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ABSTRACT

WiFi base stations are increasingly deployed in both public
spaces and private companies, and the increase in their den-
sity poses a significant threat to the privacy of connected
users. Prior studies have provided evidence that it is possi-
ble to infer the social ties of users from their location and
co-location traces but they lack one important component:
the comparison of the inference accuracy between an inter-
nal attacker (e.g., a curious application running on a mobile
device) and a realistic external eavesdropper in the same
field trial. In this paper, we experimentally show that such
an eavesdropper is able to infer the type of social relation-
ships between mobile users better than an internal attacker.
Moreover, our results indicate that by exploiting the under-
lying social community structure of mobile users, the accu-
racy of the inference attacks doubles. Based on our findings,
we propose countermeasures to help users protect their pri-
vacy against eavesdroppers.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks|: General;
K.4.1 [Computers and Society]: Public Policy Issues—
Privacy
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1. INTRODUCTION

Innovative Internet mobile services and products, such as
location-based services and information-sharing platforms,
enable users to enjoy a multitude of applications to easily
stay in touch, work, have fun and exchange data. Beside
online services accessed through infrastructure-dependent
communications (e.g., WiFi hotspots and cell towers), up-
coming near-field [22] and peer-to-peer (P2P) technologies,
such as Nokia Instant Community (NIC), and Qualcomm’s
AllJoin [25], allow for direct device-to-device connections,
thus creating a new form of localized and context-aware in-
teractions. For instance, Apple’s AirDrop allows users to
exchange files between mobile devices by creating an ad-hoc
WiFi network. All in all, the amount of data exchanged
wirelessly by mobile devices, be it in an infrastructure or
P2P ad-hoc mode, has consistently increased over the past
few years.

The information that can be inferred only by observing
the data exchange patterns, users’ location and co-location
traces is of great importance and very sensitive: Home/work
locations [18], activities [21], and social networks [9] are of-
ten data that people would prefer not to reveal publicly.
Users’ social ties are no exception either, as several stud-
ies on ubiquitous computing have shown that location and
co-location traces alone can reveal the presence and type of
social relationships among people [11,12]. Most of the ex-
isting works that evaluate the effectiveness of the inference
of social ties from location and proximity data are based on
a single source of information: either proximity logs stored
on the mobile devices or WiFi/cellular connection data ob-
tained from the network operators. Although the existing
results are significant and necessary for an initial attempt
at tackling the issue of social relationship inference, they
lack an important characteristic: data-source diversity for
the same experimental settings. In other words, they lack
the simultaneous access to proximity data present on both
the mobile devices and in the operators’ logs. Having access
to these two data sets is paramount, as this enables us to
evaluate and compare the accuracy in inferring the social
relationships between an internal attacker, who has access



to the data on the device, and an external eavesdropper who
does not.

In this paper, we address the problem of social relation-
ships inference by carrying a comparative analysis of the ex-
posure of such relationships and encounters in a deployed,
peer-to-peer and infrastructure-based wireless network. We
gathered communication and proximity information from 80
participants carrying smartphones during a four-month ex-
periment; Thus our study is the first to possess data-source
diversity for the same experimental setting: We collected
complementary encounter information both from the smart-
phones and from the WiFi sniffing network, comprised of a
set of access points (APs) passively intercepting communi-
cations between the participants. These two sources reflect
accurately the information that can be gathered by (i) a
curious application (or rogue firmware) running on a smart-
phone or an experimenter and (ii) a network infrastructure
owner such as a company which seeks to infer the social
relationships between its employees or a network of compro-
mised (community) access points; both of them represent
realistic and practical adversarial scenarios. By leveraging
on such complementary data, we design a statistical infer-
ence framework to evaluate the accuracy of the inference
of social relationships in localized and pervasive networks.
This evaluation provides empirical evidence about the differ-
ence between the adversary’s accuracy and that of a curious
application in determining the type of social relationships
between people. More specifically, our contribution is two-
fold:

e We provide the first analysis, to the best of our
knowledge, of the exposure of social relationships,
based on proximity data, in a deployed adversarial
WiFi network with data-source diversity.

e We design a statistical inference framework for rela-
tionship classification and use it to evaluate the success
of the owner of the WiFi sniffing stations in inferring
the type of social relationships between users and com-
pare it against a curious application.

Our experimental results show that the infrastructure op-
erator is able to infer the relationships between users bet-
ter than a curious application that uses on-device proximity
data. This is partially due to the fact that the external ad-
versary has location information about the encounters be-
tween users. In addition, when exploiting the social com-
munity structure, the inference accuracy of the attacker is
significantly higher. To put our results in perspective, we
compare the strength of the considered adversary, in terms
of the density of sniffing stations, to some existing hotspot
networks.

The remainder of the paper is organized as follows. In
Section 2, we introduce the experimental setup and system
architecture. In Section 3 we detail the characterization of
the social interactions and communities. We describe our
relationship inference framework in Section 4 and its appli-
cation to the experimental data. In Section 5, we present
the results of the inference framework and their implications
on the privacy of users’ social relationships. We also discuss
the limitations and perspective of this work, as well as coun-
termeasures to help users protecting their privacy. Finally,
we survey the related work in Section 6 and we conclude the
paper in Section 7.

