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Abstract: This paper is about control design for timed continuous Petri nets that are 

described as piecewise affine systems. In this context, the marking vector is considered as the 

state space vector, weighted marking of place subsets are defined as the model outputs, and 

the model inputs correspond to multiplicative control actions that slow down the firing rate of 

some controllable transitions. Structural and functional sensitivity of the outputs with respect 

to the inputs are discussed in terms of Petri nets. Then, gradient-based controllers (GBC) are 

developed in order to adapt the control actions of the controllable transitions according to 

desired trajectories of the outputs.  

1. Introduction 

Petri nets (PN) are useful for the study of discrete event systems (DES) and hybrid dynamical 

systems (HDS) (Cassandras 1993, Zaytoon et al. 1998) because they combine, in a 

comprehensive way, intuitive graphical representations and powerful analytic expressions. As 

a consequence, a lot of results based on PN theory have been established for the control 

design of DES and HDS. One of the most famous approaches concerns the supervisory 

control where the system and the controller are considered both as DES (Giua and DiCesare 

1994).  

Continuous approaches with continuous flow models and continuous PN have been also 

investigated (David and Alla 2004, Silva and Recalde 2002). The motivation to introduce 
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continuous PN are to model the continuous part of HDS and to work out a continuous 

approximation of DES in order to avoid the complexity associated to the exponential growth 

of states. Such models have been proved to be suitable to represent the substance level of 

general semantic models (Zhang and van Luttervelt, 2011) for control and resilience issues. A 

complete discussion about methods, advantages and limitations of continuous approximations 

of DES can be found in (Silva and Recalde 2002, 2004) for deterministic systems and in 

(Lefebvre 2012, Lefebvre and Leclercq 2012, Vasquez and Silva, 2012) for stochastic ones. 

Flow control design (Lefebvre 1999, Silva and Recalde 2004) have been developed with 

timed continuous PN (contPN). In particular, controllability and steady states have been 

characterized (Jimenez et al. 2005, Mahulea et al. 2008, Vasquez et al. 2008) and recently, 

optimal controls have been investigated. Model predictive control (Giua et al. 2006, Mahulea 

et al. 2008b, Julvez and Boel 2010), constrained feedback control (Kara et al. 2009, Vazquez 

and Silva 2009) and linear programming combined with closed loop strategies (Apaydin-

Ozkan et al. 2011) have also been designed. Finally the potential of on/off controllers and of 

distributed control design has been discussed (Wang et al. 2013). The domains of application 

are at first manufacturing and traffic systems (Kara et al. 2009, Julvez and Boel 2010, Wang 

et al. 2013), but computer science and some other domains are also concerned. In the domain 

of manufacturing systems, Kara et al. (2009) applied constrained feedback control to a simple 

manufacturing process. Wang et al. (2011, 2013) performed a decentralized on/off control to 

an assembly line with three types of product which are assembled to result in one final 

product. Apaydin-Ozkan et al. (2011) controlled a flexible manufacturing system (FMS). 

Tuncel (2012) also studied FMS with colored Petri nets. Chen and Li (2012) investigated the 

optimal structure of Petri net supervisor for FMS and Chen (2012) exploited colored Petri net 

to control a RFID based FMS. Lee and Jeong (2011) focused on the control of shared 

machines by using Petri nets. Some special sessions in recent congresses IEEE SMC 2008, 

WODES 2012... and special issues of journals have been published on the same subject (Zhou 

and Li, 2010). Other applications of control using different kinds of Petri nets may also be 

found. In particular, Ross-Leon et al. (2012) exploited contPN models for metabolic systems. 

Zhang et al. (2011) performed a review on Petri net application for supply chain management. 

Tolba et al. (2005) investigated continuous PN for the traffic regulation. 

In this paper, controllers inspired from artificial intelligence and adaptation algorithms 

(Widrow and Lehr 1990, Thomas 1997) are proposed for contPN. They are based on 

sensitivity functions (Lefebvre and Delherm 2003, 2007). For this purpose, contPN are 

described as piecewise affine models. The system outputs are defined as the marking of 
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subsets of places, and the system inputs correspond to control actions that slow down the 

firing rate of the controllable transitions. The main contributions are to investigate the 

sensitivity of the PN model from both structural and functional points of view. Such 

characterizations are used in a systematic way for control issues. Structural sensitivity is 

helpful to select the transition to control. Then, sensitivity functions are computed and 

consequently gradient-based controllers (GBC) are proposed that slow down the firing rates 

of the controllable transitions so that the outputs track reference trajectories. To the best of 

our knowledge, this class of controllers has not been yet investigated. The advantage of the 

GBC is the systematic numerical implementation for multi-inputs and multi-outputs (MIMO) 

models of DES and HDS. The usual discussion about structural properties of PN (join-free, 

choice free, consistency, conservativeness, and so on) is replaced by the sensitivity analysis 

that has an intuitive meaning for control issues.  

The paper is divided into 5 sections. The section 2 is about PN and contPN. The section 3 

concerns the structural analysis that provides useful results concerning output structural 

sensitivity. The section 4 is about the design of GBC. Various examples of contPN are 

proposed in section 5 in order to discuss the proposed results and to compare GBC with 

proportional - integral,  on/off controllers and model predictive controller. 

2. Petri nets 

A marked Petri net (PN) with n places and q transitions is defined as < P, T, WPR, WPO, MI > 

where P={P i} i=1,…,n is a set of places, T={T j} j=1,…,q is a set of transitions, such that P ∩ T = ∅ . 

WPR = (wPR
ij) ∈  (Z+) n × q is the pre-incidence matrix and WPO = (wPO

ij) ∈  (Z+) n × q is the post-

incidence matrix where Z+ is defined as the set of non-negative integer numbers. The PN 

incidence matrix W is defined as W = WPO – WPR ∈  (Z+) n × q. Let us also define M = (mi) ∈  

(Z+) n as the marking vector and MI ∈  (Z+) n as the initial marking vector. °°°°Tj (resp Tj°°°° ) stands 

for the pre-set (resp. post-set) places of Tj. When two transitions Tj and Tj’  have a common 

place in the pre-set, the PN presents a structural conflict. The conflict is an effective one if 

there are not enough tokens in the common place to fire both transitions.  

