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This work is devoted to the study of the wave propagation in infinite two-dimensional structures
made up of the periodic repetition of frames. Such materials are highly anisotropic and, because
of lack of bracing, can present a large contrast between the shear and compression deformabilities.
Moreover, when the thickness to length ratio of the frame elements is small, these elements can
resonate in bending at low frequencies, when compressional waves propagate in the structure. The
frame size being small compared to the wavelength of the compressional waves, the homogenization
method of periodic discrete media is extended to situations with local resonance and it is applied to
identify the macroscopic behavior at the leading order. In particular, the local resonance in bending
leads to an effective mass different from the real mass and to the generalization of the Newtonian
mechanics at the macroscopic scale. Consequently, compressional waves become dispersive and
frequency bandgaps occur. The physical origin of these phenomena at the microscopic scale is also
presented. Finally, a method is proposed for the design of such materials.

PACS numbers: 43.20.Bi,43.20.Ks,43.40.At

I. INTRODUCTION

Two considerations may explain the great number of
studies devoted to the dynamic properties of periodic
reticulated (or cellular) structures, namely structures ob-
tained by repeating a unit cell made up of interconnected
beams (or plates). The first reason is that they are fre-
quently encountered. For example, they appear in sand-
wich panels, stiffened plates, and truss beams used in
aerospace and marine structures. They can also represent
idealized buildings or the microstructure of foams, plants,
bones. . . The second reason is that the dynamic behavior
of periodic materials is very rich. They are known for
the existence of frequency bandgaps, that is to say in-
tervals of frequencies at which wave propagation cannot
occur1,2. Moreover, in pass bands, waves travel in pre-
ferred directions3–5 because of the anisotropy. In most
cases, frequency bandgaps are caused by Bragg scatter-
ing when the wavelength is on the order of the cell size.
This corresponds to the framework of phononic crystals.
However frequency bandgaps can also appear at wave-
lengths much greater than the cell size, which defines
the notion of metamaterials. This was evidenced theo-
retically in the pioneering Ref.6 by considering an elastic
composite with a high contrast between the rigidities of
the two constituents and in Ref.7 for lattices. The con-
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FIG. 1. Example of structures

sequence of the rigidity contrast is that the softer com-
ponent resonates at low frequencies when macroscopic
waves propagate in the stiffer component. The effects of
the local resonance were also observed experimentally8,9.
Metamaterials have unusual properties10. In particular,
at the macroscopic scale, the effective mass differs from
the real mass. It depends on the frequency, which leads
to non-local effects in time. Therefore, the description of
the behavior at the macroscopic scale is a generalization
of the Newtonian mechanics11. Metamaterials represent
a specific class of generalized continua. A review of recent
advances on this topic can be found in Ref.12.

This work analyzes the propagation of plane waves in
two-dimensional periodic structures whose unit cell is
a frame (Fig 1). Such materials are highly anisotropic
because the resisting elements are oriented only accord-
ing two directions. Also, the elements are more flexible
in bending than in tension-compression. As the frames
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are not braced, the shear deformability is much greater
than the compression deformability. Moreover, when the
thickness to length ratio of the elements is small, they can
resonate in bending at low frequencies. In that case, the
propagation of compressional waves with a wavelength
much greater than the cell size can induce the resonance
of the elements in bending. This phenomenon makes
it possible to realize metamaterials with only one con-
stituent contrary to the other metamaterials based on
the stiffness contrast between the different components.
The objective is the description of the behavior of the
structure at the macroscopic scale and the research of its
physical origin at the microscopic scale. This enables to
identify the conditions of existence of atypical behaviors
and to propose a method for the design of new materials.
Specific numerical methods have been developed for

the study of the wave propagation in periodic media1,2,5.
They are based on the Floquet-Bloch theorem, which
enables to reduce the study of the whole structure to
the study of the unit cell. Another approach con-
sists in replacing a discrete structure by an equivalent
continuum13–15. When the wavelength is much greater
than the cell size, it is possible to use the rigorous asymp-
totic methods of homogenization which require no as-
sumption about the nature of the continuum. Earlier
works can be found in Ref.16, 17 for composite media
and in Ref.18 for reticulated structures. The method was
also successfully applied to the study of Rayleigh scatter-
ing in periodic media19. For reticulated structures, the
physics of the unit cell can be described either using the
continuum mechanics as in the method of multiple pa-
rameters and scale changes20,21 or using the beam the-
ory as in the homogenization method of periodic discrete
media22,23. Other procedures which extend homogeniza-
tion to higher frequencies can be found in Ref.24, 25 for
continuous structures and in Ref.26 for discrete mass-
spring systems.
Here, the homogenization method of periodic discrete

media (called HPDM afterwards) is used. This method
has already given interesting results on the dynamic
behavior of frame structures in the absence of local
resonance27,28. Its main advantages are:

∙ The equivalent continuum (a Cauchy continuum, a
generalized medium or a metamaterial) is derived
rigorously from the properties of the cell. The only
assumption is scale separation, which means that
two scales with very different characteristic lengths
can be defined. The macroscopic or global scale is
given by the wave propagation and the microscopic
or local scale is given by the size of the cell.

∙ The method is completely analytic. This provides
a clear understanding of the mechanisms govern-
ing the behavior of the structure and of the role of
each parameter. Such a knowledge is desirable for
the design of new (meta)materials with prescribed
properties.

∙ Once the macroscopic behavior is identified, it is
always possible to come back to the microscopic

scale to determine the deformation of the cell as
well as the forces and moments in the elements.

∙ Superior orders of the expansions are obtained rel-
atively easily. This is particularly interesting for
frame structures because the shear stiffness and the
tension-compression stiffness do not have the same
order of magnitude. Since the method of multiple
parameters and scale changes is generally limited
to the leading order, it misses the shear properties
and the coerciveness of the macroscopic description
is lost21.

The implementation of the HPDM method is realized in
two steps23: the discretization of the momentum balance
and the homogenization process itself. As in Ref.27, 28,
the HPDM method is coupled with the scaling of all the
parameters in order to correctly take into account the
physics of the problem. Moreover, the homogenization
process has been adapted to situations with local reso-
nance.
Section II describes the studied structures and the

principles of the HPDM method. Then the equivalent
continuum obtained in the absence of local resonance
is presented in Section III. In Sections IV and V, the
wave propagation is analyzed at two frequency ranges.
The first case corresponds to the classical domain of ho-
mogenization, whereas the second case deals with local
resonance. The application of the results to real frame
structures is discussed in Section VI and a method is
proposed for the design of metamaterials.

II. HOMOGENIZATION OF PERIODIC DISCRETE

MEDIA

A. Studied structures

The studied structures are infinite and periodic in the
plane (x, y) of the wave propagation. They are made up
of horizontal elements (called floors) supported by verti-
cal elements (called walls). Elements are beams or plates
behaving as Euler-Bernoulli beams in the plane (x, y).
They are linked by perfectly stiff and massless nodes.
Moreover, the walls and the floors have similar proper-
ties. The following notation will be used (Fig. 2):

∙ The characteristics of walls (i = w) and floors
(i = f) are: ℓi length, ai thickness, ℎ depth ac-
cording to the axis z, Ai = aiℎ cross-section area,
Ii = (ℎ a3i )/12 second moment of area with respect
to the axis z, �i density, �̄i = �iAi mass per unit
length, and Ei elastic modulus.

∙ The position of the node located at the intersec-
tion of the floor f and the wall w is determined
either by the ordered pair of integers (w, f) or by
the continuous coordinates x = w ℓf and y = f ℓw.