2. SYSTEM ARCHITECTURE

In this section, we describe the methodology and experi-
mental setup of our field experiment, along with the network
model and the adversarial model.

2.1 Experiment Setup

During the spring of 2011 (from the beginning of March to
the end of June 2011, we conducted a large-scale field exper-
iment with 80 participants on a university campus, during
which we collected encounter and proximity data. Similarly
to previous data collection campaigns [11,17], we configured
Nokia N900 smartphones and distributed them to the par-
ticipants, sampling from a coherent population of students
(96%) and instructors (4%), 80% of the participants being
males. The participants answered survey questionnaires at
the beginning and in the middle of the experiment, and they
were individually interviewed at the end of the experiment.
The relevant answers to such questionnaires are used in or-
der to construct the ground truth of user relationships. The
complete description of the goals and the methodology of
the trial, the questionnaires and the interviews is reported
in [1]. The experiment was conducted with Nokia and the
participants signed a consent form prepared by Nokia and
approved by their legal and ethical department.

2.2 Network Model

The smartphones were configured with both standard
infrastructure-based communications, such as cellular and
WiFi, and a WiFi-based P2P technology called Nokia In-
stant Community (NIC). Users could connect to standard
Internet services by using the WLAN or cellular interface of
the device. Also, in order for the participants to exchange
information with their physical neighbors in a P2P fash-
ion (Figure la), the phones were equipped with the NIC
wireless P2P messaging platform that allows for localized
data exchange and increases the co-located devices’ context-
awareness. In addition, several campus and course-related
applications were developed in order to encourage the use
of the devices throughout the duration of the experiment.
To enhance the context-awareness of the pre-installed appli-
cations, the devices periodically sent beacon messages and
ran background services that collected and stored in the
local memory, at regular intervals of [1-30] seconds, infor-
mation such as the list of neighbors” MAC addresses, the
associated received signal strength indicator (RSSI) and the
timestamp. Each participant was identified by a fixed ran-
dom ID assigned at the beginning of the trial, and this ID re-
mained unchanged. Considering dynamically changing user
IDs, such as temporary pseudonyms in miz-zones [4], is out-
side of the scope of this paper. Note that, as of today, most
smartphones do not offer easy ways to change their MAC
addresses and even when they do, most users never change
them manually. And using changing pseudonyms has a neg-
ative effect on the usability of the communication features of
the device and brings only limited improvement. Whenever
a participant’s device connected to the Internet, the new en-
counter logs were uploaded on a centralized database storing
all device logs. To preserve users’ anonymity, we removed
all personal identifier information (such as the mapping be-
tween MAC address, IMEI, and participant name) from the
database. In order to construct the ground truth for our ex-
periments, we kept only the information about (i) the ran-
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(b) Map of the deployed wireless network of 37 APs controlled by the adversary.

Figure 1: Trial setup and deployed eavesdropping network controlled by the adversary.

dom user IDs, (ii) their self-reported relationships and (iii)
the academic registration data (mapped to the user IDs).

2.3 Adversarial Model

We implemented a practical adversary who monitored a
fixed area by using a limited number of wireless sniffing sta-
tions comprised of either (i) dedicated WiFi APs deployed
directly by the adversary or (ii) existing APs compromised
by a malware [19,27], which is a realistic threat to which
most of the reconfigurable, current-generation WiFi APs
are exposed to. Specifically, the adversary had access to
a deployed wireless mesh network of 37 WiFi APs (Asus
WL-500gP running OpenWRT Linux) in a specific region of
the campus, covering one level of six interconnected build-
ings that have a very high user (student) density (Figure
1b). The relative strength of the adversary in terms of the
density of APs, is studied by conducting a comparison with
a deployed hotspot networks. The coverage area included
the classrooms in which two popular courses that the stu-
dents attended took place. Each AP passively eavesdropped
on the NIC packets generated by the participants’ smart-
phones, and it periodically uploaded the eavesdropped data
to a server, populating a unified log database. The APs were
set in promiscuous mode on the fixed channel used by NIC.
Moreover, the adversary did not have access to any informa-
tion stored on the mobile devices, and we assume that the
devices were honest (i.e., not colluding with the adversary).

In order to infer the social relationships, the adversary col-
lected the 3-tuple (Timestamp, Source MAC, RSSI) from
the sniffed NIC messages. Note that at no time did the
participants connect to the Internet through the adversar-
ial APs, that were used only for passively sniffing the NIC
packets. Due to the localized nature of the NIC message
exchanges, they can be captured only by a local adversary.
Such data arguably leaks an amount of personal information
lower than the data that flows through the infrastructure.
Because application-layer encryption was sometimes used to
protect the message confidentiality, we assume that the ad-
versary did not have access to such data. All adversarial
knowledge is built from the analysis of the NIC data, pas-
sively collected by the sniffing APs.