2.1. Timed continuous Petri nets 

Timed continuous PN under infinite server semantics (contPN) provide a continuous 

approximation of DES behaviour (David and Alla 2004). A marked contPN is defined as < 

PN, Xmax > where PN is a marked Petri net and Xmax = diag(xmax j ) ∈  (R+) q is the matrix of 

maximal transition firing rates with R+ the set of non-negative real numbers. The marking 
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mi(t) of each place Pi, i = 1,…,n, at time t has a non-negative real value and each transition 

firing is a continuous flow in contPN. Let us define X(t) = (xj(t)) ∈  (R+) q as the firing rate (i.e. 

flow) vector at time t which continuously depends on the marking of the places according to 

equations (1) and (2): 

)t(.x=(t)x jjmaxj µ
 (1) 

with: 

( )
( ) min i

j PR
i j ij

m t
t

P T w
µ

� �
= � �� �∈° � �

 (2) 

The marking variation is given by the differential system (3): 

( )0 I

dM(t)
W .X( t )

dt
M M

=

=
 (3) 

Due to the function « min » in the expression of the enabling degree (2), contPN are not linear 

but piecewise linear systems (Lefebvre et al. 2003, Silva and Recalde 2004). Let us introduce 

the critical place(s) for transition Tj at time t as the place(s) Pk such that k correspond(s) to the 

value(s) of the index i for which the quantity of tokens mi(t) / w
PR

ij is minimal for all Pi ∈  °Tj. 

Let us notice that a transition may have several critical places. For each marking M(t) a single 

critical place is selected with the q functions fj: 

∀  Tj ∈  T, fj :  (R
+) n → {1 ,…,n}   

  M(t) → fj(M(t)) = min {i such that mi(t) = µj(t).wij}  (4) 

Function “min” is used in (4) to select a unique place (the one with smallest index) in the set 

of critical places. This place is noted mfj(t) in the following. According to the functions fj, the 

set of reachable markings is partitioned into a finite number K of regions Aϕϕϕϕ with K ≤ Π{|°Tj|, 

j = 1,...,q}. Each region Aϕϕϕϕ is characterised by a constraint matrix Aϕ = (aϕ
ij) ∈  (R+)q x n with, 

where aϕ
ji = 1/wPR

ij if i = f j(M(t)) and aϕ
ji = 0 otherwise (Lefebvre 2011). As a consequence, 

contPN are piecewise-affine hybrid systems with a linear expression in each region Aϕϕϕϕ: 

∀  M(t) ∈  Aϕϕϕϕ, dM(t)/dt = W.Xmax.Aϕ.M(t) (5) 
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From a behavioural point of view, several phases occur in the marking trajectories. Each 

phase is active in a particular region Aϕϕϕϕ or PN configuration (Mahulea et al. 2008). 

2.2. An introductive example 

ContPN can be extended with non linear firing speeds and enlarged with discrete places and 

transitions to approximate DES or HDS (Balduzzi et al. 2000, Zaytoon et al. 1998) as 

illustrated with the example in figure 1, modelled with the hybrid PN in figure 2.  

 

 

 

 

 

 

 

 

Figure 1: Two-tank system (system A) 

[Insert figure 1 here] 

 

The places P1 and P2 are continuous and the markings m1 and m2 stand respectively for the 

height of liquid in both tanks 1 and 2 (m1(t) � m2(t) for all t ≥ 0) according to (6): 

1 1 1 2 3

2 2 2 3 4

. ( ) ( ) ( ) ( )

. ( ) ( ) ( ) ( )

S m t x t x t x t

S m t x t x t x t

= − −
= + −

�

�
 (6) 

where S1 and S2 stand for the sections of tanks 1 and 2 (for simulations S1 = S2 = 0.0154 m2). 

The initial marking vector of the continuous part of the model is MI = (0, 0)T. The transitions 

T1 to T4 are continuous and their firings represent the input flow (x1), the output flow (x4) and 

the flows through the pipes A (x2) and B (x3) according to (7): 

1

2 2 1 2

3 3 1 2

4 4 2

( )

( ) . ( ) ( )

( ) . sup( ( ), ) sup( ( ), )

( ) . ( )

x t D

x t m t m t

x t m t h m t h

x t m t

α

α

α

=

= −

= −

=

 (7) 
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where D, α2, α3,α4 and h are related to the system specifications (for simulations α2 = α3 = α4 

= 1.6.10-4 m5/2.s-1, D = 1.10-4 m3.s-1 and h = 0.5m). 

The discrete part of the PN (i.e. places P3 and P4 and transitions T5 and T6) stands for the 

controller. A token in P3 means that valve V1 is open and V2 is closed. On the contrary, a 

token in P4 means that valve V2 is open and V1 is closed. The arcs from P1 to T5 and from P2 

to T6 are test arcs (the value of the places P1 and P2 is not changed by firing the transitions T5 

and T6). The goal of the controller is to open V1 and close V2 when m2(t) < ydes
2(t) and to open 

V2 and close V1 when m1(t) > ydes
1(t), where ydes

1(t) and ydes
2(t) are the desired trajectories for 

m1(t) and m2(t) that satisfy ydes
1(t) ≥ ydes

2(t). When ydes
1(t) and ydes

2(t) have constant values, 

this discrete control design results in a cyclic behaviour. In section 4, we propose to replace 

the discrete controller (figure 16) with a GBC (figure 15) useful to reach desired levels or to 

track reference trajectories. 

 

 

 

 

 

 

 

 

Figure 2: Hybrid PN of the two-tank system 

[Insert figure 2 here] 

 

2.3. Controlled timed continuous Petri nets 

For control issues, the set of transitions T is divided into 2 disjoint subsets TC, and TNC such 

that T = TC ∪  TNC. TC is the subset of the d controllable transitions, and TNC is the 

uncontrollable transitions subset with cardinal q-d. A particular case is given by TC = T and 

TNC = ∅ , but in many cases, not all transitions are controllable. For instance, the transitions T2 

and T3 in figure 2 correspond to the flows through the pipes A and B that are not controllable 

in the sense that these pipes have no valve.  

Control actions are introduced for contPN according to a reduction in the flow through the 

transitions (Jimenez et al. 2005). Such control actions can be interpreted as slowing down the 

server activities in the considered systems. Multiplicative and additive control actions have 

P1 P2 

T3 

T2 
m1 m2 

P3 

P4 
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T5 

T1 
T4 
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been introduced and discussed. Both approaches are quite equivalent (Silva and Recalde 

2004) and in this paper multiplicative control actions are considered.  