∙ As the connections are perfectly stiff, the motions
of each endpoint connected to the same node are
identical and define the discrete kinematic variables
of the system. For the node (w, f), the motion in
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FIG. 2. Notation (structure)

the plane (x, y) is described by the displacements

in the two directions U
(w,f)
x , U

(w,f)
y , and by the

rotation �(w,f).

The study is conducted within the framework of the
small strain theory and the linear elasticity. Moreover,
the structure vibrates at a given circular frequency !.
As a result, every variable can be written in the fol-
lowing way: X(x, y, t) = ℜ(X(x, y) ei!t) where t is the
time. Because of the linearity of the problem, the time
dependence can be simplified and will be systematically
omitted.

B. Discretization of the dynamic balance

The aim of the first step is to reduce the study of the
momentum balance of the whole structure to the study
of the momentum balance of the nodes. This process
is performed without loss of information. The discretiza-
tion consists in expressing explicitly the forces at the end-
points of an element as functions of the nodal kinematic
variables. Then the balance of forces and moments ap-
plied by the elements connected to a same node is written
and these equations constitute the discrete description of
the dynamic behavior of the structure. The process is
detailed afterwards.

FIG. 3. Notation (element)

The element linking the node B to the node E is con-
sidered (Fig. 3). It is characterized by the parameters ℓ,
A, and I. In the local beam frame, s stands for the co-
ordinate along the beam axis, u, v for the transverse and
axial displacements respectively, and � for the rotation.
The primes denote the differentiation with respect to s.
The axial force N , the shear force T , and the bending
moment M act by convention from the left part to the
right part. No external force is applied on the beam.
The longitudinal vibrations in harmonic regime are de-

scribed by the momentum balance along the beam axis
and by the compression constitutive law:

{

N ′(s) = �A!2v(s)

N(s) = −EAv′(s)
⇒

v′′(s) = −�2 v(s)

where � =

√

�!2

E
=

2�

�c

�c is the compression wavelength in the element at the
studied circular frequency !.
The transverse vibrations are described by the momen-

tum balance along the transverse axis, the moment of
momentum balance, and the bending constitutive law:

⎧



⎨



⎩

T ′(s) = �A!2u(s)

M ′(s) = −T (s)

M(s) = −EI u′′(s)

⇒
u′′′′(s) = −�4 u(s)

where � =
4

√

�A!2

EI
=

2�

�b

�b is the bending wavelength in the element.
Both wavelengths are related by a purely geometric

relationship:

�2
b = �c2�

√

I

A
= �c

2�a√
12

⇒ �b

�c

= O

(

a

�b

)

<< 1

(1)
Indeed, the Euler-Bernoulli beam description requires
that the bending wavelength is much greater than the
thickness of the element. Thus, the bending wavelength
is always smaller than the compression wavelength.
The previous equations are now integrated between the

nodes B and E using the unknown displacements and
rotations of the endpoints (uB , vB , �B and uE , vE , �E)
as boundary conditions. This provides the expressions of
the forces at the extremities of the element in its local
frame:

NB = N(vB , vE) NE = −N(vB , vE)

TB = T (uB , uE , �B , �E) TE = T (−uE ,−uB , �E , �B)

MB = M(uB , uE , �B , �E) ME = M(uE , uB ,−�E ,−�B)
(2)

where
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N(v1, v2) =
EA�

sin(�ℓ)

(

v1 cos(�ℓ)− v2
)

T (u1, u2, �1, �2) =

EI�3

1− cos(�ℓ) cosh(�ℓ)

(

u1

(

cosh(�ℓ) sin(�ℓ) + sinh(�ℓ) cos(�ℓ)
)

− u2

(

sin(�ℓ) + sinh(�ℓ)
)

+
�1
�

sin(�ℓ) sinh(�ℓ)− �2
�

(

cos(�ℓ)− cosh(�ℓ)
)

)

M(u1, u2, �1, �2) =
EI�2

1− cos(�ℓ) cosh(�ℓ)

(

u1 sin(�ℓ) sinh(�ℓ) + u2

(

cos(�ℓ)− cosh(�ℓ)
)

+
�1
�

(

cosh(�ℓ) sin(�ℓ)− sinh(�ℓ) cos(�ℓ)
)

− �2
�

(

sin(�ℓ)− sinh(�ℓ)
)

)

(3)

The dynamic balance of each element being satisfied,
it remains to write the balance of the nodes. Since their
mass is negligible and there is no external force, it con-
sists in adding the forces (or moments) applied by the
four elements (two walls and two floors) connected to
the same node. Here the geometry of the structure is
explicitly taken into account. In the global frame (x, y)
(Fig. 2), the balance of the nodes is:

Balance of momentum in the x-direction:

TE
w (U (w,f−1)

x , U (w,f)
x ,−�(w,f−1),−�(w,f))

− TB
w (U (w,f)

x , U (w,f+1)
x ,−�(w,f),−�(w,f+1))

+NE
f (U (w−1,f)

x , U (w,f)
x )−NB

f (U (w,f)
x , U (w+1,f)

x ) = 0

(4a)

Balance of momentum in the y-direction:

NE
w (U (w,f−1)

y ), U (w,f)
y −NB

w (U (w,f)
y , U (w,f+1)

y )

+ TE
f (U (w−1,f)

y , U (w,f)
y , �(w−1,f), �(w,f))

− TB
f (U (w,f)

y , U (w+1,f)
y , �(w,f), �(w+1,f)) = 0

(4b)

Balance of moment of momentum:

ME
w (−U (w,f−1)

x ,−U (w,f)
x , �(w,f−1), �(w,f))

−MB
w (−U (w,f)

x ,−U (w,f+1)
x , �(w,f), �(w,f+1))

+ME
f (U (w−1,f)

y , U (w,f)
y , �(w−1,f), �(w,f))

−MB
f (U (w,f)

y , U (w+1,f)
y , �(w,f), �(w+1,f)) = 0

(4c)

Once the nodal variables have been determined, it is
always possible to calculate the forces and displacements
inside each element. Therefore, the discrete description
offered by these finite difference equations is fully equiv-
alent to the complete description.

C. Scale separation and local resonance

The principles of homogenization are now used to de-
rive the differential equations describing the behavior of

the equivalent continuum. The key assumption is scale
separation. This means that the characteristic length L
of the deformation of the structure under vibrations is
much greater than the characteristic length ℓc of the basic
frame. Thus, the scale ratio � = ℓc/L is a small param-
eter (� << 1) and it is possible to expand the kinematic
variables and some forces. In this study, the dimensions
of the frame in the x and y directions have the same or-
der of magnitude and ℓc = ℓw by convention. The size L
is related to the macroscopic wavelength and is unknown
for the moment.
If the frequency of the vibrations of the structure is

much lower than the natural frequencies of the frame
elements, then the condition of scale separation is re-
spected. However, having a quasi-static state at the lo-
cal scale is only a sufficient condition and homogenization
can sometimes be applied with local resonance. This no-
tion is illustrated by considering a structure vibrating at
different ranges of frequency. At very low frequencies,
both bending and compression waves generated in the
elements have wavelengths much longer than the length
of the elements. Consequently, the parameters �ℓ and �ℓ
are very small:

�ℓ = 2�
ℓ

�c

<< 1 and �ℓ = 2�
ℓ

�b

<< 1

and the trigonometrical functions can be expanded in the
expressions of the nodal forces and moment [Eqs. (3)]:

N(v1, v2) =
EA

ℓ

(

(v1 − v2)−
(�ℓ)2

6
(2 v1 + v2)