3. SOCIAL INTERACTIONS AND COM-
MUNITIES

In this section, we describe the methodology used to
model the user interactions during the experiment. The so-
cial graph representing the user interaction is used to infer

the community structure, which is subsequently used to re-
fine the social relationships inference mechanism.

In society, people tend to organize themselves in social
groups or communities, such as families, colleagues, and
friends, where members usually have similarity traits with
other members stronger than with non-members [15]. From
a graph-theoretic perspective, people and their relation-
ships can be represented by an undirected weighted graph
G=(V,E,W), where the vertex set V corresponds to peo-
ple, the edge set E expresses the existence of a relation-
ship between people, and the weight function W:E — R™
quantifies the intensity of such relationships. In their sim-
plest form, communities can be represented as subgraphs
{C; = (Vi, B, W) M., where C; C G and M is the number
of communities. As people can be members of several com-
munities, different community subgraphs can share vertices.

3.1 Experimental Data

In our experimental data, we have two sources of proxim-
ity information: (i) the internal data, constituted by local
device logs collected by the mobile devices themselves (the
devices of all the participants have been compromised by
the internal adversary, e.g., through a rogue firmaware up-
date) and containing encounter data (list of neighbors’ MAC
addresses, the timestamps and the RSSI values of received
packets), and (ii) the adversarial data, containing the head-
ers of the sniffed packets (sent by the mobile devices), which
include the timestamps and RSSI values of received packets
at the sniffing APs, as well as the device ID of the sender.

We use these two data sources to formulate the ‘strength’
or intensity of the social relationships between users and to
define the weights of the edges that connect the respective
vertices in the social graph G = (V, E,W). From the local
device logs, we can directly obtain the device-to-device prox-
imity information because the recorded RSSI values on the
receiving devices are correlated with the real distances to the
sending devices. However, this is not the case for the RSSI
values recorded by the adversarial network, as they depend
on the distance between the sending device and the receiving
sniffing station. Therefore, the adversary needs to derive the
device-to-device proximity information from the device-to-
AP RSSI values: the adversary first estimates the position
of a device and then computes the device-to-device proxim-
ity information in order to determine the weights between
vertices of the graph. To this end, we used a localization al-
gorithm based on trilateration; it determines the estimated
position of a mobile device that sent a packet based on the
RSSI at all sniffing stations that overhear the packet.



Relationship Labels

In addition to the strength of social relationships, we also
characterize the type of relationship between users. More
specifically, we consider three labels: (i) friends, (ii) class-
mates and (iii) others.! The possibility of associating multi-
ple labels to a single relationship is crucial in social networks,
as people can be simultaneously classmates and friends. To
construct the ground truth data, each relationship is as-
signed one (or more) labels based on (i) the participants’ an-
swers to the survey questionnaires (for friends) and (ii) the
database of academic course registration provided by the
university (for classmates). For instance, if two participants
followed the same class during the experiment, their rela-
tionship was categorized as classmates; furthermore, if one
of the same participants also listed the other as friends in the
questionnaires, their relationship was categorized as both
classmates and friends. We note here that for the friend-
ship label, due to the lower number of declared friendships,
we considered asymmetric relationships as symmetric be-
cause of the subjective nature of the friendship relationship
that could be perceived by one person and not by the other.
From our ground truth data, we observed that 25% of all
the 3,160 possible relationships were tagged as classmates
and 2% as friends. We tagged the remaining as others.

We choose these types of relationships for two reasons.
First, we followed the approach of [7] and selected the types
of relationship relevant to our context. For instance, as
our population was comprised almost exclusively of students
on a university campus, we considered the two relationship
types aforementioned, as well as the estimated user loca-
tion. For a more diverse on-campus population, including
researchers and instructors, we would have had to consider
the role of the hierarchy as well. Second, it was possible for
us to collect the ground truth for these two types of rela-
tionships.

In our proximity network, we consider three distinct
weight functions {wgij)}f’l:l for the edges between vertices
i,j € V to quantify the intensity of their social interactions.
The three weight functions [5], progressively take into ac-
count the proximity, the intensity, and the aging/recency
of the relationships between users. Moreover, to investigate
the effect of community detection on the accuracy of the in-
ference attack, we apply the well-suited CPM method [24]
to extract community information from the social graph G.
In the Evaluation section we present the results of the at-
tacker’s success for each of the three weight functions, with
and without community detection.

4. RELATIONSHIP INFERENCE FRAME-
WORK

In this section, we introduce our relationship inference
framework by which we evaluate the accuracy of the at-
tacker’s reconstruction of users’ social relationships.

4.1 Relationship Characterization

The relationships between two users are characterized by
their interactions. To characterize and classify relationships,
we first formalize the notion of encounter: it captures a

'Friends and classmate relationships can be more easily rec-
ognized based on just on-campus encounter data. More com-
plex relationships, such as “lovers” and “family”, require ad-
ditional contextual data which our dataset does not include.