Let us introduce U(t) = (uj(t)) ∈  (R+) q with 0 � uj(t) � 1 for T ∈  TC  and uj(t) = 1 for T ∈  TNC  

as the contPN input vector at time t. The proposed control actions slow down the flow 

through the controllable transitions and do not change the firing rates of uncontrollable 

transitions. The controlled firing speed vector XC(t) = (xCj(t))j=1,…,q ∈  (R+) q is defined with 

(8): 

xCj(t) = xmax j.uj(t).µj(t) (8) 

The output vector Y(t) = Q.M(t) ∈  (R+) e is composed of a selection of e subsets of places 

whose global marking is measured. For this purpose, let us define Q = (qαi) ∈  (R+) e × n as an 

observation matrix (i.e. a projector). Each row of Q corresponds to a weighted sum of the PN 

places marking. As a consequence, marking measurement concerns not only individual places 

but also groups of places. The goal of the controller is to drive Y(t) according to some 

reference trajectories in the output space. The marking variation of controlled contPN is 

rewritten with (9): 

C

dM( t )
W .X ( t )

dt
Y( t ) Q.M( t )

=

=
 (9) 

In each region Aϕϕϕϕ and during each phase, a constant relationship exists between the 

components of vectors XC(t) and M(t). This relation can be expressed in scalar form with the 

functions fj: 

xCj(t) = (xmax j / w
PR fj j).uj(t).mfj(t), j = 1,...,q (10) 

or in vectorial form with the constraint matrices Aϕ: 

∀  M(t) ∈  Aϕϕϕϕ, XC(t) = Xmax.diag(U(t)).Aϕ.M(t)  (11) 

Equation (9) can be rewritten in scalar form: 

max

1

1

.( )
. ( ). ( ), 1, ...,

( ) . ( ), 1, ...,

j

q
ij ji

j fPR
j fj j

n

i i
i

w xdm t
u t m t i n

dt w

y t q m t eα α α

=

=

� �
= =� �� �

� �

= =

�

�
 (12) 

or in vectorial form, for all M(t) ∈  Aϕϕϕϕ: 
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diagmax

dM( t )
W .X . (U( t )).A .M( t )

dt
Y( t ) Q.M( t )

ϕ=

=
 (13) 

The design of GBC for contPN includes structural and functional aspects:  

•  The structural analysis is necessary to determine which inputs act on a given output. It is 

useful to select the controllable transitions. In section 3, W-sensitivity is introduced and 

structural analysis is discussed. 

•  The functional analysis consists in adapting the usual gradient algorithm in order to drive 

the contPN outputs near the desired marking. In section 4, sensitivity functions are 

defined and worked out to design GBC. 

3. Structural analysis 

The structural analysis provides qualitative results useful to study the controllability of PN 

models (David and Alla 2004). 

3.1. W-sensitivity 

This section concerns the structural sensitivity, referred as W-sensitivity in the following, of 

the outputs with respect to (wrt) the variations of the PN inputs. The W-sensitivity depends 

only on the structure of the PN models and provides conditions that are required for the 

control design of PN and that will be used in section 4. This study is based on the W-

sensitivity of the places and transitions wrt the PN firing conditions (Lefebvre and Delherm 

2003, 2007).  

 

Definition 3.1: The node N (i.e. transition Tj ∈  T or place Pi ∈  P) is W-sensitive wrt the 

transition Tγ ∈  T if the firings of Tγ could influence the variable attached to N (i.e. the 

marking mi of place Pi or the firing xj of transition Tj). In this case there exists a causality 

relationship from transition Tγ to node N. 

 

The W-sensitivity of the outputs wrt the variations of the PN inputs is defined as a 

consequence. 
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Definition 3.2: For any controllable transitions Tγ ∈  TC and any output yα, the ouput yα is W-

sensitive wrt the input uγ if a variation of uγ could influence at least the marking of one place 

in the subset of places corresponding to yα. 

 

If yα is W-sensitive wrt the input uγ there exists a causality relationship from input uγ to output 

yα. The causality relationships can be worked out with the pre and post incidence matrices, 

according to the theorem 3.1.  

 

Theorem 3.1: The output yα is W-sensitive wrt the input uγ if and only if there exists an 

integer r ∈  [0, min(n, q)] such that equation (14) holds: 

0T T r
PR PO PR PR POC .Q.((W W ).(W ) ) .(W W ).Bα γ+ + ≠  (14) 

with Bγ = (bγ
j ) ∈  {0, 1}q  such that bγ

j =0 if  γ ≠  j and bγ
γ = 1, Cα = (cα

j ) ∈  {0, 1}e such that 

cα
j =0 if  α ≠ j and cα

α = 1. 

 

Proof: Let us first notice that a change of the firing conditions of transition Tγ yields a 

deviation of the places marking near Tγ (i.e. °Tγγγγ ∪  Tγγγγ°) from its true value. This deviation is 

likely to change the firing of the downstream transitions ((°Tγγγγ ∪  Tγγγγ°)°). In fact, the initial 

perturbation could propagate in the PN according to the following rules (figure 3).  

1) A change of the firing conditions of any transition Tγ  yields a deviation of the Tγ - input 

and Tγ - output places marking (i.e. °Tγγγγ ∪  Tγγγγ°) from its true value. The change could also 

influence the firing conditions of any other transition Tj if the Tj - input places (i.e. °Tj) 

marking is modified. 

2) A deviation of the marking of any place Pi influences the firing conditions of the Pi – 

downstream transitions (i.e. Pi°) and the marking of any place Pα has a structural sensitivity 

wrt Pα - upstream and Pα - downstream transitions (i.e. °Pαααα ∪  Pαααα°). 

The characterisation of the neighbourhood in PN results from the algebraic properties of the 

post and pre incidence matrices: 

•  The position of the non-zero entries of the j th column in WPR (resp. in WPO) corresponds to 

the Tj - input places (resp. Tj - output places). 

•  The position of the non-zero entries of the i th row in WPR (resp. in WPO) corresponds to the 

Pi - downstream transitions (resp. Pi - upstream transitions). 
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•  The position of the non-zero entries of the j th column in WPR + WPO (resp. the i th row in 

WPR + WPO) corresponds to the places (resp. transitions) next to Tj (resp. Pi). 

 

�γ

�� �������	��A BC �D� EF���� ���� �γ
��� �D� C����� �B�����B�� BC �γ

��

�� �������	��A BC �� ��� �D�

������� BC �D� EF���� ���� ��

�� ��

�� �������	��A BC �D� ��������B�� ����

����� �D� ������� BC ��

�� �������	��A BC �α ��� �D� C�����

�B�����B�� BC �D� ��������B�� ���� �α
 

Figure 3: Propagation of the perturbation near a given transition or place  

[Insert figure 3 here] 

 

The set of places that are structurally sensitive wrt the firing conditions of Tγ ∈  TC is worked 

out with a recursive algorithm. The position of the non-zero entries of the γth column in WPR + 

WPO corresponds to the places near Tγ. The position of the non-zero entries of the γth column 

in (WPR)
T.(WPR + WPO) corresponds to the downstream transitions near the places near Tγ. The 

position of the non-zero entries of the γth column in (WPR + WPO).(WPR)
T.(WPR + WPO) 

corresponds to the places near the downstream transitions near the places near Tγ. Matrices 

((WPR + WPO).(WPR)
T)2.(WPR + WPO) ... ((WPR + WPO).(WPR)

T)r.(WPR + WPO) are successively 

computed. When the PN has n places and q transitions, the structural sensitivity analysis of 

the places and transitions is completed in a finite number r of steps no larger than min(n, q). 