− (�ℓ)4

360
(8 v1 + 7 v2)

)

+O
(

(�ℓ)6
)

T (u1, u2, �1, �2) = −12EI

ℓ 3

(

(u1 − u2) +
ℓ

2
(�1 + �2)

− (�ℓ)4

840
(26u1 + 9u2)−

(�ℓ)4ℓ

5040
(22 �1 − 13 �2)

)

+O
(

(�ℓ)8
)

M(u1, u2, �1, �2) =
6EI

ℓ 2

(

(u1 − u2) +
ℓ

3
(2 �1 + �2)

− (�ℓ)4

2520
(22u1 + 13u2)−

(�ℓ)4ℓ

2520
(4 �1 − 3 �2)

)

+O
(

(�ℓ)8
)

(5)

The local resonance in frame structures 4



When the frequency is increased, both wavelengths de-
crease but �c is always longer than �b [see Eq. (1)]. The
previous expansions remain valid until the bending wave-
length �b becomes of the same order as the length of the
elements:

ℓ ≈ �b

2�
<<

�c

2�
⇒ �ℓ = O(1) and �ℓ << 1

In that case, elements are in resonance in bending and
the expressions (3) have to be kept for the shear force and
the bending moment. Nevertheless, as the compression
wavelength �c is much greater, it is still possible to ex-
pand the axial force and to apply homogenization. If the
frequency is increased again, the method remains valid
provided that the two following conditions are respected.
First, the compression wavelength �c in the stiffer el-
ements should be much greater than their length ℓ in
order to define a macroscopic scale. Second, the bending
wavelength �b in the more flexible elements should be
much greater than their thickness a in order to use the
Euler-Bernoulli beam model.

Another consequence of scale separation is that nodal
motions vary slowly from one node to the next. There-
fore, the nodal variables can be considered as the discrete
values of continuous functions of space variables x and y:

U (w,f)
x = Ux(�, x = w ℓf , y = f ℓw)

U (w,f)
y = Uy(�, x = w ℓf , y = f ℓw)

�(w,f) = �(�, x = w ℓf , y = f ℓw)

These new functions are assumed to converge as � ap-
proaches 0 and are replaced by asymptotic expansions in
powers of �:

X(�, x, y) = X0(x, y)+ �X1(x, y)+ �2X2(x, y)+ . . . (6)

where X stands for Ux, Uy, or � and Xj are continuous
functions of order j. In the sequel, the physically observ-
able variables of a given order in � are written with a
tilde: X̃j(x, y) = �jXj(x, y).

Equations (4) describing the balance of a node also de-
pend on the motions of the four neighboring nodes. Since
the structure is periodic, the distances between the nodes
are constant. They are equal to ℓw = � L in the vertical
direction and to ℓf = � ℓ∗L where ℓ∗ = ℓf/ℓw = O(1) in
the horizontal direction. These values are small with re-
spect to x and y, which enables expressing the variations
of the motions with Taylor’s series:

X(w,f±1) = X0(w ℓf , f ℓw)

+ �

(

X1(w ℓf , f ℓw)± L
∂X0

∂y
(w ℓf , f ℓw)

)

+ . . .

X(w±1,f) = X0(w ℓf , f ℓw)

+ �

(

X1(w ℓf , f ℓw)± ℓ∗L
∂X0

∂x
(w ℓf , f ℓw)

)

+ . . .

(7)
This introduces the macroscopic derivatives.

D. Normalization

Normalization consists of scaling the physical parame-
ters (the properties of the elements and the circular fre-
quency) according to the powers of �. It ensures that
each mechanical effect appears at the same order what-
ever the value of �. Thus, the same physics is kept at the
limit � → 0, which represents the homogenized model.
The choice of the properties of the elements determines

the stiffness contrast and then the possible mechanisms
in the structure. Here, the frames have similar walls and
floors with a thickness to length ratio of order �:

Ef

Ew

= O(1)
�f
�w

= O(1)
ℓf
ℓw

= O(1)
ℎf

ℎw

= O(1)

aw
ℓw

= O(�)
af
ℓw

= O(�) (8)

As for the circular frequency, the scaling is imposed
by the balance of the elastic and inertia forces at the
macroscopic level. If the frequency is underestimated,
the structure has a quasi-static behavior. On the con-
trary, if the frequency is overestimated, displacements
vanish because the inertia forces cannot be greater than
the elastic forces. Nevertheless, the elastic forces can
have two origins: the bending or the tension-compression
of the elements and there are two possibilities for the or-
der of magnitude of the frequency. The reference circular
frequency is by convention:

!r =
1

L

√

Ew

�w

The two frequency ranges of interest are ! = O(� !r) and
! = O(!r).

E. Macroscopic description

Finally, the expansions in powers of � [Eqs. (5), (6),
(7)] and the scaling of the parameters [Eqs. (8)] are in-
troduced in Eqs. (4) describing the balance of the nodes.
The relations obtained being valid for any small enough
�, the orders can be separated. This leads to a set of
differential equations for each order, which can be solved
in increasing order.
The homogenized model is given by the leading order,

which corresponds to the limit when � approaches zero.
However, in a real structure, the macroscopic length L
and the microscopic length ℓc are finite and the physical
scale ratio �̃ is necessarily a finite quantity. Consequently,
the kinematic variables of order 0 (Ũ0

x , Ũ
0
y , and �̃0) are

an approximation of the real motion (the accuracy of
which depends on the order of magnitude of �̃). The
terms of superior orders are correctors which improve
the accuracy of the macroscopic description by taking
into account phenomena of lesser importance.
The following sections focus on the leading order.

First the equivalent continuum is characterized and then
the wave propagation is studied. In order to simplify
the equations, some macroscopic parameters are defined.

The local resonance in frame structures 5



They are integrated over the depth of the elements ℎw

and ℎf so that they do not have the usual units.

Mw = �̄w/ℓf : contribution of the walls to the
mass per unit surface (kg/m2)

Mf = �̄f/ℓw : contribution of the floors to the
mass per unit surface (kg/m2)

Ms = Mw +Mf : mass per unit surface (kg/m2)

Ex = EfAf/ℓw : elastic modulus in the x-direction
(N/m)

Ey = EwAw/ℓf : elastic modulus in the y-direction
(N/m)

Gw = 12
EwIw
ℓ2wℓf

: contribution of the walls to the

shear modulus (N/m)

Gf = 12
EfIf
ℓwℓ2f

: contribution of the floors to the

shear modulus (N/m)
1

G
=

1

Gw

+
1

Gf

: shear modulus (N/m)

III. EQUIVALENT CONTINUUM

This section and the next present the behavior of the
structure at the lowest circular frequencies giving a dy-
namic description: ! = O(� !r). In that case, the imple-
mentation of the HPDM method provides the following
equations, corresponding to the balance of momentum in
the x and y directions for orders 0, 1, 2 and the balance
of moment of momentum at the leading order.