Pathways
BN Public places
EEE (Classrooms

Figure 2: Partition of the map (in which the ex-
periment was conducted) into three types of areas:
pathways, public places, and classrooms.

significant interaction between two users. A relationship is
defined by a set of encounters.

Encounter Detection

We define an encounter between any two users as a con-
tinuous time interval that meets a threshold, both on its
duration and on the proximity of the two involved users.
Typical values of these thresholds are 5 minutes and a 20
meters, respectively. The proximity between users is com-
puted in two ways, according to the source of the data. From
the internal device logs, we use the RSSI values of messages
exchanged between users (in a P2P fashion) in order to de-
termine their distance, whereas from the adversarial sniffed
data, the proximity is determined by computing the Euclid-
ian distance between the estimated location coordinates of
each user, based on device-to-AP RSSI values.

A number of features are extracted from the inter-
nal/adversarial logs, either at the granularity of an en-
counter or of a relationship. For instance, we extract the
duration of each single encounter and the total number of
encounters between the two users for each relationship. The
extracted features are then fed to the classification algo-
rithm. In order for the adversary to accurately classify
the relationships based on specific features, these features
must vary significantly from a category (such as friends) to
another. Typical discriminating features include encounter
duration, the proximity of users during encounters, inter-
encounter time, and the number and periodicity of encoun-
ters [28].

Trial Data

| TrainingData |
Survey relationship labels —

Gaussian Mixture Model

Synthetic pdfs

Internal logs /
adversarial
estimates

Figure 3: Overview of the inference framework.

Maximum Likelihood
Classifier

Parameters
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True / False Positive
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Test set feature extraction

Test Data

4.2 Relationship Classification

In order to select the set of possible relationship classes,
we use the ground-truth collected through (i) survey ques-
tionnaires at the beginning of the trial and (ii) the official



university course-registration database. According to the
answers of the participants and the university register, we
selected three classes of pairwise relationships between users,
i.e., friends, classmates, and others. We then designed an
inference framework (Figure 3) based on the features ex-
tracted from the internal/adversarial data.

The classification algorithm operates as follows. First,
we extract the features of a small subset of the encounters
and relationships, namely a training set. From the survey
and administrative records, we know the category of each
encounter and relationship in the training set. Then, for
each of the three categories of relationships, we compute
the experimental probability density function (pdf) of the
various features and plot the corresponding histograms. We
fit each experimental probability density function with an
appropriate parametric model, the Gaussian Mixture Model
(GMM) [11], and determine the parameters according to
two optimization criteria. The obtained synthetic pdfs are
subsequently used to classify the encounters of the rest of
the data set, i.e., the test set. Based on the synthetic pdfs,
for each encounter and for each category of relationships,
the likelihood that the encounter belongs to this category is
computed from the values of its features. The likelihood that
a relationship belongs to a given category is computed by
taking into account the different features of the relationship
and those of its encounters.

4.2.1 Encounter Location Classification

In our work, the location where encounters take place is a
key feature of relationships. This information is only avail-
able in the adversarial data and is computed from the users’
locations estimated by the adversary. More specifically, the
region of the experiment covered by the adversarial net-
work is partitioned into different areas classified in three
types: pathways, public spaces and classrooms (Figure 2).
We expect such a classification to be discriminating, with
respect to the types of relationships the adversary wants to
infer. For instance, classmates are expected to experience
frequent encounters mostly in classrooms, whereas friends
might hangout more frequently in public spaces and path-
ways. Because users can move during a given encounter,
for each encounter, we compute the proportion of the time
spent in each type of location. In this way, we can cap-
ture the fact that an encounter that started in a pathway
continues through public spaces.

4.2.2 Feature Extraction

We detect encounters based on interaction duration and
proximity between users. With the internal data, we as-
sume that an encounter occurred if at least two messages are
exchanged within an interval of 5 minutes and the average
RSSI of the exchanged messages is greater than -80 dBm (to
account for radio noise, interference and fading), which cor-
responds to a distance of at most 18 meters. These thresh-
old values have been determined empirically. The encounter
spans from the first exchanged message to the last. For ex-
ample, if two users exchange messages, all with RSSI values
of -50 dBm, at times 1, 3, 7, and 15 minutes, an encounter is
detected and it spans from 1 to 7 minutes (the last message
arrives too late to extend the encounter duration). With the
adversarial data, we first need to estimate the users’ loca-
tions. In order to reduce the noise on the users’ estimated
locations, we divide the trial timeline in small sub-intervals

of 30 seconds and we average user locations over each sub-
interval. First, we consider that an encounter occurs if at
least two messages are exchanged within an interval of 5 min-
utes and the distance between the two users’ locations is
consistently lower than 5 meters (i.e., lower than 5 meters
in each sub-interval between the times at which the messages
were exchanged). To compare the results with the internal
data, we also considered distance thresholds of 10, 20, 30,
and 40 meters, corresponding to RSSI values of -68, -82, -91,
and -97 dBm, respectively (according to the Haka-Okumura
radio propagation model [8]).