 

The output W - sensitivity matrix ΣW is defined consequently. 
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Definition 3.3: The output W-sensitivity matrix is defined as ΣW= (σWαγ) ∈  {[0, min(n, q)] ∪  

∞ }  e x q with σWαγ given by equation (15):  

{ }
[0, min( , )] 

min . .(( ).( ) ) .( ). 0T T r
PR PO PR PR PO

r n q
w C Q W W W W W Bα γ α γσ

∈ ∪∞
= + + ≠  (15) 

 

σWαγ equals either infinity if yα is not W-sensitive wrt input uγ or the number of intermediate 

places in the shortest causality relationship from uγ to the subset of places corresponding to yα 

if yα is W-sensitive wrt input uγ (Lefebvre et al. 2003, Lefebvre and Delherm 2007). In this 

last case, σWαγ is named the W-sensitivity rank of yα wrt uγ. The output W - sensitivity matrix 

provides immediate results about the causality relationships in PN, as explained in theorem 

3.2: 

 

Theorem 3.2: The set of outputs (resp. rank - r outputs) that are W - sensitive wrt input uγ is 

given by the position of the finite entries (resp. entries with value r) of the γth column in 

matrix ΣW.  

The set of inputs (resp. rank – r inputs) whose firing conditions are likely to influence the 

output yα  is given by the position of the finite entries (resp. entries with value r) of the αth 

row in matrix ΣW.  

 

Proof: the proof of theorem 3.2 is obvious and results from definition 3.2 and theorem 3.1. 

 

3.2. Examples 

In order to illustrate the W – sensitivity analysis, the following examples are proposed. The 

contPN B with the marking vector M(t) = (m” 0(t), m”1(t), m”2(t), m1(t), m2(t), m’1(t), m’2(t))
T 

shown in figure 4 is the model of a manufacturing process with 2 machines M1 and M2 

(corresponding to transitions T1 and T2) in a single production line. Machines are fed by 

buffers with limited capacities corresponding to the subsets of places {P1, P’1} and {P2, P’2}.  

The maximal capacities C1 and C2 of the buffers correspond to the initial marking m1(0) + 

m’1(0) = C1 and m2(0) + m’2(0) = C2. Pieces enter in the system by firing T0. The number of 

pieces that are simultaneously processed by each machine is bounded by the marking of the 

places P” 0, P” 1, and P” 2. (i.e. an initial marking m” i(0) = 1, i = 0,…, 2 stands for single 

servers and m” i(0) > 1 stands for multi servers). 
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Figure 4: contPN model of a manufacturing process (system B) 

[Insert figure 4 here] 

 

The variations of controlled contPN (at this stage all transition are assumed to be potentially 

controllable) are written in scalar form (16) by using the functions fj defined as in (4): 

1 max 0 0 0 max 1 1 1

2 max 1 1 1 max 2 2 2

( ) . ( ). ( ) . ( ). ( )

( ) . ( ). ( ) . ( ). ( )

f f

f f

m t x u t m t x u t m t

m t x u t m t x u t m t

= −

= −

�

�
  

' ( ) ( ) 1,2

'' ( ) '' (0) 0,1,2
i i i

h h

m t C m t i

m t m h

= − =
= =  (16) 

Let us now introduce the outputs y1(t) = m1(t), and y2(t) = m2(t). The output W-sensitivity 

matrix is given by equation (17): 

0 1 2

1

2

0 0 1
( )

1 0 0W

u u u

y
B

y

� �
Σ = � �

� �

 (17) 

The output W-sensitivity matrix ΣW(B) shows that the marking of each output depends on the 

firing of all transitions: the content of each intermediate buffer depends of the production rate 

of upstream but also downstream machines. But in order to drive the output y1 it is more 

convenient to control transition T0 or T1 (rank – 0 inputs) than T2 (rank – 1 inputs). To drive 

the output y2 it is more convenient to control transition T1 or T2 than T0. Table 1 provides the 

output W-sensitivity matrices of several output configurations. 

P’’ 2 

T0 

P’’ 0 

xmax 0 

P1 T1 

 

P’’ 1 

xmax 1 

 

P2 T2 

P’2 

xmax 2 

 

m1 

C1-m1 

1 

m2 

C2-m2 

1 

 
1 

P’1 
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WΣ  

Y(t) = m1(t) Y(t) = m2(t) Y(t) = m1(t) + m2(t) Y(t) = (m1(t), m2(t))
T 

Q1 = (0 0 0 1 0 0 0) Q2 = (0 0 0 0 1 0 0) Q3 = (0 0 0 1 1 0 0) 4

0 0 0 1 0 0 0

0 0 0 0 1 0 0
Q

� �
= � �
� �

 

System B ( )0 0 1  ( )1 0 0  ( )0 0 0  
0 0 1

1 0 0

� �
� �
� �

 

System B’ ( )0 0 ∞  ( )1 0 0  ( )0 0 0  
0 0

   
1 0 0

∞� �
� �
� �

 

 

Table 1: Output W – sensitivity matrices for systems B and B’ 

[Insert table 1 here] 

 

The investigation of the causality relationships is useful in order to design efficient control. 

For instance, if the controller goal is to reach a desired level in first intermediate buffer or to 

track a desired trajectory, it is more convenient to control the input transition T0 (σW10 = 0), 

than the transition T2 (σW12 = 1). Such a conclusion will be confirmed in section 4.  

The results obtained with the structural analysis are more explicit with a modification of the 

previous example. The system B is changed in B’ such that the intermediate buffers, used to 

store products after each operation, have an infinite capacity according to figure 5 and 

equation (18): 

 

 

 

 

 

Figure 5: contPN model of system B’ 

[Insert figure 5 about here] 

 

1 max 0 0 0 max 1 1 1

2 max 1 1 1 max 2 2 2

( ) . ( ). '' ( ) . ( ). ( )

( ) . ( ). ( ) . ( ). ( )

f

f f

m t x u t m t x u t m t

m t x u t m t x u t m t

= −

= −

�

�
 

'' ( ) '' (0) 0,1,2h hm t m h= =  (18) 

P’’ 2 

T0 

P’’ 0 

xmax 0 

P1 T1 

P’’ 1 

xmax 1 

 

P2 T2 

xmax 2 

 

m1 

1 

m2 

1 

 
1 
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The output W-sensitivity matrix ΣW(B’) is given by (19): 

0 1 2

1

2

0 0
( ')    

1 0 0W

u u u

y
B

y

∞� �
Σ = � �

� �

 (19) 

From this matrix, it is obvious that transition T2 can no longer be used to control the output 

y1(t) = m1(t): there exists no causality relationship from T2 to P1 because of the infinite 

capacity buffer represented by P2. The W-sensitivity matrices obtained for several output 

configurations must be compared with system B. 