⎧























⎨























⎩

Ex

∂2Ũ0
x

∂x2
= 0

Ex

∂2Ũ1
x

∂x2
= 0

Ex

∂2Ũ2
x

∂x2
+Gw

(

∂�̃0

∂y
+

∂2Ũ0
x

∂y2

)

+Ms !
2 Ũ0

x = 0

(x 0)

(x 1)

(x 2)

⎧























⎨























⎩

Ey

∂2Ũ0
y

∂y2
= 0

Ey

∂2Ũ1
y

∂y2
= 0

Ey

∂2Ũ2
y

∂y2
+Gf

(

−∂�̃0

∂x
+

∂2Ũ0
y

∂x2

)

+Ms !
2 Ũ0

y = 0

(y 0)

(y 1)

(y 2)

{

Gw

(

�̃0 +
∂Ũ0

x

∂y

)

−Gf

(

− �̃0 +
∂Ũ0

y

∂x

)

= 0 (m 0)

The equations according to the x and y directions de-
scribe the balance of the forces per unit surface, which
suggests using the notion of stress as in continuum me-
chanics. The normal stress in the x-direction �xx, the

normal stress in the y-direction �yy, the shear stresses
�xy and �yx are defined by:

�xx(U) = Ex

∂2Ux

∂x2
= Ex �xx(U)

�yy(U) = Ey

∂2Uy

∂y2
= Ey �yy(U)

�xy(�,U) = Gw

(

� +
∂Ux

∂y

)

= �2�̂xy(�,U)

�yx(�,U) = Gf

(

− � +
∂Uy

∂x

)

= �2�̂yx(�,U)

(9)

where �xx, �yy, �̂xy, and �̂yx have the same order of mag-
nitude and U denotes the displacement vector. Taking
U = U

0 + �U1 + �2U2 and adding, on the one hand, the
equations (x 0), (x 1), (x 2) and, on the other hand, the
equations (y 0), (y 1), (y 2), yield the Cauchy’s equations
of motion valid up to the �2 order:

⎧





⎨





⎩

∂�xx

∂x
+

∂ �xy
∂y

+ �!2Ux = o(�2)

∂ �yx
∂x

+
∂�yy

∂y
+ �!2Uy = o(�2)

Moreover, as in continuum mechanics, the balance of
moment of momentum described by Eq. (m 0) implies

that �xy(�̃0, Ũ
0) = �yx(�̃0, Ũ

0). Therefore, it is possible

to eliminate the node rotation �̃0:

�̃0 =
Gf

Gw +Gf

∂Ũ0
y

∂x
− Gw

Gw +Gf

∂Ũ0
x

∂y
(10)

which leads to the usual expression of the shear stresses.

�xy(�̃
0, Ũ0) = �yx(�̃

0, Ũ0) = G

(

∂Ũ0
y

∂x
+

∂Ũ0
x

∂y

)

The expression of the shear modulus G (given in Sec-
tion II.E) shows that G is built from the combination of
Gw and Gf as springs in series.

After the elimination of �̃0, Eqs (x 2) and (y 2) become:

Ex

∂2Ũ2
x

∂x2
+G

(

∂2Ũ0
y

∂y∂x
+

∂2Ũ0
x

∂y2

)

+Ms !
2 Ũ0

x = 0 (x 2)′

Ey

∂2Ũ2
y

∂y2
+G

(

∂2Ũ0
y

∂x2
+

∂2Ũ0
x

∂x∂y

)

+Ms !
2 Ũ0

y = 0 (y 2)′

The main feature of the macroscopic medium is its ex-
treme anisotropy due to the large difference in magnitude
of the moduli Ex, Ey, and G. Because of the quasi-static
state at the local scale, the moduli only depend on the
elastostatic properties of the frame elements. The two
elastic moduli, Ex and Ey, are related to the tension-
compression rigidity of the floors and to the one of the
walls respectively. On the contrary, the shear mechanism
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results from the bending of the walls and the floors con-
nected in series. Since beams are far less stiff in bending,
the shear modulus G is much less than the elastic moduli:

G

Ex

= O(�2)
G

Ey

= O(�2)

This is the reason why it is necessary to calculate equa-
tions up to order 2.
Although the shear modulus and the elastic moduli

have different orders of magnitude, the equivalent con-
tinuum appears as a “classical” continuum in the sense
that only the translational motion appears at the leading
order. The macroscopic behavior is completely described
by Eqs. (x 0), (x 1), (x 2)′, (y 0), (y 1), and (y 2)′ which

do not contain �̃0. The node rotation has the status of
a “hidden” variable. However, to come back to the local
scale and to determine the forces and the displacements
in the frame elements, it is necessary to calculate �̃0 with
Eq. (10) describing the inner equilibrium of the basic
frame.
Finally, note that the previous description of the

macroscopic medium established for circular frequencies
such that ! = O(� !r) remains valid as long as the frame
elements are not in resonance in bending. In particular,
it applies to statics.

IV. SHEAR WAVES

The wave propagation in the medium is now analyzed.
Since every wave can be expressed as a superposition
of plane waves, the study focuses on this kind of waves
and the displacement field is sought in the following way
(remember that the time dependence exp(i!t) is system-
atically omitted):

U(�,x) = u
0 exp[−ik(�)n� ⋅x ]+�U1(x)+�2U2(x)+. . .

(11)
Only the expression of the displacement field in the
homogenized medium U

0(x) = u
0 exp[−ik(�)n� ⋅ x ] is

imposed. It corresponds to a plane wave with ampli-
tude u

0 and wave number k(�) traveling in direction
n� (Fig. 2). The correctors could be determined with-
out any assumptions by the resolution of the equations
of superior orders as in Ref.19. Their study is out of
the scope of this paper but the following property will
be used. As the medium is infinite and the macroscopic
field U

0 is invariant under a translation perpendicular to
the direction of propagation, the correctors should also
be invariant under such a translation.
Expression (11) is introduced in Eqs. (x 0) and (y 0):

−Ex k
2(�) cos2(�) ũ0

x exp[−ik(�)n� ⋅ x ] = 0 (x 0)

−Ey k
2(�) sin2(�) ũ0

y exp[−ik(�)n� ⋅ x ] = 0 (y 0)

For cos(�) ∕= 0 and sin(�) ∕= 0, the only solution is
u

0 = 0. At this frequency range, waves cannot prop-
agate diagonally.
For cos(�) = 0, Eq. (y 0) implies that ũ0

y = 0 and the

expression of U0 becomes:

U
0(x) =

(

ũ0
x

0

)

exp[± ik(�/2) y ] (12)

FIG. 4. Shear wave traveling in the x-direction

This means that the direction of propagation is y (direc-
tion of the walls) and the direction of polarization is x
(direction of the floors) : it is a pure shear wave. To
determine the wave number k(�/2), expression (12) is
introduced in Eq. (x 2)′:

Ex

∂2Ũ2
x

∂x2
+
(

−Gk2(�/2)+Ms !
2
)

ũ0
x exp[± ik(�/2) y ] = 0

and the invariance of the corrector under a translation
parallel to the x-direction is used:

∂2Ũ2
x

∂x2
= 0 ⇒ k(�/2) = !

√

Ms

G
(13)

For sin(�) = 0, the results are similar but the roles
of x and y are reversed. Pure shear waves travel in the
x-direction and are polarized in the y-direction (ũ0

x = 0).
Eq. (y 2)′ gives the same expression of the wave number
as in the other direction:

Ey

∂2Ũ2
y

∂y2
+
(

−Gk2(0) +Ms !
2
)

ũ0
y exp[± ik(0)x ] = 0

⇒ k(0) = !

√

Ms

G
= k(�/2)

To sum up, at low frequencies, waves can only propa-
gate in two directions because of the anisotropy. Never-
theless, the speeds c(�) are identical in both directions:

c(�) =
!

k(�)
=

√

G

Ms

The speed depends on the shear modulus G and the
mass Ms as in a classical elastic medium. The expression
of G (given in Section II.E) shows that these waves are
generated by the local bending of the elements (Fig. 4).
Note that ! = O(� !r) is really the lowest circular fre-

quency giving a dynamic description at the macroscopic
scale. For a smaller !, the inertial term Ms !