At the granularity of an encounter, we extract the follow-
ing features: (i) the encounter duration (the time elapsed
between the first and last message exchanged during the en-
counter), (ii) the inter-encounter time (the time elapsed
since the end of the previous encounter and the beginning
of the current encounter), and (iii) the average encounter
RSSI value (the average of the RSSI values of the messages
exchanged during the encounter). For the adversarial data,
we further consider (iv) the encounter location, charac-
terized by the fraction of the encounter time that takes place
at each type of location, such as pathways, public places and
classrooms. The location of an encounter is defined as the
midpoint of the two users. At the granularity of a relation-
ship, we consider an additional feature: the total number
of encounters over the whole trial.

4.2.3 Supervised Learning

In order to train our inference framework, we use a ran-
dom subset (the training set) of all the relationships, which
account for approximately 30% of the whole data set. We
divide the relationships in the training set into three cat-
egories, i.e., friends, classmates, and others according to
the labels obtained from the surveys and the university
database. Because two users can simultaneously be friends
and classmates, a relationship can belong to both categories.
Note that an alternative way to proceed would be to divide
the training set into four categories: friends, classmates,
others, and friends and classmates. However, as in our data
set the “friends and classmates” category does not contain
enough relationships to perform a proper training, we con-
sider only the first three categories: friends, classmates, oth-
ers. For each category, and for each feature, we compute the
experimental distribution of the feature for all the relation-
ships in the category, by means of histograms composed of
100 bins. We denote by ff2t, cat € {friends (f), classmates
(c), others (0)} and feat € {encounter duration (ed), inter-
encounter time (iet), average RSSI (rssi), and number of
encounters (ne)} (and encounter location (el) for the adver-
sarial data), the functions corresponding to the histograms.
For example, ffed(m) gives the proportion, in the training
set, of encounters between friends that last between x and
 + dz minutes. These functions can be thought of as indi-
cators of the likelihood that a given encounter belongs to a
given category, based on the value of one of its features, and
will be used as such by our classification algorithm.

Intuitively, it can be expected that the pairs of users whose
relationships are classified as friends and classmates would
experience more frequent encounters than users belonging
to the category others. Similarly, classmates are expected
to meet according to a fixed pattern (e.g., every Monday for
a particular class), whereas on-campus encounters between
friends are not expected to follow a fixed pattern. This intu-



ition is confirmed by our observation of the data, as shown
in Figures 4 and 6. The former depicts the experimental
distribution of two features: the encounter duration (at the
granularity of an encounter) and the number encounters (at
the granularity of a relationship), whereas the latter shows
the location feature. It can be observed that, as expected,
these features discriminate the three categories of relation-
ships, therefore we foresee a high potential for classification.
For instance, friends meet more than classmates and oth-
ers and classmates meet for longer times (classes). Also,
classmates meet mostly in classrooms. Note that the afore-
mentioned intuitions are given for the sake of information,
the inference algorithm is based on the rigorous techniques
that we describe.
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Figure 4: Encounter location feature for the adver-
sarial data (distance threshold of 40 meters).

As it can be observed in Figure 6, the experimental dis-
tributions are noisy and thus cannot be used as is for clas-
sification purposes: For instance, we can observe in the his-
tograms that there are no relationships between friends com-
posed of exactly 35 encounters in our training set. Therefore,
if the histogram of the number of encounters is used as is
to determine the likelihood of two users being friends, two
users who meet 35 times during the trial would be assigned
a null likelihood for the friends category. For this reason,
we fit the experimental histograms with parametric pdfs,
namely multi-dimensional Gaussian mixture models of the
form:

K
1 L
P 0) = > e FO)E
k=1

V2| (2m) /2

where Z w Tl = 1 and d is the dimension of the feature vec-
tor. The set of parameters is denoted by 6 = ((71, py, 21),

., (K, By, XK)), and x is the value of a feature. We use
one-dimensional GMMs for scalar features, e.g, encounter
duration, and multi-dimensional GMMs for the encounter
location (fractions of time spent in pathways, classrooms,
and public places).

The number K of Gaussian components, and their re-
spective weights (7;), means (u,,), and covariance matrices
(3x) are free parameters and must be chosen to best fit
the experimental distributions. For a given value of K, we
determine the other free parameters of the Gaussian compo-
nents through expectation maximization (EM). We choose
the values of the parameters that maximize the likelihood
that the n values {x;}i=1..n of the features (observed in the
training set) have been drawn from a Gaussian mixture with

;l(xfuk)’ (1)

these parameters. The likelihood function is given by

n
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and the estimated value of the parameters is § = arg maxg
£(0;%1,...%n). We repeat this estimation step for several
values of K, and we subsequently determine the most ap-
propriate value of K according to the Akaike information
criterion [2]: AIC = 2k’ — 21In¢(), where k' is the number
of parameters of the GMM.

The learning phase produces a likelihood function ¢4t
for each category cat € {f,c, o0} and for each feature feat €
{ed, iet, rssi,ne} (and el for the adversarial data).