Another example of contPN is given by system C in figure 6 with the marking vector M(t) = 

(m’1(t), m’2(t), m’3(t), m’4(t), m’5(t), m1(t), m2(t), m3(t), m4(t))
T. Weighted arcs T2 � P1 and P1 

� T1 means that the flow of tokens that fire T2 to P1 is multiplied by 2 and the flow of tokens 

that fire T1 from P1 is divided by 3. As previously, places P’1 to P’5 limit the number of 

simultaneous firings of the transitions T1 to T5. The outputs are defined according to y1(t) = 

m1(t) + m3(t) and y2(t) = m2(t) + m4(t).  

 

 

 

 

 

 

 

 

 

Figure 6: Closed loop process (system C)  

[Insert figure 6 here] 

 

The controlled contPN is written in scalar form (20): 

P1 

P2 

P’1 

1 

P3 

P’2 1 
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T2 

T3 

3 

2 

T4 
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P’5 

1 
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max 1
1 max 4 4 max 2 2 2 1 1

11

max 1
2 max 5 5 max 3 3 3 1 1

11

max 1
3 1 1 max 2 2 2

11

( ) . ( ) 2. . ( ). ( ) 3. . ( ). ( )

( ) . ( ) . ( ). ( ) . ( ). ( )

( ) . ( ). ( ) . ( ). (

�

�

�

f fPR
f

f fPR
f

f fPR
f

x
m t x u t x u t m t u t m t

w

x
m t x u t x u t m t u t m t

w

x
m t u t m t x u t m

w

� �
= + − � �� �

� �

� �
= + −� �� �

� �

� �
= −� �� �
� �

max 1
4 1 1 max 3 3 3

11

)

( ) . ( ). ( ) . ( ). ( )� f fPR
f

t

x
m t u t m t x u t m t

w

� �
= −� �� �
� �

 (20) 

Let us mention that the functions f4 and f5 are constant and mf4(t) = mf5(t) = 1. The input-

output W-sensitivity matrix (21) shows that both outputs are correlated according to the 

transition T1. Another conclusion is that the set of transitions TC = {T4, T5} or TC = {T2, T3} 

are reasonable choice to drive the outputs y1 and y2 due to the difference in the sensitivity 

ranks. 

1 2 3 4 5

1

2

0 0 1 0 1
( )

0 1 0 1 0W

u u u u u

y
C

y

� �
Σ = � �

� �

 (21) 

To conclude output W-sensitivity is helpful to select the transitions to be controlled wrt a set 

of output configurations. This structural analysis will be used in the next section to design the 

sets TC used with GBC. 

4. Control design for contPN 

Flow control for contPN was investigated by several authors (Giua et al. 2006, Mahulea et al. 

2008b, Julvez and Boel 2010, Kara et al. 2009, Vazquez and Silva 2009, Apaydin-Ozkan et 

al. 2011,Wang et al. 2013). Such methods have provided interesting results but require strong 

conditions concerning the transitions to control and the places to observe. In particular, in 

many existing works all transitions are usually assumed to be controlled. This paper focuses 

on another approach based on gradient method suitable for contPN where all transitions are 

not controllable. Gradient-based methods have been intensively investigated for the learning 

of neural networks (Widrow and Lehr 1990) and the identification of continuous systems 

(Thomas 1997) but only a few studies have concerned the hybrid and discrete event systems 

(Balduzzi et al. 2000). This approach takes advantages on the propagation of the gradient 
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through the contPN nodes in order to minimise the quadratic instantaneous error between 

desired and measured outputs by slowing down the activity of controllable transitions. 

Gradient algorithms perform the minimisation of a scalar cost function that evaluates the 

distance between the desired output Ydes(t) and the system output Y(t).  

4.1 Sensitivity functions 

Gradient algorithms are based on the evaluation of sensitivity functions. Such functions are 

defined for contPN (definition 4.1) and their variation is expressed with differential equations 

(theorem 4.1).  

 

Definition 4.1: The marking sensitivity function siγ (t) of the marking mi wrt the input uγ of 

any transition Tγ ∈  T and the output sensitivity function σαγ (t) of the output yα wrt the input 

uγ are defined as (22): 

( )
1

( ) ( )
( ) , ( ) . ( )

n
i

i i i
i

m t y t
s t t q s t

u u
α

γ αγ α γ
γ γ

σ
=

∂ ∂= = =
∂ ∂ �  (22) 

As explained in part 2.3, uγ(t) is constant and equal to 1 for non controllable transitions (T ∈  

TNC ). The variation of any scalar sensitivity function siγ (t) for i = 1,...,n and γ = 1,...,q is 

given by (23):  

1

maxmax

1

max

( )( ) ( ) ( )
.

. ( )( ) .
. ( ) . ( ).

.( ) .
. ( )

q
C ji i i

ij
j

q
ij j fji i

f jPR PR
jf fj j

iji i
fPR
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x tds t m t dm td
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dt dt u u dt u

w x m tds t w x
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dt w w u

wds t w x
m t

dt w
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γ γ γ

γ γ γ
γ

γ γ γ

γ γ γ
γ

γ γ

=

=

� � ∂∂ ∂ � �= = =� � � �� �∂ ∂ ∂� �� �

� � � � ∂
= +� � � �� � � � ∂� � � �

� �
= +� �� �
� �

�

�

max

1

. ( ). ( )
q

j
j fjPR

j fj j

x
u t s t

w γ
=

� �
� �� �
� �

�

 (23) 

The marking and output sensitivity vectors Sγ(t) = (siγ) ∈  Rn and Σγ(t) = (σαγ) ∈  Re of marking 

M(t) and output Y(t) wrt input uγ are defined from definition 4.1. Let us denote W(:, γ) as the 

column γ in matrix W and Aϕ(γ, :) as the row γ in matrix Aϕ. One can remark that mfγ(t)/w
PR

fγ γ 

corresponds to Aϕ(γ, :).M(t) when M(t) is in region Aϕϕϕϕ. Equation (23) is rewritten in vectorial 

form and the variations of sensitivity vectors Sγ(t) and Σγ(t), wrt input uγ are given for all M(t) 

∈  Aϕϕϕϕ by equation (24): 
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diag 1

0 0

max max

dS ( t )
x .W(:, ).A ( ,:).M( t ) W .X . (U( t )).A .S ( t ), ,...,q

dt
S ( )

( t ) Q.S ( t )

γ
γ ϕ ϕ γ

γ

γ γ

γ γ γ= + =

=

Σ =

 (24) 

All sensitivity functions and vectors are summed up in sensitivity matrices: 

( ) ( )1 q iS( t ) S ( t )| ...| S ( t ) s ( t )γ= = ∈  Rn x q (25) 

( ) ( )1 q( t ) Q.S( t ) ( t )| ...| ( t ) ( t )α γσΣ = = Σ Σ = ∈  Re x q (26) 

and (Si* (t))
T ∈  R1 x q (resp. (Σα*(t))

T ∈  R1 x q) stands for the row i of matrix S(t) (resp. row α of 

matrix Σ(t)). Each column of the sensitivity matrices corresponds to the sensitivity of a given 

variable wrt the control action for all transitions and each row of the sensitivity matrices 

corresponds to the sensitivity of all markings and outputs wrt to a given input.  