2
U

0 is rele-
gated to a higher order and vanishes in balance equations
(x 2)′ or (y 2)′.

V. COMPRESSIONAL WAVES AND LOCAL

RESONANCE

The circular frequency ! is now increased up to O(!r)
in order to investigate the behavior of the medium when
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Λ >> ℓf

FIG. 5. Compressional wave in the floors
⇒ resonance in bending of the walls

the inertia forces balance the tension-compression forces.
For this frequency range, the bending wavelength in the
elements �b is of the same order as their length ℓ but the
compression wavelength �c remains much longer. It cor-
responds to the situation presented in Section II.C where
homogenization applies with local resonance in bending.
This phenomenon is illustrated in Fig. 5 which shows
a compressional wave traveling in the x-direction. As
its wavelength Λ is much greater than the length of the
floors ℓf , the condition of scale separation is respected.
Therefore, homogenization can be used even though the
propagation of the wave induces the vibration of the walls
and their resonance in bending.

The consequence of the local resonance is that the
shear force and the bending moment in the elements can
no longer be expanded contrary to the axial force. The
other parts of the HPDM method are unchanged and
the balance of momentum of the macroscopic medium is
described by the following equations.

Ex

∂2Ũ0
x

∂x2
+
(

Mf +Mw f(!̂w)
)

!2Ũ0
x = 0 (x 0)

Ey

∂2Ũ0
y

∂y2
+
(

Mw +Mf f(!̂f )
)

!2Ũ0
y = 0 (y 0)

�Gw

√
!̂w

8 fe(!̂w)

(

4 sin
(3�

4

√

!̂w

)

sinh
(3�

4

√

!̂w

)

�̃0

+
3�

√
!̂w

2 fo(!̂w)

(

cosh
(3�

2

√

!̂w

)

− cos
(3�

2

√

!̂w

)

)

∂Ũ0
x

∂y

)

− �Gf

√

!̂f

8 fe(!̂f )

(

− 4 sin
(3�

4

√

!̂f

)

sinh
(3�

4

√

!̂f

)

�̃0

+
3�
√

!̂f

2 fo(!̂f )

(

cosh
(3�

2

√

!̂f

)

− cos
(3�

2

√

!̂f

)

)

∂Ũ0
y

∂x

)

= 0

(m 0)

with

!̂w = !

(

2 ℓw
3�

)2√
�̄w

EwIw
≈ !

!w1

!̂f = !

(

2 ℓf
3�

)2
√

�̄f
EfIf

≈ !

!f1

f(!̂) =
8

3�
√
!̂ fo(!̂)

sin

(

3�

4

√
!̂

)

sinh

(

3�

4

√
!̂

)

fo(!̂) = sin

(

3�

4

√
!̂

)

cosh

(

3�

4

√
!̂

)

+ sinh

(

3�

4

√
!̂

)

cos

(

3�

4

√
!̂

)

fe(!̂) = sin

(

3�

4

√
!̂

)

cosh

(

3�

4

√
!̂

)

− sinh

(

3�

4

√
!̂

)

cos

(

3�

4

√
!̂

)

The fundamental difference with Sections III and IV is
the presence of terms depending on the frequency. They
are written as functions of the dimensionless frequencies
!̂w and !̂f . The first one !̂w is equal to the ratio between
!, the circular frequency, and !w1, the circular frequency
of the first bending mode of the walls with two fixed
ends. Similarly !̂f corresponds to the ratio between !
and !̂f1, the circular frequency of the first bending mode
of the floors with two fixed ends. Moreover, the natural
frequencies of a beam that is fixed at both extremities
are the solutions of the following equation:

2 fo(!̂)fe(!̂) = 1− cos

(

3�

2

√
!̂

)

cosh

(

3�

2

√
!̂

)

= 0

where the function fo vanishes at the frequencies of the
odd bending modes and the function fe vanishes at the
frequencies of the even bending modes.
Equations (x 0) and (y 0) contain the same elastic

terms as in Section III, which are related to the tension-
compression of the elements. In addition, there are the
inertial terms whose order of magnitude has changed due
to the increase of the frequency. Because of the local res-
onance in bending, the real mass is replaced by an effec-

tive mass depending on the frequency and the direction.
Equation (x 0) describes the momentum balance when
the floors experience tension-compression and the walls
experience resonance as presented in Fig. 5. Therefore
the mass of the walls Mw is multiplied by a frequency de-
pendent function f giving an effective mass. In Eq. (y 0)
the roles of the walls and the floors are reversed and the
function f modifies the mass of the floors Mf . As for
Eq. (m 0), at lower frequencies, it gives the equality of
the macroscopic shear stresses associated to the bending
of the elements. Consequently, this equation is strongly
affected by the local resonance. Nevertheless, it still ex-
presses the inner equilibrium of the basic frame and it
enables to calculate the “hidden” variable �̃0.
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In the sequel, the study focuses on Eqs. (x 0) and
(y 0) which describe the wave propagation. First, the
type of waves and the influence of the direction of prop-
agation n� are determined. Then, the properties of the
effective mass are examined. Finally, Eq. (m 0) which
imposes additional kinematic conditions, is considered.

A. Effect of the anisotropy

The analysis of the wave propagation is carried out
using the same method as in Section IV. Expression (11)
of the displacement field is introduced in Eqs. (x 0) and
(y 0):

(

− Ex k
2(�) cos2(�) +Mw(!̂w)!

2
)

ũ0
x exp[−ik(�)n� ⋅ x ] = 0

(x 0)

(

− Ey k
2(�) sin2(�) +Mf (!̂f )!

2
)

ũ0
y exp[−ik(�)n� ⋅ x ] = 0

(y 0)

with Mw(!̂w) = Mf +Mw f(!̂w)

Mf (!̂f ) = Mw +Mf f(!̂f )

The existence of a non-zero solution implies that:

−Ex k
2(�) cos2(�) +Mw(!̂w)!

2 = 0 (14a)

or − Ey k
2(�) sin2(�) +Mf (!̂f )!

2 = 0 (14b)

When Eq. (14a) is satisfied, then ũ0
y = 0 and all the

nodes move in the x-direction [Fig. 6(a)]. Conversely,
when Eq. (14b) is satisfied, then ũ0

x = 0 and all the nodes
move in the y-direction [Fig. 6(b)]. These two modes of
polarization are called X-mode and Y-mode respectively.

(a)X-mode (b)Y-mode

FIG. 6. Nodal displacements for the two modes of polarization

Equation (14a) shows that the X-mode can exist for
waves traveling in all directions except in the y-direction
[cos(�) = 0]. For waves traveling in the x-direction
(� = 0), the direction of propagation and the direction of
polarization are identical. They are pure compressional
waves with the following properties:

k(0) = !

√

Mw(!̂w)

Ex

⇒ c(0) =

√

Ex

Mw(!̂w)
(15)

FIG. 7. Description of the mechanisms which generate a
macroscopic shear-compression wave traveling in the direc-
tion n� with the X-mode

The speed c(0) is similar to the one of a compressional
wave in a classical elastic medium provided that the real
mass is replaced by the effective mass.