4.2.4 Relationship Classifier

Our classification algorithm is based on likelihood maxi-
mization and operates in two steps. We first determine if
the two users are actually involved in a relationship (friends
or classmates) or not (others) based on the likelihood of a
relationship, with respect to each category. This likelihood
is computed from the value of the features and from the syn-
thetic distribution obtained from the training set. If users
are believed to have a relationship, we refine the classifica-
tion by discriminating between friends and classmates.

More specifically, the algorithm operates as follows (see
Figure 5 for illustration). If the likelihood is maximized for
the others category, the relationship is classified as others
and the classification ends. If it is maximized for the friends
category, the relationship is assigned the friends label and a
second step is performed to decide whether the classmates
label is assigned as well. This second step is based on a
threshold: If the likelihood of the relationship for the cate-
gory classmates is higher than the likelihood of friends mul-
tiplied by a factor v € [0,1], the relationship is assigned
the classmates label as well. The same process applies in
the case the likelihood is maximized for the classmates cat-
egory. The classification process can be summarized by the
decision tree depicted in Figure 5.

Gyt friends and classmates

Oy > max (L, l,) o<yl

friends

0, > max ({y,(.)

0, > max ({, () classmates

—
|
—
e\

friends and classmates

Figure 5: Decision tree used by the classifier.

The likelihood /cat of a relationship, with respect to each
category cat, is given by

lear(r) = | J] €5 ed(e))- £ et (e)) - £33 (rssi(e))

X Leas(ne(r)) , (3)

where m € r denotes the encounters between the two users
concerned by the relationship r. For the adversarial data,
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Figure 6: Experimental distributions (histograms) and fitted GMM pdfs (dashed lines) of two features

extracted from the adversarial data (distance threshold of 40 meters):

encounters.

the factor £ei(el(e)) must be inserted in the product in Equa-
tion (3) to take location into account.

S. RESULTS

In this section, we present the performance results of our
relationship classification inference framework. First, we de-
scribe the metrics used to evaluate the inference accuracy of
the adversary, then we discuss the performance of the classi-
fier and the effect on the users’ relationship privacy. Finally,
based on our results, we discuss possible countermeasures to
mitigate the success of the adversary in inferring social re-
lationships. We evaluate his success by using both pairwise-
only and community-enhanced proximity information.

5.1 Pairwise Relationship Inference

The performance of a classifier is usually evaluated in
terms of its true positive rate (TPR) and false positive rate
(FPR). Hereafter, we present the accuracy of the adversary’s
relationship inference on our data set, where the adversary
considers only the estimated pairwise proximity information
between users, i.e., without taking into account the under-
lying community structure. Figure 7a shows the TPR and
FPR for the three classes for different values of the distance
threshold.

Internal Proximity Data. By using the internal proximity
information between users, the performance of our infer-
ence framework is, in general, satisfactory, given the lim-
ited amount of training samples (30% of the total). This
means that we have a high TPR and a moderate FPR. For
the class friends, we observe the best TPR (84%) and a
moderate FPR (27%), which means that the actual prox-
imity data and the encounter features we selected for the
classification are quite discriminating for this class. Class-
mates and other relationship classes have a TPR/FPR of

encounter duration and number

56%/18% and 37%/13% respectively, which are lower than
for friends. As a result, the actual proximity data works
well for the friends and classmates relationships inference,
whereas it has a more limited success in classifying other
types of relationships. This is not surprising, as proximity
information, without taking into account the actual location
of the interaction, is intuitively tied to inferring close and
periodic interactions more than sporadic encounters.

Adversarial (Estimated) Proximity Data. First, at a lower
encounter-distance threshold (5-10 meters), the adversary
has a very high TPR rate for classmates and friends (79%
and 74% respectively) while it suffers from an elevated FPR
as well (53% for friends). The accuracy for others is rela-
tively low at 28%, meaning that the prediction suffers from
a significant number of false positives that negatively af-
fect the successful recognition of friends and classmates.
Whereas, for larger encounter-distance thresholds (20-40
meters), the accuracy for others doubles and is consistently
larger than for the friends.

Internal vs.  Adversarial. For low encounter-distance
thresholds, on one hand the external adversary has a similar
or higher accuracy in correctly inferring the relationships of
participants compared to the case of the internal adversary
(i.e., using the actual proximity data). On the other hand,
the FPR is also substantially higher, which renders the rela-
tionship prediction much less reliable at low distance thresh-
olds. As the adversary can estimate, in addition to users’
proximity, some contextual information (location of the en-
counter), it is easier for him to infer the type of relationship
given this additional feature, but it is also easier to wrongly
include other types of relationships in the friends class.
When increasing the distance threshold (20-40 meters),
we can see that the success in inferring friendships from
external data decreases by at least 50% when compared to
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Figure 7: Accuracy of the external adversary in inferring social relationships. The horizontal lines correspond
to the accuracy of the classifier when the internal (local device) proximity data is used.

the case where internal data is used. Meanwhile, there is a
two-fold increase in TPR for the others category. In other
words, the larger the allowed distance between users is, the
better the inference accuracy for the others category. And
the classmates performance stays at comparable levels for
the different distance thresholds.