4.2 Discrete time approximation for numerical issues 

For numerical issues, let us introduce the sampling period ∆t and a first order approximation 

of the variation equations. The sampling period ∆t is selected to be small enough in 

comparison with the magnitude of eigenvalues of the matrices W.Xmax.Aϕ, ϕ = 1,...,K. In 

addition, the sampling period ∆t satisfies (27) for all places Pi ∈  P: 

1
j i

max j
T P

x . t∆
∈ °

� �
<� �� �

� �
� ,  (27) 

such that any reachable marking with discrete time trajectory is non-negative (Mahuela et al., 

2008b). In the following, k > 0 refers to the discrete time t = k.∆t. Equations (12) and (13) 

lead to: 

max

1

1

.
( 1) ( ) . . ( ). ( ) , 1, ...,

( ) . ( ), 1, ...,

j

q
ij j

i i j fPR
j fj j

n

i i
i

w x
m k m k t u k m k i n

w

y k q m k eα α α

=

=

� �� �
� �+ = + ∆ =� �� �� �

� �� �

= =

�

�
 (28) 

For all M(k) ∈  Aϕϕϕϕ: 
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( )1 diagn C maxM( k ) I t.W .X . (U( k )).A .M( k )

Y( k ) Q.M( k )

ϕ+ = + ∆

=
 (29) 

where In stands for the identity matrix of dimension n x n. Similarly equations (24) and (23) 

lead to: 

maxmax

1

..
( 1) ( ) . . ( ) . . ( ). ( ) , 1,.., , 1,...,

q
ij ji

i i f j fjPR PR
jf fj j

w xw x
s k s k t m k t u k s k i n q

w w
γ γ

γ γ γ γ
γ γ

γ
=

� �� � � �
+ = + ∆ + ∆ = =� �� � � �� � � �� �

� � � �� �
�

  (30) 

( )1 diag 1n max maxS ( k ) I t.W .X . (U( k )).A .S ( k ) t.x .W(:, ).A ( ,:).M( k ), ,...,qγ ϕ γ γ ϕγ γ γ+ = + ∆ + ∆ =
  (31) 

 

4.3 Gradient-based controllers 

For the seek of simplicity, let us first consider the case of the single output yα(k). The 

instantaneous error at instant k and at step i is defined as εα(k,i) = ydes
α(k) - yα(k,i), where 

ydes
α(k) stands for the αth desired output and yα(k,i) stands for the αth actual output obtained 

from the marking M(k) and from the input vector U(k,i): 

max

1 1

.
( , ) . ( ) . . ( , ). ( ) , 1, ...,

j

qn
ij j

i i j fPR
i j fj j

w x
y k i q m k t u k i m k e

wα α α
= =

� �� �� �
� �� �= + ∆ =� �� �� �� �� �� �� �

� �  

U(k,i) is the updating of the input vector, at time k, obtained after the i th iteration of the 

algorithm described below. Let us consider the scalar cost function vα(k, i) to be minimized: 

( )21

2
v ( k ,i ) ( k ,i )α αε= ∈  R+ (32) 

The proposed controller results from the Taylor series expansion of the cost function vα(k, i) 

in the neighbourhood of U(k,i): 

2
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1
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U U ( k ,i )

T T
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U U ( k ,i )

v
v ( k ,i ) v ( k ,i ) U( k ,i )

U

v
.( U( k ,i )) U( k ,i ) o( U( k ,i ) . U( k ,i ) )

U . U

α
α α
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δ δ δ δ

=
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 (33) 
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with δU(k,i) = U(k,i+1) - U(k,i). The optimal value of the control actions are worked out 

according to the stationary condition: 

12

( , )( , )

( , ) 2. .
. T

U U k iU U k i

v v
U k i

U U U
α αδ

−

==

� �∂ ∂� �= − � � � �∂ ∂ ∂� �� �
 (34) 

under the constraints 0 � uj(t) � 1 for T ∈  TC and uj(t) = 1 for T ∈  TNC and the sets TC is 

determined according to the W-sensitivity. Using the sensitivity vector Σα*(t) introduced in 

section 4.1 and worked out at time k, one can write: 

*
U U ( k ,i )

v
( k ). ( k ,i )

U
α

α αΣ ε
=

∂� � = −� �∂� �
 (35) 

2 2

1

T
* * qT T

U U ( k ,i ) U U ( k )

v v
( k ). ( k ) .I

U . U U . U
α α

α αΣ Σ θ
= = −

� � � �∂ ∂≈ ≈ +� � � �∂ ∂ ∂ ∂� � � �
 (36) 

where the term θ.Iq is added in order to approximate the inverse of the Hessien matrix when it 

is not regular or badly conditioned (Hagan et al. 1995). Let us notice that second order terms 

are neglected in the computation of (36) and the sensitivity functions do not depend on the 

iteration i: Σα*(k) is computed a single time for each new measurement. Thus, equation (34) 

results in the updating rule of the controller (37): 

11 2 0 1

0 1

T
* * q *U( k,i ) U( k ,i ) .( ( k ). ( k ) .I ) . ( k ). ( k ,i ), i ,...,N

U( k , ) U( k )

α α α αθ ε−+ = + Σ Σ + Σ = −

= −
 (37) 

under the constraints 0 � uj(t) � 1 for T ∈  TC and uj(t) = 1 for T ∈  TNC. A maximal number of 

N iterations is considered, for each instant k in order to work out the control actions in a finite 

number of steps consistent with real time constraints. According to this truncation, we have 

U(k) = U(k, N). 