The X-mode waves traveling diagonally are shear-
compression waves. This type of waves is frequently en-
countered in anisotropic media. Here, the particularity
is that the direction of polarization is independent of the
direction of propagation. It is just imposed by the ori-
entation of the elements. However, the properties of the
X-mode waves strongly vary with the direction of prop-
agation:

k(�) =
k(0)

∣ cos(�)∣ ⇒ c(�) = ∣ cos(�)∣ c(0)

The mechanisms at the microscopic scale governing
these waves are explained in Fig. 7. The gray grid repre-
sents the structure before deformation. All the nodal dis-
placements are in the x-direction, as shown by the arrows
on the left. The motions are caused by the propagation
of pure compressional waves in the floors which are out-
of-phase, so that all the points on a straight line perpen-
dicular to the direction n� have the same displacement.
As a result, at the macroscopic scale, a wave traveling in
the direction n� is observed. The amplitude of the com-
pressional waves in the floors is represented by the gray
sinusoids at the bottom of the figure. Their wavelength
is Λ(0) = 2�/k(0). The wavelength of the macroscopic
wave Λ(�) is the projection of Λ(0) onto the direction n�.
Consequently, the wavelength (and therefore the speed)
is maximal when the macroscopic wave travels in the x-
direction. Moreover, this mechanism cannot generate a
macroscopic wave traveling in the y-direction. The verti-
cal black sinusoids represent the deformation of the walls
due to the phase difference between the compressional
waves in the floors. The total deformation is obtained
by adding the deflections induced by the local resonance
(drawn with dotted lines on the top left corner).

For the Y-mode, the roles of the floors and the walls are
reversed. Macroscopic waves with the following proper-
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ties can travel in all directions except in the x-direction:

k
(�

2

)

= !

√

Mf (!̂f )

Ey

⇒ c
(�

2

)

=

√

Ey

Mf (!̂f )
(16)

k(�) =
k
(

�
2

)

∣ sin(�)∣ ⇒ c(�) = ∣ sin(�)∣ c
(�

2

)

Figure 8 sums up the variations of the speed of the macro-
scopic waves for the two modes of polarization.

(a)X-mode (b)Y-mode

FIG. 8. Variations of the speed of the macroscopic waves
according to the direction of propagation

B. Effect of the local resonance

The influence of frequency is now investigated. To
simplify, walls and floors are assumed perfectly identi-
cal. Thus, subscripts “w” and “f” can be removed. The
dimensionless mass m(!̂) is defined by the ratio between
the effective mass and the real mass:

m(!̂) =
M(!̂)

Ms

=
�̄
ℓ

(

1 + f(!̂)
)

2�̄/ℓ
=

1

2

(

1 + f(!̂)
)

where !̂ = !/!1 is the ratio between ! and the circular
frequency of the first bending mode of the elements with
two fixed ends. The dimensionless mass is plotted in
Fig. 9. As the frequencies of the bending modes of Euler-
Bernoulli beams are proportional to the sequence of the
squares of the odd integers, the modes of the elements
correspond to the following abscissas:

!̂1 ≈ 32

32
= 1, !̂2 ≈ 52

32
≈ 2.78, !̂3 ≈ 72

32
≈ 5.44, . . .

Figure 9 shows that the limit of the effective mass at
very low frequencies is the real mass as expected. At
most of the frequencies higher than the one of the first
bending mode of the elements, m(!̂) is between 0 and
1. This means that the structure seems lighter thanks
to the local resonance. On the contrary, close to the
frequencies of the odd bending modes of the elements,
the effective mass becomes infinite and changes its sign.
Such an atypical behavior is not observed close to the
frequencies of the even bending modes.

5 10 15 20

−4

−2

2

4

FIG. 9. Variations of the effective mass according to the fre-
quency

The effective mass differs significantly from the real
mass because the points of the cell are in relative motion.
According to the definition of the macroscopic variables,
the macroscopic wave describes the motion of the nodes.
At low frequencies, the whole cell undergoes the same
translational motion. Consequently, the sum of inertia
forces acting on the whole frame equals the real mass
of the frame multiplied by the acceleration of the nodes.
When bending resonance occurs, the motion of the other
points can strongly differ from the one of the nodes and
some points can even be in antiphase. In these condi-
tions, the sum of inertia forces acting on the basic frame
is more complex.
This analysis of the physical origin of the effective

mass is verified by calculating the deformation of a wall
caused by the propagation of a macroscopic wave in the
x-direction with the X-mode. In that case, the extremi-
ties of the wall move in-phase in the transverse direction.
Moreover, Eq. (m 0) shows that there is no rotation of
the nodes. The ratio between u the amplitude of the
deflection of the wall and Û the amplitude of the mo-
tion of the nodes is plotted in Fig. 10. As ! approaches
!1, the circular frequency of the first bending mode of
the wall [Fig. 10(a)], the deflection is getting larger and
larger because of the resonance. It is in-phase with the
nodes when ! is below !1 and in antiphase when ! is
above !1. At the frequency of the second bending mode

(a) ! → !1

0.2 0.4 0.6 0.8 1

−0.5

0.5

1

(b) ! = !2

FIG. 10. Deflection u of a wall caused by the propagation of a
wave in the x-direction with the X-mode. Û is the amplitude
of the motion of the nodes, s is the coordinate along the axis
of the wall, and ℓ is the length of the wall.
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FIG. 11. Modulus and argument of the effective mass in pres-
ence of damping (� = 2.10−2)

[Fig. 10(b)], the boundary conditions do not cause the
resonance of the wall. Nevertheless, the motion is not
uniform, which induces an effective mass smaller than
the real mass. This behavior is consistent with the vari-
ations of the effective mass (Fig. 9).

The consequences on the wave propagation are exam-
ined by considering a more realistic case with damping.
Now, the elastic modulus of the material is a complex
number: Ê = ∣E∣ ei� with 0 < � << 1. In what fol-
lows, all calculations will be made with � = 2.10−2. As
a result, the effective mass becomes a complex number
with a finite modulus. The modulus and the argument
are plotted in Fig. 11.

Owing to the variations of the effective mass, there is
dispersion of the wave speed. In Fig. 12, the thick line
represents ĉ the ratio between the speed calculated by
taking into account the local resonance and the speed
obtained by neglecting this phenomenon. The thin line
corresponds to the attenuation per wavelength �Λ. This
means that the amplitude of the wave is multiplied by
e−�Λ when it travels one wavelength.

As expected, the limit of ĉ at very low frequencies is
1 and ĉ decreases when ! approaches !1. At most of
the circular frequencies higher than !1, waves propagate
faster thanks to the local resonance. As the frequency
approaches the one of an odd bending mode from below,

5 10 15 20

5

10

15

20

FIG. 12. Speed (thick line) and attenuation per wavelength
(thin line) for � = 2.10−2

the speed first decreases and then increases considerably.
At the same time, �Λ becomes very important. There-
fore, the neighborhood of the odd bending modes of the
elements corresponds to frequency bandgaps. However,
after the resonance frequencies, �Λ decreases faster than
ĉ. When �Λ becomes negligible, ĉ is still significantly
higher than 1.