Overall, we observe that the increase of the encounter-
distance threshold for the adversary is highly beneficial for
the detection of non-friendships. By adjusting such a thresh-
old based on the target relationship class, the external ad-
versary obtains an inference performance comparable to that
of the internal adversary who uses the actual proximity in-
formation available on the devices.

5.2 Community-Enhanced Relationship In-
ference Results

Hereafter, we describe the performance of the relationship
inference framework when the adversary relies on the un-
derlying structure of user communities. This pre-processing
step will enable us to observe the effect of such information
on the accuracy of the adversary’s inference compared to the
previous case without community information. The results
are shown in Figure 7b.

Internal vs. Adversarial. For low-distance threshold val-
ues (5 meters), we see that the external adversary has a
TPR comparable to the case where no community infor-
mation is extracted (for most weight functions). However,
the FPR values are significantly different: The false-positive
rate for friends and classmates relationships is three to four
times lower when using community structure than when
not. When inferring the others class of relationships, the
TPR is three times better than the community-less counter-
part, with only a comparable FPR. These results indicate
that by using the community structure of social relation-
ships among users, the adversary is able to significantly in-
crease his performance (both in terms of TPR and FPR)
across all relationship types, especially in terms of false pos-
itives. With respect to the weight functions we defined for
the CPM community detection algorithm, we can see that
the first two functions w™® and w® (see [5] for a detailed

definition and formulation of the weight functions) have a
slightly better performance for friend and classmate rela-
tionships and are twice as good for the others class. This
suggests that by modeling the interactions of non-friends or
classmates with memory-less weight functions, the detected
community structure is better suited for distinguishing be-
tween such types of relationship, as they did not exhibit
most of the periodic and close interactions during our ex-
periment as friends or classmates.

5.3 Discussion

The results we have presented so far show that, even with-
out any additional pre-processing by the adversary, the es-
timated location and proximity among mobile users is often
enough to make accurate predictions about the kind of social
relationship between any two users (Figure 7a). Even if the
users rely on encryption for their communications, the con-
sidered external adversary can distinguish users as friends,
classmates or neither by capturing their identifiers and by
correlating them over time and space.

Even more striking is the fact that by adding an extra
step in the inference process, both the accuracy (TPR) and
reliability (FPR) are improved significantly. In particular,
the dynamic social community structure of people and their
behavior over time leak a substantial amount of additional
private information to the adversary. By pre-processing the
proximity data and detecting communities, in most cases the
adversary is able to double his performance when inferring
the types of relationships between users inside communi-
ties, much to the detriment of the privacy of users and their
communities. This suggests that even a simplistic charac-
terization of human encounters, based on memory-less and
time-independent functions, GPS-less data and standard tri-
lateration positioning algorithms, is enough to enable a wire-
less infrastructure owner to successfully detect communities
and to determine the type of relationships among users in-
side each community.

Finally, by transposing our results to existing wireless
networks, we hypothesize that similar findings can be ob-
tained by self-interested or curious third-parties, such as
commercial service providers, cellular network operators,



WiFi network operators (commercial, companies, institu-
ions). The increasing deployment of low-range cellular base
stations [13] and the increased availability of public WiFi
hotspots [14] severely undermine people’s ability to resist or
opt-out from unwanted scrutiny.

5.4 Countermeasures and Limitations

Countermeasures. A solution for limiting the success of the
inference attack, which is specific to the threat presented
in this paper, consists in reducing the information available
to the adversary and his confidence in this information. To
achieve this, technical solutions include the use of changing
pseudonyms as wireless identifiers and sending dummy mes-
sages. With pseudonyms, users can change their MAC ad-
dress every day while off-campus or, upon encounters, collec-
tively interrupt all communications for a certain time and re-
connect with fresh random pseudonyms (i.e., mix-zones [4]).
The use of pseudonyms makes it difficult for the adversary
to link and track identities of users over time. It reduces the
learning period to a few hours instead of a the whole trial
timespan, therefore decreasing the success of the inference.
However, such a mechanism has a negative effect on the us-
ability of the communication features, e.g., Bluetooth pair-
ing and MAC filtering. Another technical countermeasure
is to dynamically change the transmission power to confuse
RSSI-based triangulation and limit the eavesdropping pos-
sibilities. However this comes at the cost of decreased net-
working performances. Finally, injecting dummy messages
would artificially increase the intensity of the encounters,
thus, biasing the results of the inference.

Limitations. The results and discussions presented in this
study are based on a large-scale experiment conducted on a
university campus, where most of the participants are stu-
dents. The characteristics of such a population are rather
homogeneous, with respect to the utilization of technology
and the age. As in several other university-based field ex-
periments, the results of our study might apply — to a lower
extent — to scenarios involving a more diverse population
with respect to education, age, gender and technology us-
age habits. In order to mitigate this, as part of our future
work we would like to extend our experiment to a more di-
verse population, and therefore to assess the effectiveness of
the inference attacks in a more mixed environment. Finally,
as off-campus interactions are more insightful with respect
to social relationships — for instance, the larger variety of
location types (e.g., bars, cinemas and residential areas in-
stead of just public places and classrooms) — we expect a
greatly improved performance of the inference when consid-
ering off-campus interactions as well. This would enable us
to consider fine-grained social relationships, such as close
friends and relatives.