Let us point out two limit cases. When θ >> 1, equation (37) corresponds to the gradient 

method (Van der Smagt et al. 1994): 

2
1 0 1*U( k,i ) U( k ,i ) . ( k ). ( k ,i ), i ,...,Nα αε

θ
+ = + Σ = − . (38) 
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When θ << 1, equation (37) corresponds to the Gauss-Newton method (Thomas 1997): 

11 2 0 1T
* * *U( k,i ) U( k ,i ) .( ( k ). ( k ) ) . ( k ). ( k ,i ), i ,...,Nα α α αε

−+ = + Σ Σ Σ = −  (39) 

The previous controller can be generalised in the multi-outputs case, by considering the error 

vector E(k,i) = Ydes(k) – Y(k,i), and the scalar cost function (40): 

1

2
Tv( k ,i ) .E ( k ,i ).E( k ,i )= ∈  R (40) 

that results in the following updating rule for the controller: 

1( , 1) ( , ) 2.( ( ). ( ) . ) . ( ). ( , ), 0,..., 1

( ,0) ( 1)

T T
qU k i U k i k k I k E k i i N

U k U k

θ −+ = + Σ Σ + Σ = −

= −
 (41) 

under the constraints 0 � uj(t) � 1 for T ∈  TC  and uj(t) = 1 for T ∈  TNC. 

5. Examples 

In all simulations, the sampling period is ∆t = 0.1 and the parameter is θ = 0.1 in order to 

avoid the singularities in the Hessien approximation (34). 

 

5.1 ContPN with a single controllable transition  

Let us first consider contPN B (figure 4) with incidence matrices and parameters defined as in 

section 3, initial marking vector MI = (1 1 1 0 0 3 3)T, maximal firing rates matrix Xmax = 

diag(5, 4, 3) and TC = {T0}. Figure 7 points out the influence of the output matrix on the 

controller response: three scalar outputs are investigated y1(t) = m1(t), y2(t) = m2(t) and y3(t) = 

m1(t) + m2(t) that correspond respectively to Q1 = (0 0 0 1 0 0 0), Q2 = (0 0 0 0 1 0 0) and Q3 = 

(0 0 0 1 1 0 0). In all cases, the objective of the controller is to drive the output of the system 

to the desired value ydes = 2 tokens. The maximal number of iterations is N = 100. For each 

case, figure 7 presents the control actions for transition T0, the transition flows for T0, the 

output trajectories and the output errors. Concerning the output matrices Q1 and Q3 the 

desired value is rapidly reached with a good accuracy, but in case of output matrix Q2 

oscillations are observed that result from the controller that tries to compensate the oscillation 

around the desired value. Such an input – output specification is not suitable with our 

approach because the marking of the unobservable place P1 is not considered in the 

calculation of the input firing frequency. As a consequence, the desired level is exceeded and 
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oscillations arise due to the delay between the firing of T0 and the observation of P2 marking. 

In order to avoid the undesirable cumulative effects of the marking, the inputs and outputs of 

the systems must be preferred such that the sensitivity rank equals 0 (immediate 

neighbourhood) as shown in table 1.  
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Figure 7: Influence of the output matrix (TC = {T0}, N = 100, dashed line: Q1 = (0 0 0 1 0 0 0), 

full line: Q2 = (0 0 0 0 1 0 0), dotted line: Q3 = (0 0 0 1 1 0 0)) 

[Insert figure 7 here] 
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The speed of the algorithm increases as the maximal number of iterations in the gradient – 

based algorithm. Figure 8 illustrates the influence of the number of iterations N when the 

output matrix is given by Q1 = (0 0 0 1 0 0 0). For a small number of iterations (N = 2), the 

controller is not quick enough to correct the output error. In comparison, a large number (N = 

100) compensates the slowness of the gradient algorithm. 
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Figure 8: Influence of the iterations number (TC = {T0}, Q1 = (0 0 0 1 0 0 0),  

full line: N = 100, dashed line: N = 10, dotted line: N = 2) 

[Insert figure 8 here] 
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5.2 Comparison with other control methods  

In figures 9 and 10, GBC with TC = {T0}, N = 100 and Q3 = (0 0 0 1 1 0 0) is compared with 

parallel Proportional Integral Controllers (PIC) with Kp = 10, KI = 0.2, on/off and Model 

Predictive Controller (MPC) (Giua et al. 2006, Mahulea et al. 2008b) when the desired output 

is the piecewise linear function given by equation (42): 

( )

( ) 1, 0 4

6
( ) sin 5. 6 1 , 4

4

des

des

y t t

t
y t t t

� = ≤ <
	
A −= − + + ≥	B

  (42) 

This desired input is composed of two parts: the first one corresponds to a regulation problem 

during 4 TU and the second one to a tracking one during the last 8 TU. 
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Figure 9: Control performances comparison:  

Outputs and desired output (in bold) for GBC, PIC, on/off controller and MPC. 

[Insert figure 9 here] 

 

One can observed that the desired output is globally correctly tracked (regulation and tracking 

parts). The output signal is very different in function of the controller choice. The PIC uses 

the error signal as the input. As a consequence, this controller is not suitable when the error 

signal presents a lot of variations. The on/off controller is defined as a series of 
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commutations. Generally speaking, the variations of the flows resulting from the GBC and 

MPC are smooth comparing to those given by the other controllers, in particular on/off 

controller. Both controllers, GBC and MPC are similar in this example (different 

performances occur according to the controlled transitions set (figure 10) both trajectories 

(y(t) and ydes(t)) are superimposed for these two controllers. 
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Figure 10: Control performance comparison:  

Flows for GBC, PIC, on/off controller and MPC. 

[Insert figure 10 here] 

 

To compare these controllers, MSE are computed for the regulation problem and for the 

tracking one. The MSE is defined by (43):  
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MSE Y k Y k Y k Y k
t t

= − −
− � ,  (43) 

where t1 and t2 define either the regulation time interval (t1 = 0, t2 = 3.9 UT) or the tracking 

time interval (t1 = 4, t2 = 12 UT).  
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 Regulation: t∈ [0:4[ UT Tracking: t∈ [4:12] UT 

GBC 0.032 0.038 

PIC 0.065 0.064 

On/off  0.054 0.08 

MPC 0.032 0.036 

Table 2: Comparison of controller performance 

[Insert table 2 here] 

 

All proposed controllers track the desired trajectories with a mean square error that does not 

exceed 0.08 token. Let us first notice the GBC and the MPC give very similar results, the 

MSE of the GBC is smaller than the one of the PIC or the on/off controller. 

 

To refine the comparison between GBC and MPC, not only Q3 but also Q1 and Q2 are used 

with the same desired output (figure 11). Only T0 is controllable. 
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Figure 11: Comparison between GBC (dotted line) and MPC (dashed line) for Q1, Q2 and Q3. 

[Insert figure 11 here] 
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For the three cases, during the regulation part, GBC reaches the desired output while the MPC 

fails with output matrices Q1 and Q2. Although GBC presents some oscillations with the 

output matrix Q2, it provides a better tracking than MPC with uncontrollable transitions. 

