ τ

σ

∣

∣Y m
s − Ys

∣

∣

2
ds

+2E

∫ τ

σ

∣

∣Y m
s − Ys

∣

∣

∣

∣G(s)− F (s, Y m
s , Zm

s , Lm
s )

∣

∣ds

−2E

∫

(σ,τ ]

(

Y m
s− +∆Km,−

s − Ys− +∆K+
s −∆K−

s

)

dK+
s + E

∑

t∈(σ,τ ]

|∆K+
t |

2.

by using the inequality 2a2 − 2ab − (a − b)2 ≤ a2. We know that the first two terms on

the right-hand side of (B.8) converge to zero as m → ∞. The third term also tends to

zero since (G(·) − F (·, Y m, Zm, Lm))m is bounded in L2(0,T), and so by Cauchy-Schwarz

inequality

E

∫ T

0

∣

∣Y m
s − Ys

∣

∣

∣

∣G(s)− F (s, Y m
s , Zm

s , Lm
s )

∣

∣ds → 0, as m → ∞.

For the fourth term, since Km,− is predictable, the predictable projection of Y m is pY m
t =

Y m
t−

+ ∆Km,−
t . Similarly, from (B.5) and since K+ and K− are predictable processes, we

see that pYt = Yt− −∆K+
t +∆K−

t . By the dominated convergence theorem, we obtain

lim
m→∞

E

∫

(σ,τ ]

(

Y m
s− +∆Km,−

s − Ys− +∆K+
s −∆K−

s

)

dK+
s = 0.

For the last term in (B.8), we exploit the results in (B.6), regarding the contribution of the

jumps of K+. More precisely, we apply estimate (B.8) for each σ = σk and τ = τk, with

σk, τk defined in Step 2, and then take the sum over k = 0, . . . , N . It follows that

N
∑

k=0

E

∫ τk

σk

|Zm
s − Zs|

2ds+
1

2

N
∑

k=0

E

∫ τk

σk

∫

A

|Lm
s (a)− Ls(a)|

2λ(da)ds

≤

N
∑

k=0

E
∣

∣Y m
τk

− Yτk

∣

∣

2
+ 2λ(A)E

∫ T

0

∣

∣Y m
s − Ys

∣

∣

2
ds

+2E

∫ T

0

∣

∣Y m
s − Ys

∣

∣

∣

∣G(s)− F (s, Y m
s , Zm

s , Lm
s )

∣

∣ds+
N
∑

k=0

E

∑

t∈(σk ,τk]

|∆K+
t |2

−2
N
∑

k=0

E

∫

(σk ,τk]

(

Y m
s− +∆Km,−

s − Ys− +∆K+
s −∆K−

s

)

dK+
s .

From the above convergence results, we deduce that

lim sup
m→∞

( N
∑

k=0

E

∫ τk

σk

|Zm
s − Zs|

2ds +
1

2

N
∑

k=0

E

∫ τk

σk

∫

A

|Lm
s (a)− Ls(a)|

2λ(da)ds

)

≤

N
∑

k=0

E

∑

t∈(σk ,τk]

|∆K+
t |2 ≤

εδ

3
.

Therefore, following the same steps as in the proof of Theorem 2.1 in [25], we deduce that

the sequences (Zm)m and (Lm)m converge in measure, respectively, to Z and L. Since they
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are bounded, respectively, in L2(W) and L2(µ̃), they are uniformly integrable in Lp(W)

and Lp(µ̃), for any p ∈ [1, 2). Thus, (Zm)m and (Lm)m converge strongly to Z and L in

Lp(W) and Lp(µ̃), respectively.

By the Lipschitz condition on F , we also have the strong convergence in Lp(0,T) of

(F (·, Y m, Zm, Lm))m to F (·, Y, Z, L). Since G(·) is the weak limit of (F (·, Y m, Zm, Lm))m in

L2(0,T), we deduce that G(·) = F (·, Y, Z, L). Therefore we obtain that (Y,Z,L,K+,K−)

satisfies the BSDE (B.4). 2
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