Strength of the Adversary. Regarding the relative strength
of the adversary considered in the paper, with respect to the
number of WiFi APs, we studied the density of three de-
ployed WiFi AP networks for comparison. First, we looked
at the FreeWifi [16] and SFRWifi [26] hotspots networks
that consist of the wireless modems and set-top boxes of the
subscribers of two major ISPs (Free and SFR respectively,
which have ~5M subscribers each for a population of 65M)
operating in France. Such networks of hotspots constitute
concrete and illustrative examples of the adversary consid-
ered in this paper as they are operated by a single entity,
i.e., the ISP. In particular, the ISP can silently update the

firmware of the wireless AP for all hotspots in the network.
The maps of these hotspot networks are available on-line,
integrated in Google Maps, on dedicated website [16, 26].
By inspecting the traffic generated when visiting the map
websites, we were able to extract the url to obtain the list
of hotspots (together with their GPS coordinates) located
in a given geographic region described by its north east and
south west corner. Because the number of returned hotspots
was limited to a hundred, we recursively split the region of
interest in four until all the hotspots were returned. For the
Paris area, the average density is 564+£270 APs/km2 (resp.
8534346 APs/km?), and goes up to 1450 APs/km? (resp.
1560 APs/km?) in populated areas for Free (resp. SFR).
The FON [14] hotspots network has an even higher density
as it includes the SFRWifi network. For comparison, the
adversarial network of sniffing APs considered in our study
has a density of 1138 APs/km? (37 APs deployed over a re-
gion of size 130 mx250m), which is even lower than that of
the real networks in densely populated areas. Another illus-
trative example is that of a company exploiting its network
of WiFi stations to infer the social relationships between
its employees. For instance, EPFL has ~880 WiFi APs de-
ployed over a region of 500 mx800m, that is a density of
2200 APs/km?. As these statistics suggest, there exist ex-
amples of deployed WiFi AP networks that have a similar
or higher density than the adversary considered in this pa-
per, which shows that the results presented in our work are
realistic and applicable to existing networks.

6. RELATED WORK

Eagle et al. [11,12] studied complex social systems by col-
lecting Bluetooth encounter data from 94 students equipped
with mobile phones. In particular, they identified proximity
patterns between devices and performed relationship infer-
ence on the data by comparing the results with the ground
truth obtained from surveys and answers to questionnaires.
Similarly to other user studies [10, 23], the authors could
only compare their findings (based on Bluetooth encoun-
ters between devices) with the ground truth, without hav-
ing access to a network infrastructure that would allow them
a more thorough analysis by comparing these results with
those obtained by a passive third-party adversary. However,
off-campus location data was collected in [11,12] and it sig-
nificantly improved the quality of the inference results. A
recent study [3], performed on a group of 27 participants,
shows that it is possible to accurately infer the social ties
between people based on Bluetooth encounters, phone calls,
SMSs and cell-tower IDs, without any prior knowledge about
the participants. Nevertheless, these findings are based on
data that is available only on the local devices, therefore it is
unclear to what extent the results apply to the inference suc-
cess of an external adversary. Other studies focused on infer-
ring the social ties from co-presence of users, as in the case of
Flickr [9], and on dynamics of inter-encounter times [28]. A
large user study, involving 168 participants over 2 years, was
conducted in [20] in order to study people’s behavior with
respect to mobile phone usage, activity and location.With
regard to location privacy in pervasive wireless networks, [6]
studied the efficacy of dynamic allocation of pseudo-random
IDs in specific regions called miz-zones [4], showing that in
deployed networks such a mechanism provides only limited
success in protecting users’ location privacy.



7. CONCLUSION AND FUTURE WORK

In this work, we experimentally evaluate a practical adver-
sary’s accuracy in inferring the type of relationship of users
in ubiquitous networks. The availability of source-diversity
in our experiment, enables us to compare the accuracy of an
external adversary with that of an internal adversary (e.g.,
a malicious application) who has access to actual proxim-
ity information stored on the devices. Our results show the
following two aspects. First, social ties are exposed to a
significant inference threat by an external adversary, who
can quite accurately infer the type of social ties between
users simply by relying on location estimates and encounter
characteristics, compared to a curious application running
on the device (or to the experimenter). Second, by applying
a well-suited community detection algorithm, the adversary
can double his inference accuracy on the same data set.

As part of our future work we intend to evaluate the effi-
cacy of existing countermeasures as well as design a scheme
that would limit the adversary’s accuracy, for example by
dynamically changing the fixed identifiers (MAC addresses)
based on time- and location-context. We also intend to
study the effect of the density of the WiFi APs and consider
additional features such as the time at which the encoun-
ters occur. Finally, we plan to extend our experiments off-
campus and refine the relationship categories accordingly.
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