Concerning the tracking period, GBC follows the mean value of the desired output in spite of 

uncontrollable transitions. The same result is obtained between GBC and MPC with output 

matrices Q13. 

 

5.3 ContPN with several controllable transitions  

Let us now consider the contPN C (figure 6) with TC = {T4, T5} and two outputs that 

correspond to the marking of the subsets of places { P1, P3} and {P2, P4} (i.e. Q = ((0 0 0 0 0 1 

0 1 0)T (0 0 0 0 0 0 1 0 1)T)T). The maximal firing rates matrix is Xmax = diag(2, 1, 3, 5, 5), the 

initial marking vector is MI = (1 1 1 1 1 0 0 0 0)T and the number of iterations is limited to N 

= 100. The desired trajectories correspond to two piecewise linear trajectories given by 

equation (44): 
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 (44) 

The outputs of the GBC are presented in figure 12. In comparison, PIC and on/off controllers 

provide only poor results because the inputs and outputs of the system C are coupled thanks to 

the transition T1. These controllers focus on one desired trajectory but cannot track 

simultaneously both ones. On the contrary, the GBC tracks simultaneously both trajectories 

with an instantaneous error that does not exceed 0.005 tokens. The input-output 

decomposition is obtained thanks to the sensitivity functions that evaluate for each output the 

relative influence of both inputs.  
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Figure 12: Control design of system C 

(full line: first input, first output, dashed line: second input, second output) 

 [Insert figure 12 here] 

 

Figure 14 illustrates the case of a non admissible output trajectory. The desired output signals 

are defined as previously and represented in figure 14 middle (in grey). The incidence 

relationships of the contPN have been modified according to figure 13 (system C’): 
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Figure 13: System C’ 

[Insert figure 13 here] 

 

With system C’, the marking of place P1 increases more quickly than with system C. In 

particular, in case xmax 4 = xmax 5 = 0, system C’ is tokens producer but C is tokens consumer. 

After t = 4 TU, the number of tokens in the subset of places corresponding to y1 increases 

more quickly than the desired output ydes
1 and the controller fails.  
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Figure 14: Control design of system C’ 

(full line: x1(t), u1(t) and ε1(t), dashed line: x2(t), u2(t) and ε2(t)) 
 [Insert figure 14 here] 

 

5.4 Control design for a hybrid system  

At last, let us consider the hybrid PN model of the two-tank system A (figure 1) given as a 

MIMO non linear state space representation with controllable transitions TC = {T1, T4} and 

outputs y1(t) = m1(t)  and y2(t)  = m2(t). The controller is obtained according to an adaptation 

of the gradient based algorithm to non linear behaviours N = 10. As a consequence, the 

discrete part of the hybrid model becomes useless (figure 2). The desired trajectories 
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correspond to a periodical level for tank 1 and a constant level for tank 2 given by equation 

(45): 
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1 6
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A
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 (45) 

Simulation results for GBC are given in figure 15 (system outputs are in full line, and desired 

trajectories are in dotted line) and can be compared with the results obtained with the discrete 

control design (figure 16). 
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Figure 15: GBC for two-tank system 
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(full line: input for V1, output y1, dashed line: input for V2, output y2) 

 [Insert figure 15 here] 
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Figure 16: Discrete controller for two-tank system 

(full line: input for V1, output y1, dashed line: input for V2, output y2) 

[Insert figure 16 here] 

 

Due to the opposite position of valves V1 and V2, the discrete controller is not suitable to track 

the reference trajectories. On the contrary, with GBC, the desired level in tank 2 is reached 
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and the reference trajectory in tank 1 is almost everywhere tracked after some transient 

behaviours. But one can also notice that, due to system specifications, level 0.6 m cannot be 

reached in tank 1 when level in tank 2 is 0.4 m. At last, because of immediate causality 

relationships from T1 to P1 and from T4 to P2, GBC behaves like a proportional controller (i.e. 

the input – output sensitivity matrix tends to a diagonal one). Let us notice that PI, on/off and 

MPC controllers are not suitable for system A: PIC behaves at best like GBC but gains must 

be computed for each desired level, MPC is not easy to implement due to computational 

complexity (system A is non linear) and on/off controller behaves like the discrete one. 

6. Conclusions 

Control design has been proposed for contPN with controllable and uncontrollable transitions. 

The proposed controllers are based on the evaluation of sensitivity functions. For this 

purpose, the structural sensitivity of PN models has been first investigated. Places to be 

observed and transitions to be controlled are obtained as a consequence. Then, an explicit 

characterisation of the input-output sensitivity functions has been proposed for contPN. GBC 

have been designed as a consequence. Such controllers calculate the gradient of the outputs 

wrt the input variations in order to adapt the control actions of the controllable transitions 

according to desired trajectories in the output space. An application of this algorithm for HDS 

has been also presented. 

In our opinion, the method is not only suitable for trajectory tracking but also for complex 

behaviours learning. We will further investigate the combination of Petri nets and adaptation 

algorithm in order to design learning Petri nets. These perspectives include not only the 

continuous Petri nets but also the autonomous and timed Petri nets.  
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Figure captions 

 

Figure 1: Two-tank system (system A) 

Figure 2: Hybrid PN of the two-tank system 

Figure 3: Propagation of the perturbation near a given transition or place  

Figure 4: contPN model of a manufacturing process (system B) 

Figure 5: contPN model of system B’ 

Figure 6: Closed loop process (system C)  

Figure 7: Influence of the output matrix (TC = {T0}, N = 100, dashed line: Q1 = (0 0 0 1 0 0 0), 

full line: Q2 = (0 0 0 0 1 0 0), dotted line: Q3 = (0 0 0 1 1 0 0)) 

Figure 8: Influence of the iterations number (TC = {T0}, Q1 = (0 0 0 1 0 0 0),  

full line: N = 100, dashed line: N = 10, dotted line: N = 2) 

Figure 9: Control performances comparison:  

Outputs and desired output (in bold) for GBC, PIC, on/off controller and MPC. 

Figure 10: Control performance comparison: Flows for GBC, PIC, on/off controller and 

MPC. 

Figure 11: Comparison between GBC (dotted line) and MPC (dashed line) for Q1, Q2 and Q3. 

Figure 12: Control design of system C 

(full line: first input, first output, dashed line: second input, second output) 

Figure 13: System C’ 

Figure 14: Control design of system C’ 

(full line: x1(t), u1(t) and ε1(t), dashed line: x2(t), u2(t) and ε2(t)) 

Figure 15: GBC for two-tank system 

(full line: input for V1, output y1, dashed line: input for V2, output y2) 

Figure 16: Discrete controller for two-tank system 

(full line: input for V1, output y1, dashed line: input for V2, output y2) 

 