C. Inner equilibrium of the frame

The inner equilibrium of the basic frame is described
by Eq. (m 0). The reasoning is illustrated by considering
the X-mode but the same phenomena occur with the Y-
mode. Then, Eq. (m 0) becomes:

�Gw

√
!̂w

8 fe(!̂w)

(

4 sin
(3�

4

√

!̂w

)

sinh
(3�

4

√

!̂w

)

�̃0

+
3�

√
!̂w

2 fo(!̂w)

(

cosh
(3�

2

√

!̂w

)

− cos
(3�

2

√

!̂w

)

)

∂Ũ0
x

∂y

)

+
�Gf

√

!̂f

2 fe(!̂f )
sin
(3�

4

√

!̂f

)

sinh
(3�

4

√

!̂f

)

�̃0 = 0

(m 0)

At most of the frequencies, the node rotation �̃0 is propor-
tional to the shear strain ∂yŨ

0
x with a rather complicated

proportionality coefficient. However, at some frequencies
the functions have singularities and their physical origin
is now examined.
The simplest case corresponds to the very low frequen-

cies. As ! approaches 0, the limit of Eq. (m 0) is identical
to the equation of page 6 which expresses the equality of
the macroscopic shear stresses in statics. The frequen-
cies of the odd bending modes of the walls [fo(!̂w) = 0]
can also be eliminated because the wave propagation is
impossible for the X-mode due to the local resonance.
Frequencies of the even bending modes of the elements

[fe(!̂w) = 0 or fe(!̂f ) = 0] are more interesting. In
their neighborhood, the effective stiffness of the elements
becomes infinite. This behavior is due to the fact that the
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boundary conditions of a beam at its natural frequencies
are not independent.
Another singularity occurs when the coefficient of �̃0

vanishes. This means that the effective stiffness of the
whole cell disappears. Whatever the node rotation �̃0, it
generates a negligible moment which cannot balance the
moment caused by the shear strain. As a result, there is
no shear strain and the compressional waves in the floors
are in-phase.
Even if the wave propagation is described by Eqs. (x 0)

and (y 0), this example shows that it is necessary to ver-
ify that the kinematic conditions imposed by Eq. (m 0)
are satisfied. Here, there are frequencies at which waves
cannot propagate diagonally.

VI. BEHAVIOR OF REAL MEDIA

This section explains how the previous results can help
to understand the dynamics of real frame structures. It
begins with some comments about the scale ratio and
the parameter � which play a key role during the homog-
enization process. Then, a method is proposed for the
design of real frame structures with unusual properties.

A. The scale ratio

A macroscopic plane wave with a circular frequency !
traveling in a given frame structure is considered. From
a physical point of view, the scale ratio is defined by the
ratio between the characteristic length ℓc of the basic
frame and the characteristic length L of the deformation
of the structure. In what follows, the scale ratio ℓc/L
will be written �̃ as in Ref.28 to make it different from
the small parameter � used in homogenization. As ℓc
and L are finite, the scale ratio is a finite quantity. If �̃ is
small (�̃ << 1), it is possible to homogenize the behavior
of the structure.
For this purpose, firstly the powers of �̃ are used as a

kind of “unit of measurement” to convert the numerical
values of the other small parameters (in particular the
thickness to length ratios of the elements) into orders
of magnitude. This provides the proper normalization
for the real structure. Secondly, homogenization consists
in replacing in the scaled formulation the physical �̃ by
a mathematical � which is made to approach zero. In
doing so, the relative orders of magnitude of the physical
terms are kept identical from the real frame structure to
the continuum obtained at the limit.
However, as the physical �̃ is a finite quantity, the real

structure is an imperfect realization of the homogenized
model (or the homogenized model is an approximation of
the behavior of the real structure). The smaller �̃ is, the
smaller the difference between the model and the struc-
ture is. By considering only the leading order as in the
previous sections, the order of magnitude of the neglected
correctors is O(�̃).
All this shows that it is important to have a reliable

estimation of �̃ for two reasons: to correctly take into
account the physics of the problem and to evaluate the

accuracy of the continuous model. For a given structure,
the size of the frame ℓc is fixed (here ℓc = ℓw) but the
macroscopic length depends on the external actions. In
the case of wave propagation, it can be shown29 that:

L =
Λ

2�
⇒ �̃ =

2� ℓc
Λ

= ℓc k (17)

where Λ is the macroscopic wavelength and k the wave
number given by Eq. (13) for pure shear waves, by
Eq. (15) for shear-compression waves polarized in the
x-direction, or by Eq. (16) for shear-compression waves
polarized in the y-direction. As a result, �̃ depends on
the frequency. When ! increases, Λ decreases. Thus �̃
becomes greater and the continuous model is less accu-
rate. Moreover, as the thickness to length ratios of the
elements have fixed values, the orders of magnitude given
by the normalization change.
The expression of the macroscopic wavelength varies

also with the nature of the wave. For example, a shear
wave and a compressional wave both traveling in the x-
direction are considered. The associated wave numbers
are given by Eqs. (13) and (15) which are very different.
But the thickness to length ratios of the elements are de-
scribed by Eq. (8) in both cases. If, in addition, these
cases apply to the same real structure, the thickness to
length ratios have a fixed value. Therefore �̃, and so Λ
and k, should have the same value for the two types of
wave. This is possible only when the frequency of the
shear wave is smaller than the frequency of the compres-
sional wave. This is the reason why homogenization gives
the impression that different types of wave appear in very
different frequency ranges, whereas they can coexist in
the same frequency range in real structures.
Instead of considering a constant wavelength, another

possibility consists in assuming that the frequency is con-
stant. In that case, the wavelength of the shear wave is
smaller than the wavelength of the compressional wave
and �̃ has two different values. As a result, the normaliza-
tion provides different orders of magnitude and the real
structure is associated with two different continua. Note
that the accuracy of the descriptions of the macroscopic
waves is also different.

B. Design of metamaterials

The analytical formulation of the HPDM method pro-
vides a clear understanding of the mechanisms governing
the behavior of frame structures and of the role of each
parameter. This constitutes a framework for the design of
new (meta)materials with prescribed macroscopic prop-
erties.
The reasoning is illustrated by considering the design

of a structure which behaves as a metamaterial for pure
compressional waves propagating at a given circular fre-
quency !. To simplify, the basic frame is a perfect square
and the walls and the floors are made of the same given
material. Thus, subscripts “w” and “f” are removed.
The length ℓ of the elements is fixed. The objective is the
determination of their thickness a. The normalization (8)
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and the expression (15) of the wavenumber impose the
following condition for the thickness:

a

ℓ
= O(�̃) = O(ℓk) = O

⎛

⎝ℓ !

√

Mf +Mwf(!̂w)

Ex

⎞

⎠

The expressions of Mf , Mw, Ex are given in Section II.E
and the function f is defined in Section V. Neglecting
the effects of the local resonance [by taking f(!̂w) = 1]
yields:

a = O

(

ℓ2!

√

2�A/ℓ

EA/ℓ

)

= O

(

ℓ2!

√

2�

E

)

Thus a = â ℓ2!
√

�/E where â = O(1) is a constant. It is
possible to verify that, in that case, the local resonance
actually appears close to the circular frequency !. For
â = 1, the ratio between the bending wavelength in the
elements �b and their length ℓ is:

�b

ℓ
=

2�

ℓ
4

√

EI

�A!2
=

2�

ℓ
4

√

EAa2

12 �A!2
= 2�

4

√

1

12
≈ 3.38

This corresponds to the beginning of the resonance: !
is a little smaller than the circular frequency of the first
bending mode. For the effects of the local resonance to
be more marked at !, a smaller â should be chosen. This
procedure completely defines the resonating media.
The previous example focuses only on the thickness

but it is also possible to adjust the other geometrical
parameters or the material properties to obtain the de-
sired macroscopic properties. For instance, if the waves
propagating in the medium are always polarized in the
same direction, some mass can be added to the resonat-
ing elements to increase the effects of the local resonance.
However, when the walls and the floors are different, the
stiffness contrast should remain small. Otherwise, a new
mechanism appears in the structure and the macroscopic
description is no longer valid28,30.

Although the results are obtained for a specific class
of structures, their generalization is straightforward for
three-dimensional frame structures and structures whose
unit cell is a parallelogram. For braced structures such as
triangular lattices, the high contrast between the shear
and tension-compression deformabilities is lost. The
mechanism identified for the shear waves probably no
longer exists. However, compressional waves can pre-
sumably be associated with local resonance in bending.
Note that macroscopic beam models obtained with the
HPDM method have been successfully applied to real
buildings31.

VII. CONCLUSION

Thanks to the contrast between the bending and
tension-compression properties of the Euler-Bernoulli
beams, the homogenization method of periodic discrete
media (HPDM) is extended to higher frequencies with
local resonance in bending. This method is used for the

study of the wave propagation in two-dimensional frame
structures. Its main advantage is the analytical formu-
lation which enables to understand the mechanisms gov-
erning the global behavior.
When all the elements of the basic frame have simi-

lar properties and in the absence of local resonance, the
equivalent continuum at the macroscopic scale is a “clas-
sical” continuum in the sense that the only kinematic
variables are the translational motions of the nodes and
therefore of the whole cell. However, the continuum is
highly anisotropic. It has different elastic moduli ac-
cording to the frame axes and a shear modulus much
lower than the elastic moduli. In consequence, the speed
of the waves strongly depends on the direction. More-
over, shear waves appear at lower frequencies than shear-
compression waves and two frequency ranges should be
studied.
For shear waves, elements have a quasi-static behav-

ior at the local scale for both mechanisms: bending and
tension-compression. It corresponds to the usual domain
of application of homogenization. Shear waves are gen-
erated by the local bending of the elements. They can
travel only in the two discrete directions of the frame
elements with the same speed. The speed is also inde-
pendent of the frequency.
For shear-compression waves, elements have a quasi-

static behavior at the local scale for tension-compression
and a dynamic behavior for bending. Therefore, the
behavior of the structure should be homogenized with
the new procedure adapted to local resonance. Shear-
compression waves can travel in all the directions but
their direction of polarization coincides with those of the
elements. Indeed, the macroscopic waves are generated
at the local scale by the propagation of compressional
waves in the elements. The main consequence of the lo-
cal resonance is that the real mass of the cell has to be
replaced by an effective mass which depends on the fre-
quency and the direction of polarization. As a result, the
speed of the macroscopic waves also varies with the fre-
quency and the direction of polarization. Moreover the
speed depends on the direction of propagation.
The effective mass exhibits different properties depend-

ing on whether the frequency is smaller or greater than
!1, the frequency of the first bending mode of the ele-
ments affected by the resonance. At very low frequen-
cies, the effective mass is equal to the real mass. When
the frequency is increased but remains smaller than !1,
the effective mass increases too, which leads to a decrease
of the speed of the macroscopic waves. This behavior is
consistent with the experimental results concerning the
Rayleigh scattering. At frequencies close to !1 (and the
frequencies of the other odd bending modes), the inertia
forces become huge because of the resonance. Therefore,
the effective mass approaches infinity, which causes fre-
quency bandgaps.
After the resonance, at most of the frequencies higher

than !1, the effective mass is smaller than the real mass
and waves travel faster due to the dynamic effects at
the local scale. This domain is intermediate between
the domain of the Rayleigh scattering (when the wave-
length is much greater than the cell size and the local
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dynamic effects are negligible) and the domain of the
various phenomena observed in phononic crystals such
as Bragg scattering, focusing of waves32. . . In this latter
case, the wavelength is comparable to the cell size.
At the frequencies of the even bending modes, the ef-

fective mass has a finite value because these modes are
not excited by the propagation of the macroscopic waves.
However, the effective stiffness of the elements becomes
infinite. This is due to the kinematic incompatibility be-
tween the macroscopic waves and the boundary condi-
tions of the elements.
As other periodic media, frame structures behave as

frequency and spatial filters. In the present case, the spa-
tial properties are particularly pronounced because the
waves are channeled by the elements. Concerning the fre-
quency properties, the features of the effective mass are
similar to those of the effective masses obtained for other
metamaterials consisting either of composite media with
a high contrast between the rigidities of the constituents6

or of hard spheres coated with a soft material and dis-
persed in a stiff matrix10,33. Here, another approach to
create such materials is proposed. It is based on the stiff-
ness contrast between bending and tension-compression
in beams instead of the contrast between the mechanical
properties of different materials. Moreover, the HPDM
method being completely analytic, the results can be eas-
ily used to design new metamaterials.
As mentioned in the introduction, the concept of lo-

cal resonance in highly contrasted elastic composites has
been evidenced by Auriault and Bonnet in 19856 by
means of the homogenization of periodic media with
an heuristic approach and formal expansions. Similar
mechanisms were also identified in double conductivity
media34 and double porosity media (e.g. Ref.35, 36) and
were proved experimentally in acoustics37. In these lat-
ter cases, the difference lies in the fact that the reso-
nance concerns a diffusion phenomenon (related to ther-
mal transfer or mass transfer driven by viscous effects).
In the same spirit, one may also consider that the lo-
cal mechanism expressed by the dynamic permeability
of porous media38,39, relevant when the thickness of the
viscous layer interferes with the pore size, belongs to the
same family of phenomena. Undamped resonance (as in
elastic cases) or damped resonance (as in diffusion cases)
obviously result in different macroscopic modeling. How-
ever, the common feature of these several situations is
that they lead at the macroscopic scale to a generalized
Newtonian mechanics, in the sense that the effective mass
(or thermal inertia, etc.) differs from the actual mass of
the real system.
Interestingly, the theoretical mathematical study of the

local elastic resonance mechanism has been investigated
significantly later than the heuristic results on realistic
materials. The work of Zhikov40 provides results on the
convergence of the asymptotic approach. Note also that
the present work focuses on local resonance when the
scale separation is satisfied. For this reason, it differs
from the theories currently developed in Ref.24–26 in or-
der to derive a macroscopic modeling at high frequencies,
i.e. when the scale separation in the usual sense in no
longer satisfied.

Finally, there probably exists other types of waves
different from the two types described here. For this
first study, the kinematic variables periodicity is iden-
tical to the geometric periodicity. However, other re-
searches on the extension of homogenization to higher
frequencies24–26,41 suggest that this hypothesis is too re-
strictive and that the kinematic variables are often peri-
odic on two cells. Another possible continuation of the
present work could be the study of structures with walls
different from the floors or with a different cell geometry.

1 L. Brillouin, Wave propagation in periodic structures
(McGraw-Hill, New York) (1946), 247 pages.

2 D. J. Mead, “Wave propagation in continuous periodic
structures: Research contributions from Southampton,
1964-1995”, J. Sound Vib. 190, 495–524 (1996).

3 R. S. Langley, N. S. Bardell, and H. M. Ruivo, “The re-
sponse of two-dimensional periodic structures to harmonic
point loading: A theoretical and experimental study of a
beam grillage”, J. Sound Vib. 207, 521–535 (1997).

4 M. Ruzzene, F. Scarpa, and F. Soranna, “Wave beam-
ing effects in two-dimensional cellular structures”, Smart
Mater. Struct. 56, 363–372 (2003).

5 A. Srikantha Phani, J. Woodhouse, and N. A. Fleck,
“Wave propagation in two-dimensional periodic lattices”,
J. Acoust. Soc. Am. 119, 1995–2005 (2006).

6 J-L. Auriault and G. Bonnet, “Dynamique des composites
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The local resonance in frame structures 15

http://bibli.ec-lyon.fr/exl-doc/TH_T2177_cchesnais.pdf

